
Symbol Palm Terminals

Scanner System Software Manual

2

70E-35914-02
Revision A — June 2000

Symbol Technologies, Inc. One Symbol Plaza, Holtsville N.Y. 11742

Symbol Palm Terminals Scanner System Software Manual

Symbol Palm Terminal Scanner System

Software Manual

70E-35914-02

Revision A

April, 2000

iv

 1998-2000 by Symbol Technologies, Inc. All rights reserved.

No part of this publication may be reproduced or used in any form, or by any electrical or
mechanical means, without permission in writing from Symbol. This includes electronic or
mechanical means, such as photocopying, recording, or information storage and retrieval
systems. The material in this manual is subject to change without notice.

The software is provided strictly on an “as is” basis. All software, including firmware,
furnished to the user is on a licensed basis. Symbol grants to the user a non-transferable and
non-exclusive license to use each software or firmware program delivered hereunder (licensed
program). Except as noted below, such license may not be assigned, sublicensed, or otherwise
transferred by the user without prior written consent of Symbol. No right to copy a licensed
program in whole or in part is granted, except as permitted under copyright law. The user
shall not modify, merge, or incorporate any form or portion of a licensed program with other
program material, create a derivative work from a licensed program, or use a licensed
program in a network without written permission from Symbol. The user agrees to maintain
Symbol’s copyright notice on the licensed programs delivered hereunder, and to include the
same on any authorized copies it makes, in whole or in part. The user agrees not to
decompile, disassemble, decode, or reverse engineer any licensed program delivered to the
user or any portion thereof.

Symbol reserves the right to make changes to any software or product to improve reliability,
function, or design.

Symbol does not assume any product liability arising out of, or in connection with, the
application or use of any product, circuit, or application described herein.

No license is granted, either expressly or by implication, estoppel, or otherwise under any
Symbol Technologies, Inc., intellectual property rights. An implied license only exists for
equipment, circuits, and subsystems contained in Symbol products.

Symbol, Spectrum One, and Spectrum24 are registered trademarks of Symbol Technologies,
Inc. Other product names mentioned in this manual may be trademarks or registered
trademarks of their respective companies and are hereby acknowledged.

Symbol Technologies, Inc.
One Symbol Plaza
Holtsville, New York 11742-1300
http://www.symbol.com

Contents

Chapter 1. Using the Scan Manager Shared Library
Using the API . 1-1
Using the Scan Demo Application. 1-6

Chapter 2. Scanner Commands
Introduction . 2-1
Returned Status Definitions . 2-2
Scanner Commands . 2-3

Chapter 3. Barcode Parameter Functions
Introduction . 3-1
Returned Status Definitions . 3-2
Barcode Types . 3-3
Codabar Barcode Parameter Functions. 3-4
Code 32 Barcode Parameter Functions . 3-9
Code 39 Barcode Parameter Functions . 3-12
General Barcode Parameter Functions . 3-17
I 2 of 5 Barcode Parameter Functions . 3-30
MSI Plessey Barcode Parameter Functions . 3-33
UPC/EAN Barcode Parameter Functions . 3-38

Chapter 4. Hardware Parameter Functions
Introduction . 4-1
Returned Status Definitions . 4-2
Hardware Parameter Functions . 4-3
v

Symbol Palm Terminal Scanner System Software Manual
Chapter 5. Power Considerations
scanBatteryErrorEvent . 5-1
Sudden Loss of Power . 5-1
Backlighting. 5-2
Other Power Notes . 5-2

Chapter 6. Sample Scanning Application
Writing the Code . 6-1

Chapter 7. 2-Dimensional Scanning Considerations
Introduction. 7-1
Issue. 7-1
Solutions . 7-1

Appendix A. ASCII Equivalents

Appendix B. Parameter Definitions
vi

About This Guide

The Symbol Palm Terminal Scanner System Software Manual is part of the Scan Manager
software development kit (SDK). You can use the SDK to create scan-aware applications for
the Symbol Palm Terminal that scan and decode various types of barcodes.

This chapter provides an overview of the Symbol Palm Terminal Scanner System Software
Manual and provides a list of the appropriate reference documents and conventions. This
guide is for developers who want to create scan-aware applications for the terminal. The
guide assumes that you are familiar with the CodeWarrior development environment.

Scan Manager Library API SDK Documentation

The Symbol Palm Terminal Scanner System Software Manual provides you with:

! A description of how to use the Scan Manager library

! Explanations of the Application Program Interface (API) function calls

! A description of a sample Scan Manager application
vii

Symbol Palm Terminal Scanner System Software Manual
What This Guide Contains
This section provides a description of the chapters in this guide.

Chapter 1 Using the Scan Manager Shared Library—A high-level overview of the
code that creates a typical scanning application, and a description of a
simple scanning application that lists the function calls that should be
included in a typical scanning application.

Chapter 2 Scanner Commands—A list of the commands that operate the scanner.

Chapter 3 Barcode Parameter Functions—A list of the parameter functions that set
the scan parameters associated with specific types of barcodes.

Chapter 4 Hardware Parameter Functions—A list of the parameter functions that
set the parameters associated with the scanning hardware.

Chapter 5 Power Considerations—A description of how Scan Manager functions
affect the levels of power available to the scanner hardware.

Chapter 6 Sample Scanning Application—A demo application included with the
Scan Manager SDK that exercises nearly all of the API.

Chapter 7 2-Dimensional Scanning Considerations—A description of issues to be
considered when developing applications for use in the 2-D scanning
model of the SPT 1700 series terminal

Appendix A ASCII Equivalents—A list of the scan value, hex value, full ASCII code,
and keystrokes for each barcode.

Appendix B Parameter Definitions—A list of the parameters available to developers,
and the parameter default values.

Conventions Used in this Guide
This guide uses the following typographical conventions:

This style Is used for . . .

Fixed width font Code elements such as functions, structures, fields, and
bitfields

-> Input

Blue Hotlinks
viii

About This Guide
Italics Emphasis (for other elements)

This style Is used for . . .
ix

Symbol Palm Terminal Scanner System Software Manual
x

Chapter 1
Using the Scan Manager Shared Library

Using the API

The Scan Manager software development kit (SDK) is used by third-party developers to
create scanner-enabled applications for the terminal. The Scan Manager shared library API
allow terminal applications to control and receive data from the scanner hardware.

A typical application uses the Scan Manager shared library to do the following, in the order
listed below:

1. Open the scanner.

2. Enable the scanner to initiate scans through either the hardware or the application.

3. Handle any decoded data or error messages received from the decoder.

4. Shut down the scanner.

Refer to Chapter 6 for a detailed walk-through of SScan, a sample scanner-enabled
application.

The following snippets of code are a simple construct of a typical third-party application:

#include "Pilot.h" // all the system toolbox headers

#include <Menu.h>

...

...

#include "ScanMgrDef.h" // Scan Manager constant definitions

#include "ScanMgrStruct.h" // Scan Manager structure definitions
1-1

Symbol Palm Terminal Scanner System Software Manual
#include "ScanMgr.h" // Scan Manager API function definitions

...

#include "SScanRsc.h" // application resource defines

#include "Utils.h" // miscellaneous utility functions

DWord PilotMain(Word cmd, Ptr cmdPBP, Word launchFlags)

{

// Check for a normal launch.

if (cmd == sysAppLaunchCmdNormalLaunch)

{

Err error = STATUS_OK;

// Set up Scan Manager and the initial (Main) form.

StartApplication();

// Start up the event loop.

EventLoop();

// Close down Scan Manager, decoder

StopApplication();

}

return(0);

}

1-2

Using the Scan Manager Shared Library
/***

 *

 * FUNCTION: StartApplication

 *

 * DESCRIPTION: This routine sets up the initial state of the

* application.

 *

***/

static void StartApplication(void)

{

Err error;

// Call up the main form.

FrmGotoForm(MainForm);

// Now, open the scan manager library

error = ScanOpenDecoder();

// Set decoder parameters we care about...

// enable scanning

ScanCmdScanEnable();

// allow software-triggered scans

ScanSetTriggeringModes(HOST);

// Enable any barcodes to be scanned

ScanSetBarcodeEnabled(barUPCA, true);

ScanSetBarcodeEnabled(barUPCE, true);
1-3

Symbol Palm Terminal Scanner System Software Manual
ScanSetBarcodeEnabled(barUPCE1, true);

ScanSetBarcodeEnabled(barEAN13, true);

ScanSetBarcodeEnabled(barEAN8, true);

ScanSetBarcodeEnabled(barBOOKLAND_EAN, true);

ScanSetBarcodeEnabled(barCOUPON, true);

// We've set our parameters...

// Now call "ScanCmdSendParams" to send them to the decoder

ScanCmdSendParams(No_Beep);

}

/***

 *

 * FUNCTION: StopApplication

 *

 * DESCRIPTION: This routine does any cleanup required, including

* shutting down the decoder and Scan Manager shared

* library.

 *

***/

static void StopApplication(void)

{

// Disable the scanner and Close Scan Manager shared library

ScanCmdScanDisable();

ScanCloseDecoder();

}

1-4

Using the Scan Manager Shared Library
To start the scanner:

1. Call the ScanOpenDecoder() function to open the Scan Manager shared library,
and to initialize the scanner. You must call this function first, before any other
function in the shared library can be called.

2. Use the appropriate Scan Manager functions to set any of the other scanner
parameters, such as barcode formats. The specified parameters are only set locally.
To send the new parameters to the scanner, you must call ScanCmdSendParams().
The new parameters remain in effect until you or another application changes them,
or ScanCmdParamDefaults() is called.

3. Call the ScanCmdScanEnable() function to allow scanning to be performed.

To set the scan trigger:

Call the ScanSetTriggeringModes() function to identify the type of trigger that will
initiate scans. The typical application passes this function to the LEVEL parameter.

To handle scanner data and errors:

1. In your event handling code, respond to any scanDecodeEvent by storing or
displaying the decoded data.

2. Respond to error conditions (such as scanBatteryErrorEvent) by alerting the
user or performing appropriate recovery routines.

To shut down the scanner:

1. Call the ScanCmdScanDisable() function to shut down the scanner.

2. Call the ScanCloseDecoder() function at the conclusion of the program. If you
don’t, you’ll get system errors and unexpected results.
1-5

Symbol Palm Terminal Scanner System Software Manual
Using the Scan Demo Application

Scan Demo is a demo application included with the Scan Manager shared library. Scan Demo
exercises nearly all of the API, and shows you how to:

! Use the API to set and get scanner parameters
! Handle decoded scanner data
! Handle scan errors and a low-battery condition

This demo application also allows you to use the terminal’s graphical interface to display and
change scanner settings. Refer to the Scan Manager library for the location of Scan Demo.
1-6

Chapter 2
Scanner Commands

Introduction

The Scan Manager API in this section give you commands to manipulate the scanner. Using
these commands, an application should perform the following functions:

! Enable or disable scanning

! Start a decode

! Turn the LED on or off

! Sound any of the defined beep patterns

! Set the scanner into “aim” (laser-pointer) mode

! Get version information for the various terminal software components
2-1

Symbol Palm Terminal Scanner System Software Manual
Returned Status Definitions

The scanner commands in this chapter may return one of the status codes described in
Table 2-1.

Table 2-1. Returned Status Codes

STATUS CODE DEFINITION

Any non-negative value
(0 to 32767)

Parameter value.

STATUS_OK The function’s parameters were verified. If a
function must wait for an ACK from the scanner,
STATUS_OK indicates that the ACK was received.

NOT_SUPPORTED The last packet received from the scanner generated
either a NAK_DENIED or NAK_BAD_CONTEXT
status. This usually indicates that the specified
parameter is not supported by this scanner, or the
scanner was unable to comply with the request.

COMMUNICATIONS_ERROR Either a timeout condition or the maximum number
of retries (or both) occurred. The previous transmit
message was not verified through an ACK, and
therefore, is questionable.

BAD_PARAM One or more of the function call parameters
supplied by the user was not in the expected range.

BATCH_ERROR The limits of a batch function have been exceeded.
Unless otherwise indicated, functions that start with
ScanSet are responsible for generating a batch
command to establish scanner parameters. The
parameters are not sent to the scanner until the
ScanCmdSendParams() function is called, at
which time a new batch is started.

ERROR_UNDEFINED An error condition exists that is not specifically
associated with the scanner or its communications.
2-2

Scanner Commands
Scanner Commands

Table 2-2 lists the scanner commands described in this chapter.

Table 2-2. Scanner Commands

FUNCTION PAGE

ScanCloseDecoder 2-4

ScanCmdAimOff 2-5

ScanCmdAimOn 2-6

ScanCmdBeep 2-7

ScanCmdGetAllParams 2-9

ScanCmdLedOff 2-10

ScanCmdLedOn 2-11

ScanCmdParamDefaults 2-12

ScanCmdScanDisable 2-13

ScanCmdScanEnable 2-14

ScanCmdSendParams 2-15

ScanCmdStartDecode 2-16

ScanCmdStopDecode 2-17

ScanGetAimMode 2-18

ScanGetDecodedData 2-19

ScanGetExtendedDecodedData 2-22

ScanGetDecoderVersion 2-23

ScanGetLedState 2-24

ScanGetScanEnabled 2-25

ScanGetScanManagerVersion 2-26

ScanGetScanPortDriverVersion 2-27

ScanOpenDecoder 2-28
2-3

Symbol Palm Terminal Scanner System Software Manual
ScanCloseDecoder
Purpose Closes the Scan Manager shared library and frees up system

resources.

Prototype int ScanCloseDecoder (
void);

Returned Status Zero=No errors closing shared library
Non-zero=Error closing shared library

Comments Must be called by all applications that call the
ScanOpenDecoder function. Failure to do so will cause system
errors and unpredictable results.

See Also ScanOpenDecoder
2-4

Scanner Commands
ScanCmdAimOff
Purpose Takes the scanner out of the “aim” mode (also known as “laser

pointer” mode).

Note: SPT 170x0-2D does not support aim mode.

Prototype int ScanCmdAimOff (
void);

Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

COMMUNICATIONS_ERROR

NOT_SUPPORTED

See Also ScanCmdAimOn
2-5

Symbol Palm Terminal Scanner System Software Manual
ScanCmdAimOn
Purpose Places the scanner into its “aim” mode (also known as “laser

pointer” mode).

Note: SPT 170x0-2D does not support aim mode.

Prototype int ScanCmdAimOn (
void);

Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

COMMUNICATIONS_ERROR

NOT_SUPPORTED

Comments This function call only tells the scanner that you want to use the
scanner laser for aiming, not decoding. To execute the aim, the
user must press the scanner’s trigger, or a
ScanCmdStartDecode command must be sent.

See Also ScanCmdAimOff
2-6

Scanner Commands
ScanCmdBeep
Purpose Executes the specified beep sequence.

Prototype int ScanCmdBeep (
BeepType beep);

Parameters -> beep Must be one of the following
values:

ONE_SHORT_HIGH
TWO_SHORT_HIGH
THREE_SHORT_HIGH
FOUR_SHORT_HIGH
FIVE_SHORT_HIGH

ONE_SHORT_LOW
TWO_SHORT_LOW
THREE_SHORT_LOW
FOUR_SHORT_LOW
FIVE_SHORT_LOW

ONE_LONG_HIGH
TWO_LONG_HIGH
THREE_LONG_HIGH
FOUR_LONG_HIGH
FIVE_LONG_HIGH

ONE_LONG_LOW
TWO_LONG_LOW
THREE_LONG_LOW
FOUR_LONG_LOW
FIVE_LONG_LOW

FAST_WARBLE
SLOW_WARBLE

MIX1
MIX2
MIX3
MIX4
2-7

Symbol Palm Terminal Scanner System Software Manual
DECODE_BEEP
BOOTUP_BEEP
PARAMETER_DEFAULTS_

BEEP

Returned Status STATUS_OK

If an error occurs, the returned status is the following:

BAD_PARAM

COMMUNICATIONS_ERROR

NOT_SUPPORTED
2-8

Scanner Commands
ScanCmdGetAllParams
Purpose Retrieves the current parameters from the scanner.

Prototype int ScanCmdGetAllParams(
unsigned char *ptr,
int maxlength);

Parameters -> ptr[] Array where the scanner’s
parameter information is
deposited.

-> maxlength Maximum size (in bytes) of the
parameter values stored in the
ptr[] array.

Returned Status Number of bytes copied into ptr[].

If an error occurs, the returned status is one of the following:

COMMUNICATION_ERROR

NOT_SUPPORTED

Comments The location of the array where the parameters are stored begins
with ptr[0]. The parameters are returned as data pairs
consisting of (parameter_number and
parameter_value). You must parse through the data pairs and
associate each parameter_number with a specific scanner
capability. If the number of bytes you specify in maxlength is less
than the number of scanner parameters retrieved, the remaining
parameters are lost. To make sure you retrieve all of the
parameters, set Ptr to at least 256 bytes.

As you use ScanSet commands to set the decoder’s parameters,
the new parameters will not be reflected in the ptr[] array. You
must update your own parameter storage when you change
parameters.
2-9

Symbol Palm Terminal Scanner System Software Manual
ScanCmdLedOff
Purpose Immediately turns off the scanner’s green LED.

Prototype int ScanCmdLedOff (
void);

Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

COMMUNICATIONS_ERROR

NOT_SUPPORTED

See Also ScanCmdLedOn
2-10

Scanner Commands
ScanCmdLedOn
Purpose Immediately turns on the scanner’s green LED.

Prototype int ScanCmdLedOn (
void);

Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

COMMUNICATIONS_ERROR

NOT_SUPPORTED

Comments The LED stays on until the ScanCmdLedOff command is sent.

See Also ScanCmdLedOff
2-11

Symbol Palm Terminal Scanner System Software Manual
ScanCmdParamDefaults
Purpose Sets all parameters to the factory-installed defaults.

Prototype int ScanCmdParamDefaults (
void);

Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

COMMUNICATIONS_ERROR

NOT_SUPPORTED
2-12

Scanner Commands
ScanCmdScanDisable
Purpose Prevents the scanner from activating the laser when the trigger is

pressed or a ScanCmdStartDecode command is received.

Prototype int ScanCmdScanDisable (
void);

Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

COMMUNICATIONS_ERROR

NOT_SUPPORTED

See Also ScanCmdScanEnable
2-13

Symbol Palm Terminal Scanner System Software Manual
ScanCmdScanEnable
Purpose Permits the scanner to activate the laser when the trigger is

pressed or a ScanCmdStartDecode command is received.

Prototype int ScanCmdScanEnable (
void);

Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

COMMUNICATIONS_ERROR

NOT_SUPPORTED

See Also ScanCmdScanDisable
2-14

Scanner Commands
ScanCmdSendParams
Purpose Sends to the scanner any parameters changed by your application.

Also can initiate a beep when the parameters have been
successfully changed.

Prototype int ScanCmdSendParams(
BeepType beep);

Parameters -> beep Set this parameter to one of the
BeepType values listed in the
ScanMgrDef.h header file. If you
do not want a beep, send the
NO_BEEP parameter.

Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

COMMUNICATIONS_ERROR

NOT_SUPPORTED

Comments This function transmits the scanner parameter values set by other
functions. If you do not call ScanCmdSendParams after you
have called all of your “set” functions, the settings will not take
effect.

The values you set are permanent and will persist until either the
terminal is reset or until you perform a
ScanCmdParamDefaults command.

The beep parameter is the sound the beeper should make when
the parameters have been successfully changed.
2-15

Symbol Palm Terminal Scanner System Software Manual
ScanCmdStartDecode
Purpose Instructs the scanner to turn on the laser and begin decoding a

barcode.

Prototype int ScanCmdStartDecode (
void);

Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

COMMUNICATIONS_ERROR

NOT_SUPPORTED

Comments This command only initiates a scanning session if the trigger
mode is set to Host (see ScanSetTriggeringModes). If the
scanner was previously set to aim mode by the ScanCmdAimOn
command, this command initiates a laser pointer operation. The
laser remains on for the value set in ScanSetLaserOnTime x
10.

See Also ScanCmdStopDecode
2-16

Scanner Commands
ScanCmdStopDecode
Purpose Instructs the scanner to abort a decode attempt.

Prototype int ScanCmdStopDecode (
void);

Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

COMMUNICATIONS_ERROR

NOT_SUPPORTED

See Also ScanCmdStartDecode
2-17

Symbol Palm Terminal Scanner System Software Manual
ScanGetAimMode
Purpose Identifies whether the scanner is in “normal mode” or “aim”

mode (for use as a laser pointer).

Note: SPT 170x0-2D does not support aim mode.

Prototype int ScanGetAimMode (
void);

Returned Status Zero=normal mode
Non-zero=Aim mode

See Also ScanCmdAimOn
ScanCmdAimOff
2-18

Scanner Commands
ScanGetDecodedData
Purpose Retrieves the decoded data from the last scan. Also fills in the

DECODE_DATA_STRUCT structure with barcode type, length, and
checksum information.

Prototype int ScanGetDecodedData (
MESSAGE *ptr);

Parameters -> ptr A pointer to the user-allocated
DECODE_DATA_STRUCT where
the decoded data is to be placed.

-> ptr->length Number of characters in the
decoded data string.

-> ptr->data Contains the decoded data.

-> ptr->data Start of the packet.

[ptr->length] Checksum.

-> ptr->type The type of barcode that was
decoded:

BCTYPE_NOT_
APPLICABLE

BCTYPE_BOOKLAND_EAN
BCTYPE_COUPON_CODE
BCTYPE_CODABAR
BCTYPE_CODE32
BCTYPE_CODE39
BCTYPE_CODE39_FULL_

ASCII
BCTYPE_CODE93
BCTYPE_CODE128
BCTYPE_D2OF5
BCTYPE_EAN8
BCTYPE_EAN8_2

SUPPLEMENTALS
BCTYPE_EAN8_5

SUPPLEMENTALS
2-19

Symbol Palm Terminal Scanner System Software Manual
BCTYPE_EAN13_5
SUPPLEMENTALS

BCTYPE_EAN13
BCTYPE_EAN13_2

SUPPLEMENTALS
BCTYPE_EAN128
BCTYPE_I2OF5
BCTYPE_IATA2OF5
BCTYPE_ISBT128
BCTYPE_MSI_PLESSEY
BCTYPE_TRIOPTIC_

CODE39
BCTYPE_UPCA
BCTYPE_UPCA_2

SUPPLEMENTALS
BCTYPE_UPCA_5

SUPPLEMENTALS
BCTYPE_UPCE0
BCTYPE_UPCE0_2

SUPPLEMENTALS
BCTYPE_UPCE0_5

SUPPLEMENTALS
BCTYPE_UPCE1
BCTYPE_UPCE1_2

SUPPLEMENTALS
BCTYPE_UPCE1_5

SUPPLEMENTALS
BCTYPE_PDF417

Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

COMMUNICATIONS_ERROR

NOT_SUPPORTED

Comments Typically, an application calls this function in response to an
EVENT_DECODE_DATA type of event.
2-20

Scanner Commands
See Also ScanGetExtendedDecodedData
2-21

Symbol Palm Terminal Scanner System Software Manual
ScanGetExtendedDecodedData
Purpose Retrieves the decoded data larger than 255 bytes (multipacket

data) from the last scan.

Prototype int ScanGetExtendedDecodedData (int length, int
*type. unsigned char
*extendedData);

Parameters length passed to the function by the
application, and is the size of the
buffer pointed to by *buf.

extendedData pointer to the buffer to place the
decoded data.

type pointer to an int, and will contain
the bar code type after the API is
successfully called.

Returned Status Status_OK
If an error occurs, the returned status is one of the following:
BAD_PARAM
COMMUNICATIONS_ERROR
NOT_SUPPORTED

Comments Typically, an application calls this function in response to an
EVENT_DECODE_DATA type of event and when extended data
flag is set to indicate that extended data has been decoded. The
length of the data is also sent out from the scanner manager to the
application. Note that scan angle selection is not supported and
ScanCmdAimOn is not supported.

SeeAlso ScanGetDecodedData
2-22

Scanner Commands
ScanGetDecoderVersion
Purpose Retrieves the ASCII revision string of the scanner’s decode

software. Also copies the string to a user-specified location.

Prototype int ScanGetDecoderVersion (
CharPtr ptr,
Word max_length);

Parameters -> ptr A pointer to a user-allocated char
array. This function places the
revision into the array, null
terminated.

-> max_length Maximum number of characters
to be copied to ptr[].

Returned Status Length of the revision string.

If an error occurs, the returned status is one of the following:

BAD_PARAM
COMMUNICATIONS_ERROR
NOT_SUPPORTED

Comments The application should call this function after receiving a
REVISION_REPLY_EVENT.
2-23

Symbol Palm Terminal Scanner System Software Manual
ScanGetLedState
Purpose Indicates whether the green LED is currently on or off.

Prototype int ScanGetLedState (
void);

Returned Status Zero=OFF
Non-zero=ON

See Also ScanCmdLedOff
ScanCmdLedOn
2-24

Scanner Commands
ScanGetScanEnabled
Purpose Indicates whether the scanner is currently enabled.

Prototype int ScanGetScanEnabled (
void);

Returned Status Zero=DISABLED
Non-zero=ENABLED

See Also ScanCmdScanEnable
ScanCmdScanDisable
2-25

Symbol Palm Terminal Scanner System Software Manual
ScanGetScanManagerVersion
Purpose Copies the ASCII version string for the Scan Manager software

into a user-specified location.

Prototype int ScanGetScanManagerVersion (
CharPtr ptr,
Word max_length);

Parameters -> ptr A pointer to a user-allocated char
array. This function places the
version into the array, null
terminated.

-> max_length Maximum number of characters
to be copied to ptr[].

Returned Status Length of the revision string.

If an error occurs, the returned status is the following:

NOT_SUPPORTED

See Also ScanGetScanPortDriverVersion
2-26

Scanner Commands
ScanGetScanPortDriverVersion
Purpose Copies the ASCII version string for the scan port driver software

into a user-specified location.

Prototype int ScanGetScanPortDriverVersion (
CharPtr ptr,
Word max_length);

Parameters -> ptr A pointer to a user-allocated char
array. This function places the
version into the array, null
terminated.

-> max_length Maximum number of characters
to be copied to ptr[].

Returned Status Length of the revision string.

If an error occurs, the returned status is the following:

NOT_SUPPORTED

See Also ScanGetScanManagerVersion
2-27

Symbol Palm Terminal Scanner System Software Manual
ScanOpenDecoder
Purpose Loads and initializes the Scan Manager shared library, and

initializes the scanner.

Prototype int ScanOpenDecoder (
void);

Returned Status DECODER_ALREADY_OPEN—The function was previously
called without a corresponding call to the ScanCloseDecoder
function.

STATUS_OK

Comments Must be called by all applications before any of the other
functions in the Scan Manager shared library can be used. Also
include a call to the ScanCloseDecoder function.

See Also ScanCloseDecoder
2-28

Chapter 3
Barcode Parameter Functions

Introduction

The Scan Manager functions described in this chapter give you the ability to control how the
scanner handles various types of barcodes. These functions allow your application to control
the following types of settings:

! Which specific barcode types will be decoded

! Which specific barcode lengths will be decoded

! Which conversions will be performed on the decoded data

! Whether to decode Universal Product Code (UPC) preamble and supplemental data

! How many times a barcode is to be scanned to ensure an accurate decode (redundancy)

The Scan Manager software places events into your application’s event queue to notify you
of pertinent scanner events. The following scanner events, at a minimum, should be handled
by your application:

! Decode Event

! Scanning Error
3-1

Symbol Palm Terminal Scanner System Software Manual
Returned Status Definitions

The function calls listed in this chapter may return one of the status codes described in
Table 3-1.

Table 3-1. Returned Status Codes

STATUS CODE DEFINITION

Any non-negative value
(0 to 32767)

Parameter value.

STATUS_OK The function’s parameters were verified. If a
function must wait for an ACK from the scanner,
STATUS_OK indicates that the ACK was received.

NOT_SUPPORTED The last packet received from the scanner generated
either a NAK_DENIED or NAK_BAD_CONTEXT
status. This usually indicates that the specified
parameter is not supported by this scanner, or the
scanner was unable to comply with the request.

COMMUNICATIONS_ERROR Either a timeout condition or the maximum number
of retries (or both) occurred. The previous transmit
message was not verified through an ACK, and
therefore, is questionable.

BAD_PARAM One or more of the function call parameters
supplied by the user was not in the expected range.

BATCH_ERROR The limits of a batch function have been exceeded.
Unless otherwise indicated, functions that start with
ScanSet are responsible for generating a batch
command to establish scanner parameters. The
parameters are not sent to the scanner until the
ScanCmdSendParams() function is called, at
which time a new batch is started.

ERROR_UNDEFINED An error condition exists that is not specifically
associated with the scanner or its communications.
3-2

Barcode Parameter Functions
Barcode Types

Table 3-2 lists the barcode types that can be enabled by the parameter functions in this
chapter.

The actual parameter functions for each barcode type are listed in the appropriate section.

Table 3-2. Barcode Types

BARCODE TYPE PAGE

Codabar Barcode Parameter Functions 3-4

Code 32 Barcode Parameter Functions 3-9

Code 39 Barcode Parameter Functions 3-12

General Barcode Parameter Functions 3-17

I 2 of 5 Barcode Parameter Functions 3-30

MSI Plessey Barcode Parameter Functions 3-33

UPC/EAN Barcode Parameter Functions 3-38
3-3

Symbol Palm Terminal Scanner System Software Manual
Codabar Barcode Parameter Functions

Table 3-3 lists the Codabar barcode parameter functions described in this section.

Table 3-3. Codabar Barcode Parameter Functions

PARAMETER FUNCTION PAGE

ScanGetClsiEditing 3-5

ScanGetNotisEditing 3-6

ScanSetClsiEditing 3-7

ScanSetNotisEditing 3-8
3-4

Barcode Parameter Functions
ScanGetClsiEditing
Purpose Identifies whether the start and stop characters are being stripped

from a 14-character Codabar symbol, and a space is being
inserted after the first, fifth, and tenth characters.

Prototype int ScanGetClsiEditing (
void);

Returned Status Zero=DISABLE

>zero=ENABLE

If an error occurs, the returned status is one of the following:

COMMUNICATIONS_ERROR

NOT_SUPPORTED

See Also ScanSetClsiEditing
3-5

Symbol Palm Terminal Scanner System Software Manual
ScanGetNotisEditing
Purpose Identifies whether the start and stop characters are being stripped

from a 14-character Codabar symbol.

Prototype int ScanGetNotisEditing (
void);

Returned Status Zero=DISABLE

>zero=ENABLE

If an error occurs, the returned status is one of the following:

COMMUNICATIONS_ERROR

NOT_SUPPORTED

See Also ScanSetNotisEditing
3-6

Barcode Parameter Functions
ScanSetClsiEditing
Purpose When enabled, strips the start and stop characters from a

14-character Codabar symbol, and inserts a space after the first,
fifth, and tenth characters.

Prototype int ScanSetClsiEditing (
Boolean bEnable);

Parameters -> bEnable Must be one of the following
values:

True=ENABLE
False=DISABLE

Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

BATCH_ERROR

See Also ScanGetClsiEditing
3-7

Symbol Palm Terminal Scanner System Software Manual
ScanSetNotisEditing
Purpose When enabled, strips the start and stop characters from a

14-character Codabar symbol.

Prototype int ScanSetNotisEditing (
Boolean bEnable);

Parameters -> bEnable Must be one of the following
values:

True=ENABLE
False=DISABLE

Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

BATCH_ERROR

See Also ScanGetNotisEditing
3-8

Barcode Parameter Functions
Code 32 Barcode Parameter Functions

Table 3-4 lists the Code 32 barcode parameter functions described in this section.

Table 3-4. Code 32 Barcode Parameter Functions

PARAMETER FUNCTION PAGE

ScanGetCode32Prefix 3-10

ScanSetCode32Prefix 3-11
3-9

Symbol Palm Terminal Scanner System Software Manual
ScanGetCode32Prefix
Purpose Identifies whether the character ‘A’ is being appended to the

beginning of decode data that is in Code 32 format.

Prototype int ScanGetCode32Prefix (
void);

Returned Status Zero=DISABLE

>zero=ENABLE

If an error occurs, the returned status is one of the following:

COMMUNICATIONS_ERROR

NOT_SUPPORTED

See Also ScanSetCode32Prefix
3-10

Barcode Parameter Functions
ScanSetCode32Prefix
Purpose Determines whether the character “A” is to be appended to the

beginning of decode data that is in Code 32 format.

Prototype int ScanSetCode32Prefix (
Boolean bEnable);

Parameters -> bEnable Must be one of the following
values:

True=ENABLE
False=DISABLE

Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

BATCH_ERROR

See Also ScanGetCode32Prefix
3-11

Symbol Palm Terminal Scanner System Software Manual
Code 39 Barcode Parameter Functions

Table 3-5 lists the Code 39 barcode parameter functions described in this section.

Table 3-5. Code 39 Barcode Parameter Functions

PARAMETER FUNCTION PAGE

ScanGetCode39CheckDigitVerification 3-13

ScanGetCode39FullAscii 3-14

ScanSetCode39CheckDigitVerification 3-15

ScanSetCode39FullAscii 3-16
3-12

Barcode Parameter Functions
ScanGetCode39CheckDigitVerification
Purpose Identifies whether a Code 39 symbol is complying with specified

algorithms.

Prototype int ScanGetCode39CheckDigitVerification (
void);

Returned Status ENABLE

DISABLE

If an error occurs, the returned status is one of the following:

COMMUNICATIONS_ERROR

NOT_SUPPORTED

See Also ScanSetCode39CheckDigitVerification
3-13

Symbol Palm Terminal Scanner System Software Manual
ScanGetCode39FullAscii
Purpose Identifies whether an ASCII character code is being assigned to

letters, punctuation marks, numerals, and most keyboard control
keystrokes.

Prototype int ScanGetCode39FullAscii (
void);

Returned Status Zero=DISABLE

>zero=ENABLE

If an error occurs, the returned status is one of the following:

COMMUNICATIONS_ERROR

NOT_SUPPORTED

See Also ScanSetCode39FullAscii
3-14

Barcode Parameter Functions
ScanSetCode39CheckDigitVerification
Purpose Determines whether a Code 39 symbol is to comply with specified

algorithms.

Prototype int ScanSetCode39CheckDigitVerification (
Word check_digit);

Parameters -> check_digit Must be one of the following
values:

ENABLE
DISABLE

Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

BATCH_ERROR

Comments Only those Code 39 symbols that include a modulo 43 check digit
are decoded when this parameter is enabled.

See Also ScanGetCode39CheckDigitVerification
3-15

Symbol Palm Terminal Scanner System Software Manual
ScanSetCode39FullAscii
Purpose Determines whether an ASCII character code is to be assigned to

letters, punctuation marks, numerals, and most keyboard control
keystrokes.

Prototype int ScanSetCode39FullAscii (
Boolean bEnable);

Parameters -> full_ascii Must be one of the following
values:

True=ENABLE
False=DISABLE

Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

BATCH_ERROR

Comments Code 39 Full ASCII interprets the barcode special character ($ +
% /) preceding a Code 39 character, and assigns an ASCII
character value to the pair. For example, when Code 39 Full ASCII
is enabled and a +B is scanned, it is interpreted as b; %J as 7; and
$H emulates the keystroke BACKSPACE. Scanning ABC$M
outputs the keystroke equivalent of ABC ENTER.

Do not enable Code 39 Full ASCII and Trioptic Code 39 at the
same time.

See Also ScanGetCode39FullAscii
3-16

Barcode Parameter Functions
General Barcode Parameter Functions

Table 3-6 lists the general barcode parameter functions described in this section.

Table 3-6. General Barcode Parameter Functions

PARAMETER FUNCTION PAGE

ScanGetBarcodeEnabled 3-18

ScanGetBarcodeLengths 3-19

ScanGetConvert 3-21

ScanGetTransmitCheckDigit 3-22

ScanSetBarcodeEnabled 3-23

ScanSetBarcodeLengths 3-25

ScanSetConvert 3-27

ScanSetTransmitCheckDigit 3-29
3-17

Symbol Palm Terminal Scanner System Software Manual
ScanGetBarcodeEnabled
Purpose Determines whether the specified barcode type is currently

enabled for decoding.

Prototype int ScanGetBarcodeEnabled (
BarType barcodeType);

Returned Status The enabled state of the specified barcode type:

Zero=DISABLE
>zero=ENABLE
barBOOKLAND_EAN
barCODABAR
barCODE39
barCODE93
barCODE128
barCOUPON
barD2OF5
barEAN8
barEAN13
barI2OF5
barISBT128
barMSI_PLESSEY
barTRIOPTICCODE39
barUCC_EAN128
barUPCA
barUPCE
barUPCE1
barPDF417

If an error occurs, the returned status is one of the following:

COMMUNICATIONS_ERROR

NOT_SUPPORTED

See Also ScanSetBarcodeEnabled
3-18

Barcode Parameter Functions
ScanGetBarcodeLengths
Purpose Identifies the number of human-readable symbols in the specified

format that are being decoded.

Prototype int ScanGetBarcodeLengths (
BarType barcodeType,
WordPtr pLengthType,
WordPtr pLength1,
WordPtr pLength2);

Returned Status barcodeType will be filled with one of the following values:

barCODABAR

barCODE39

barCODE93

barD25

barI2of5

barMSI_PLESSEY

pLengthType will be filled with one of the following values:

ONE_DISCRETE_LENGTH

TWO_DISCRETE_LENGTHS

LENGTH_WITHIN_RANGE

ANY_LENGTH
3-19

Symbol Palm Terminal Scanner System Software Manual
If applicable, pLength1 will be used to return length1.

If applicable, pLength2 will be used to return length2.

STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

BATCH_ERROR

COMMUNICATIONS_ERROR

NOT_SUPPORTED

Comments If pLengthType is ONE_DISCRETE_LENGTH, ignore the value
returned in pLength2. If pLengthType is ANY_LENGTH, ignore
the values returned in pLength1 and pLength2.

See Also ScanSetBarcodeLengths
3-20

Barcode Parameter Functions
ScanGetConvert
Purpose Identifies whether decoded data is being converted to the

specified format before transmission.

Prototype int ScanGetConvert (
ConvertType conversion);

Parameters -> conversion Must be one of the following
values:

UPCEtoUPCA
UPCE1toUPCA
EAN8toEAN13
CODE39toCODE32
I2OF5toEAN13

Returned Status Zero=DISABLE

>zero=ENABLE

If an error occurs, the returned status is one of the following:

COMMUNICATIONS_ERROR

NOT_SUPPORTED

See Also ScanSetConvert
3-21

Symbol Palm Terminal Scanner System Software Manual
ScanGetTransmitCheckDigit
Purpose Identifies whether the specified code is being transmitted with a

check digit.

Prototype int ScanGetTransmitCheckDigit (
barType barcodeType);

Parameters -> barcodeType Must be one of the following
values:

barUPCA
barUPCE
barUPCE1
barCODE39
barI2OF5
barMSI_PLESSEY

Returned Status The barcode format specified in the
ScanSetTransmitCheckDigit function call.

TRANSMIT_CHECK_DIGIT

DO_NOT_TRANSMIT_CHECK_DIGIT

If an error occurs, the returned status is one of the following:

COMMUNICATIONS_ERROR

NOT_SUPPORTED

See Also ScanSetTransmitCheckDigit
3-22

Barcode Parameter Functions
ScanSetBarcodeEnabled
Purpose Dictates whether the specified barcode type is to be enabled for

decoding.

Prototype int ScanSetBarcodeEnabled (
BarType barcodeType,
Boolean bEnable);

Parameters -> barcodeType Must be one of the following
values:

barBOOKLAND_EAN
barCODABAR
barCODE39
barCODE93
barCODE128
barD2OF5
barEAN8
barEAN13
barI2OF5
barISBT128
barMSI_PLESSEY
barTRIOPTICCODE39
barUCC_EAN128
barUPCA
barUPCE
barUPCEANCOUPONCODE
barUPCE1
barPDF417

-> bEnable Must be one of the following
values:

True=ENABLE
False=DISABLE
3-23

Symbol Palm Terminal Scanner System Software Manual
Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

BATCH_ERROR

See Also ScanGetBarcodeEnabled
3-24

Barcode Parameter Functions
ScanSetBarcodeLengths
Purpose Determines the number of human-readable symbols in the

specified format that are to be decoded.

Prototype int ScanSetBarcodeLengths (
BarType barcodeType,
Word lengthType,
Word length1,
Word length2);

Parameters -> barcodeType Must be one of the following
values:

barCODABAR
barCODE39
barCODE93
barD25
barI2of5
barMSI_PLESSEY

-> lengthType Must be one of the following
values:

ONE_DISCRETE_LENGTH
TWO_DISCRETE_LENGTHS
LENGTH_WITHIN_RANGE
ANY_LENGTH

-> length1, length2 The discrete lengths you wish to
decode, or the range of barcode
lengths you wish to decode. These
lengths are ignored if the
ANY_LENGTH parameter is set.

Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

BATCH_ERROR
3-25

Symbol Palm Terminal Scanner System Software Manual
Comments The number of human-readable characters in the specified
barcode format (including check digits) that are to be decoded
may be set for:

! One discrete length: Decode only those codes that contain a
selected length. For example, if you select
ONE_DISCRETE_LENGTH and pass a length value of 14, only
the barcode symbols containing 14 characters are decoded.
Codes that contain two discrete lengths (length2) are
ignored.

! Two discrete lengths: Decode only those codes that contain
two selected lengths. For example, if you select
TWO_DISCRETE_LENGTHS and pass length values of 2 and
14, only the barcode symbols containing 2 or 14 characters are
decoded.

! Lengths within a specified range: Decode those codes that
contain a specified range of characters. If you select
LENGTH_WITHIN_RANGE and pass length values of 4 and 12,
only the barcode symbols containing between 4 and 12
characters are decoded.

! Any length: Decode specified barcode symbols containing any
number of characters. The length values that you pass are
ignored. Codes that contain one discreet length or two discreet
lengths are ignored.

If Code 39 Full ASCII is enabled, try to use the
LENGTH_WITHIN_RANGE or ANY_LENGTH options.

See Also ScanGetBarcodeLengths
3-26

Barcode Parameter Functions
ScanSetConvert
Purpose Converts decoded data to the specified format before

transmission.

Prototype int ScanSetConvert (
ConvertType conversion,
Boolean bEnable);

Parameters -> conversion Must be one of the following
values:

UPCEtoUPCA
UPCE1toUPCA
EAN8toEAN13
CODE39toCODE32
I2OF5toEAN13

bEnable Must be one of the following
values:

True=ENABLE
False=DISABLE

Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

BATCH_ERROR

Comments Converting UPC-E to UPC-A—To transmit UPC-E (zero
suppressed) decoded data, select DISABLE. After being converted,
the data follows UPC-A format conventions, and is affected by
UPC-A programming selections (such as preamble, check digit).

Converting UPC-E1 to UPC-A—To transmit UPC-E1 (zero
suppressed) decoded data, select DISABLE. After being converted,
the data follows UPC-A format conventions and is affected by
UPC-A programming selections (such as, preamble or check
digit).
3-27

Symbol Palm Terminal Scanner System Software Manual
Converting EAN-8 to EAN-13—When EAN Zero Extend is
disabled, this parameter has no effect on barcode data.

Converting I 2 of 5 to EAN-13—The I 2 of 5 code must be
enabled, one length must be set to 14, and the code must have a
leading zero and a valid EAN-13 check digit.

See Also ScanGetConvert
3-28

Barcode Parameter Functions
ScanSetTransmitCheckDigit
Purpose Determines whether the specified code is to be transmitted with a

check digit.

Prototype int ScanSetTransmitCheckDigit (
BarType barcodeType,
Word check_digit);

Parameters -> barcodeType Must be one of the following
values:

barUPCA
barUPCE
barUPCE1
barCODE39
barI2OF5
barMSI_PLESSEY

-> check_digit Must be one of the following
values:

TRANSMIT_CHECK_
DIGIT

DO_NOT_TRANSMIT_
CHECK_DIGIT

Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

BATCH_ERROR

Comments Check digits are used by the scanner to validate that the correct
data has been decoded. In UPC code, the check digit’s value is
based on the other data in the barcode.

See Also ScanGetTransmitCheckDigit
3-29

Symbol Palm Terminal Scanner System Software Manual
I 2 of 5 Barcode Parameter Functions

Table 3-7 lists the I 2 of 5 barcode parameter functions described in this section.

Table 3-7. I 2 of 5 Barcode Parameter Functions

PARAMETER FUNCTION PAGE

ScanGetI2of5CheckDigitVerification 3-31

ScanSetI2of5CheckDigitVerification 3-32
3-30

Barcode Parameter Functions
ScanGetI2of5CheckDigitVerification
Purpose Identifies whether an I 2 of 5 symbol is complying with specified

algorithms.

Prototype int ScanGetI2of5CheckDigitVerification (
void);

Returned Status DISABLE

OPCC_CHECK_DIGIT

USS_CHECK_DIGIT

If an error occurs, the returned status is one of the following:

COMMUNICATIONS_ERROR

NOT_SUPPORTED

See Also ScanSetI2of5CheckDigitVerification
3-31

Symbol Palm Terminal Scanner System Software Manual
ScanSetI2of5CheckDigitVerification
Purpose Determines whether an I 2 of 5 symbol is to comply with specified

algorithms.

Prototype int ScanSetI2of5CheckDigitVerification (
Word check_digit);

Parameters -> check_digit Must be one of the following
values:

DISABLE
USS_CHECK_DIGIT
OPCC_CHECK_DIGIT

Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

BATCH_ERROR

Comments The I 2 of 5 symbol must comply with one of the following
algorithms:

! Optical Product Code Council (OPCC)

! Uniform Symbology Specification (USS)

See Also ScanGetI2of5CheckDigitVerification
3-32

Barcode Parameter Functions
MSI Plessey Barcode Parameter Functions

Table 3-8 lists the MSI Plessey barcode parameter functions described in this section.

Table 3-8. MSI Plessey Barcode Parameter Functions

PARAMETER FUNCTION PAGE

ScanGetMsiPlesseyCheckDigit Algorithm 3-34

ScanGetMsiPlesseyCheckDigits 3-35

ScanSetMsiPlesseyCheckDigit Algorithm 3-36

ScanSetMsiPlesseyCheckDigits 3-37
3-33

Symbol Palm Terminal Scanner System Software Manual
ScanGetMsiPlesseyCheckDigit
Algorithm

Purpose Determines whether MSI Plessey-encoded symbols with two
check digits are being verified a second time before being
transmitted.

Prototype int ScanGetMsiPlessey
CheckDigitAlgorithm (
void);

Returned Status MOD10_MOD11

MOD10_MOD10

If an error occurs, the returned status is one of the following:

COMMUNICATIONS_ERROR

NOT_SUPPORTED

See Also ScanSetMsiPlesseyCheckDigitAlgorithm
3-34

Barcode Parameter Functions
ScanGetMsiPlesseyCheckDigits
Purpose Determines the number of check digits that are being inserted at

the end of MSI Plessey-encoded data.

Prototype int ScanGetMsiPlesseyCheckDigits (
void);

Return Status ONE_CHECK_DIGIT

TWO_CHECK_DIGITS

If an error occurs, the returned status is one of the following:

COMMUNICATIONS_ERROR

NOT_SUPPORTED

See Also ScanSetMsiPlesseyCheckDigits
3-35

Symbol Palm Terminal Scanner System Software Manual
ScanSetMsiPlesseyCheckDigit
Algorithm

Purpose Determines whether MSI Plessey-encoded symbols with two
check digits are to be verified a second time before being
transmitted.

Prototype int ScanSetMsiPlessey
CheckDigitAlgorithm (
Word algorithm);

Parameters -> algorithm Must be one of the following
values:

MOD10_MOD11
MOD10_MOD10

Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

BATCH_ERROR

See Also ScanGetMsiPlesseyCheckDigitAlgorithm
3-36

Barcode Parameter Functions
ScanSetMsiPlesseyCheckDigits
Purpose Determines the number of check digits that are to be inserted at

the end of MSI Plessey-encoded data.

Prototype int ScanSetMsiPlesseyCheckDigits (
Word check_digits);

Parameters -> check_digits Must be one of the following
values:

ONE_CHECK_DIGIT
TWO_CHECK_DIGITS

Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

BATCH_ERROR

Comments The check digits at the end of the barcode verify the integrity of
the data. At least one check digit is always required. Check digits
are not automatically transmitted with the data.

See Also ScanGetMsiPlesseyCheckDigits
3-37

Symbol Palm Terminal Scanner System Software Manual
UPC/EAN Barcode Parameter Functions

Table 3-9 lists the UPC/EAN (European Article Numbering) barcode parameter functions
described in this section:

Table 3-9. UPC/EAN Barcode Parameter Functions

PARAMETER FUNCTION PAGE

ScanGetDecodeUpcEanRedundancy 3-39

ScanGetDecodeUpcEanSupplementals 3-40

ScanGetEanZeroExtend 3-41

ScanGetUpcEanSecurityLevel 3-42

ScanGetUpcPreamble 3-43

ScanSetDecodeUpcEanRedundancy 3-44

ScanSetDecodeUpcEanSupplementals 3-45

ScanSetEanZeroExtend 3-47

ScanSetUpcEanSecurityLevel 3-48

ScanSetUpcPreamble 3-50
3-38

Barcode Parameter Functions
ScanGetDecodeUpcEanRedundancy
Purpose When the autodiscriminate UPC/EAN supplementals parameter

is selected in the ScanSetDecodeUpcEanRedundancy
function, it identifies the number of times a symbol without
supplementals is decoded before being transmitted.

Prototype int ScanGetDecodeUpcEanRedundancy (
void);

Returned Status Integer in the range [0...20].

If an error occurs, the returned status is one of the following:

COMMUNICATIONS_ERROR

NOT_SUPPORTED

See Also ScanSetDecodeUpcEanRedundancy
3-39

Symbol Palm Terminal Scanner System Software Manual
ScanGetDecodeUpcEanSupplementals
Purpose Identifies how UPC or EAN code that includes supplemental

characters is being decoded.

Prototype int ScanGetDecodeUpcEanSupplementals (
void);

Returned Status DECODE_SUPPLEMENTALS

IGNORE_SUPPLEMENTALS

AUTODISCRIMINATE_SUPPLEMENTALS

If an error occurs, the returned status is one of the following:

COMMUNICATIONS_ERROR

NOT_SUPPORTED

See Also ScanSetDecodeUpcEanSupplementals
3-40

Barcode Parameter Functions
ScanGetEanZeroExtend
Purpose Determines whether five leading zeros are being added to decoded

EAN-8 symbols.

Prototype int ScanGetEanZeroExtend (
void);

Returned Status Zero=DISABLE

>zero=ENABLE

If an error occurs, the returned status is one of the following:

COMMUNICATIONS_ERROR

NOT_SUPPORTED

See Also ScanSetEanZeroExtend
3-41

Symbol Palm Terminal Scanner System Software Manual
ScanGetUpcEanSecurityLevel
Purpose Identifies the number of times the barcode is scanned before being

decoded.

Prototype int ScanGetUpcEanSecurityLevel (
void);

Returned Status SECURITY_LEVEL0

SECURITY_LEVEL1

SECURITY_LEVEL2

SECURITY_LEVEL3

If an error occurs, the returned status is one of the following:

COMMUNICATIONS_ERROR

NOT_SUPPORTED

See Also ScanSetUpcEanSecurityLevel
3-42

Barcode Parameter Functions
ScanGetUpcPreamble
Purpose Identifies whether the specified UPC code is being transmitted

with lead-in characters.

Prototype int ScanGetUpcPreamble (
BarType barcodeType);

Parameter -> barcodeType Must be one of the following
values:

barUPCA
barUPCE
barUPCE1

Returned Status One of the following values:

NO_PREAMBLE

SYSTEM_CHARACTER

SYSTEM_CHARACTER_COUNTRY_CODE

If an error occurs, the returned status is one of the following:

COMMUNICATIONS_ERROR

NOT_SUPPORTED

See Also ScanSetUpcPreamble
3-43

Symbol Palm Terminal Scanner System Software Manual
ScanSetDecodeUpcEanRedundancy
Purpose With the autodiscriminate UPC/EAN supplementals option

selected, it adjusts the number of times a symbol without
supplementals is to be decoded before being transmitted.

Prototype int ScanSetDecodeUpcEanRedundancy (
Word supplemental_redundancy);

Parameters -> supplemental_redundancy Must be an integer in the
range [2...20].

Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

BATCH_ERROR

Comments The range is from two to 20 times. Five or above is recommended
when decoding a mix of UPC/EAN symbols with and without
supplementals, and the autodiscriminate option is selected.

See Also ScanGetDecodeUpcEanRedundancy
3-44

Barcode Parameter Functions
ScanSetDecodeUpcEanSupplementals
Purpose Determines how UPC or EAN code that includes supplemental

characters is to be decoded.

Prototype int ScanSetDecodeUpcEanSupplementals (
Word supplementals);

Parameters -> supplementals Must be one of the following
values:

DECODE_SUPPLEMENTALS
IGNORE_SUPPLEMENTALS
AUTODISCRIMINATE_

SUPPLEMENTALS

Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

BATCH_ERROR

Comments Supplementals are two or five characters added to code according
to specific format conventions (for example, UPC A+2, UPC E+2,
EAN 8+2).

Three options are available:

! If you select the decode_supplementals parameter,
UPC/EAN symbols that don’t have supplemental characters
are not decoded.

! If you select the ignore_supplementals parameter,
UPC/EAN symbols that have supplemental characters are
decoded, and the supplemental characters are ignored.
3-45

Symbol Palm Terminal Scanner System Software Manual
! If you select the autodiscriminate_supplementals
parameter, you can adjust the number of times a symbol is
scanned to ensure that both the barcode and the supplementals
are correctly decoded. If you use autodiscriminate, consider
setting redundancy to greater than five.

See Also ScanGetDecodeUpcEanSupplementals
3-46

Barcode Parameter Functions
ScanSetEanZeroExtend
Purpose When enabled, adds five leading zeros to decoded EAN-8

symbols.

Prototype int ScanSetEanZeroExtend (
Boolean bEnable);

Parameters -> bEnable Must be one of the following
values:

True=ENABLE
False=DISABLE

Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

BATCH_ERROR

Comments This function call makes EAN-8 symbols compatible to EAN-13
symbols.

See Also ScanGetEanZeroExtend
3-47

Symbol Palm Terminal Scanner System Software Manual
ScanSetUpcEanSecurityLevel
Purpose Selects the number of times the barcode is to be scanned before

being decoded.

Prototype int ScanSetUpcEanSecurityLevel (
Word security_level);

Parameters -> security_level Must be one of the following
values:

SECURITY_LEVEL0
SECURITY_LEVEL1
SECURITY_LEVEL2
SECURITY_LEVEL3

Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

BATCH_ERROR

Comments The SPT scanner offers four levels of decoding security for UPC/
EAN barcodes. Security levels determine the number of times
linear barcodes (such as Code 39 or I 2 of 5) are scanned before
being decoded. Higher security levels are needed for decreasing
barcode quality. Data must be decoded the same twice in a row for
the scan to be considered good. As security levels increase, the
scanner’s aggressiveness decreases, so be sure to choose only that
level of security necessary for any given application.
3-48

Barcode Parameter Functions
Security Level 0—The default setting. Allows the scanner to
operate in its most aggressive state, while providing sufficient
security for decoding in-spec barcodes.

Security Level 1—As barcode quality levels diminish, certain
characters (1, 2, 7, or 8) become prone to misdecodes. Select this
security level if you are experiencing misdecodes because of
poorly printed barcodes, and the misdecodes are limited to these
characters.

Security Level 2—Select this security level if you are experiencing
misdecodes of poorly printed barcodes, and the misdecodes are
not limited to characters 1, 2, 7, or 8.

Security Level 3—Select this security level if you have tried
Security Level 2 and are still experiencing misdecodes. This
security level significantly impairs the decoding ability of the
scanner. If this level of security is necessary, try to improve the
barcode’s quality.

See Also ScanGetUpcEanSecurityLevel
3-49

Symbol Palm Terminal Scanner System Software Manual
ScanSetUpcPreamble
Purpose Determines whether the specified UPC code is to be transmitted

with lead-in characters.

Prototype int ScanSetUpcPreamble (
BarType barcodeType,
int preamble);

Parameters -> barcodeType Must be one of the following
values:

barUPCA
barUPCE
barUPCE1

-> preamble Must be one of the following
values:

NO_PREAMBLE
SYSTEM_CHARACTER
SYSTEM_CHARACTER_

COUNTRY_CODE

Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

BATCH_ERROR
3-50

Barcode Parameter Functions
Comments Three options are given for transmitting lead-in characters
(preamble) added to UPC-A symbols:

! Transmit system character only

! Transmit system character and country code
(“0” for USA)

! Do not transmit the preamble

The preamble is considered part of the symbol.

See Also ScanGetUpcPreamble
3-51

Symbol Palm Terminal Scanner System Software Manual
3-52

Chapter 4
Hardware Parameter Functions

Introduction

The Scan Manager functions in this section give you ability to set up the scanner. With these
functions, an application can perform the following:

! Set scan angle and aim duration

! Set triggering mode

! Set beep durations and frequencies

! Set redundancy and security levels

! Identify and manipulate barcode data
4-1

Symbol Palm Terminal Scanner System Software Manual
Returned Status Definitions

The hardware parameter functions may return one of the status codes described in Table 4-1.

Table 4-1. Returned Status Codes

STATUS CODE DEFINITION

Any non-negative value
(0 to 32767)

Parameter value.

STATUS_OK The function’s parameters were verified. If a
function must wait for an ACK from the scanner,
STATUS_OK indicates that the ACK was received.

NOT_SUPPORTED The last packet received from the scanner
generated either a NAK_DENIED or
NAK_BAD_CONTEXT status. This usually
indicates that the specified parameter is not
supported by this scanner, or the scanner was
unable to comply with the request.

COMMUNICATIONS_ERROR Either a timeout condition or the maximum
number of retries (or both) occurred. The previous
transmit message was not verified through an
ACK, and therefore, is questionable.

BAD_PARAM One or more of the function call parameters
supplied by the user was not in the expected
range.

BATCH_ERROR The limits of a batch function have been exceeded.
Unless otherwise indicated, functions that start
with ScanSet are responsible for generating a
batch command to establish scanner parameters.
The parameters are not sent to the scanner until
the ScanCmdSendParams() function is called,
at which time a new batch is started.

ERROR_UNDEFINED An error condition exists that is not specifically
associated with the scanner or its
communications.
4-2

Hardware Parameter Functions
Hardware Parameter Functions

Table 4-2 lists the hardware parameter functions described in this chapter.

Table 4-2. Hardware Parameter Functions

PARAMETER FUNCTION PAGE

ScanGetAimDuration 4-5

ScanGetBeepAfterGoodDecode 4-6

ScanGetBeepDuration 4-7

ScanGetBeepFrequency 4-8

ScanGetBidirectionalRedundancy 4-9

ScanGetDecodeLedOnTime 4-10

ScanGetLaserOnTime 4-11

ScanGetLinearCodeTypeSecurityLevel 4-12

ScanGetPrefixSuffixValues 4-13

ScanGetAngle 4-14

ScanGetScanDataTransmissionFormat 4-15

ScanGetTransmitCodeIdCharacter 4-16

ScanGetTriggeringModes 4-17

ScanIsPalmSymbolUnit 4-18

ScanSetAimDuration 4-19

ScanSetAngle 4-20

ScanSetBeepAfterGoodDecode 4-21

ScanSetBeepDuration 4-22

ScanSetBeepFrequency 4-23

ScanSetBidirectionalRedundancy 4-24

ScanSetDecodeLedOnTime 4-25

ScanSetLaserOnTime 4-26
4-3

Symbol Palm Terminal Scanner System Software Manual
ScanSetLinearCodeTypeSecurityLevel 4-27

ScanSetPrefixSuffixValues 4-29

ScanSetScanDataTransmissionFormat 4-30

ScanSetTransmitCodeIdCharacter 4-31

ScanSetTriggeringModes 4-38

Table 4-2. Hardware Parameter Functions

PARAMETER FUNCTION PAGE
4-4

Hardware Parameter Functions
ScanGetAimDuration
Purpose Identifies the amount of time the aiming pattern is seen before a

scan begins.

Prototype int ScanGetAimDuration (

void);

Returned Status Integer in the range [0...99], representing a time period of 0.0 to
9.9 seconds, in 0.1-second increments.

If an error occurs, the returned status is one of the following:

COMMUNICATIONS_ERROR

NOT_SUPPORTED

See Also ScanSetAimDuration
4-5

Symbol Palm Terminal Scanner System Software Manual
ScanGetBeepAfterGoodDecode
Purpose Identifies whether the unit has been set to beep after a good

decode.

Prototype int ScanGetBeepAfterGoodDecode (

void);

Returned Status Zero=DISABLE

>zero=ENABLE

If an error occurs, the returned status is one of the following:

COMMUNICATIONS_ERROR

NOT_SUPPORTED

See Also ScanSetBeepAfterGoodDecode
4-6

Hardware Parameter Functions
ScanGetBeepDuration
Purpose Identifies the duration of the beep for the specified beep types.

Prototype int ScanGetBeepDuration (

DurationType type);

Parameters -> type Must be one of the following
values:

DECODE
SHORT
MEDIUM
LONG

Returned Status STATUS_OK

See Also ScanSetBeepDuration
4-7

Symbol Palm Terminal Scanner System Software Manual
ScanGetBeepFrequency
Purpose Gets the frequency of the beeper for the specified beep types.

Prototype int ScanGetBeepFrequency (

FrequencyType beep_type);

Parameters -> beep_type Must be one of the following
values:

DECODE
LOW
MEDIUM
HIGH

Returned Status STATUS_OK

See Also ScanSetBeepFrequency
4-8

Hardware Parameter Functions
ScanGetBidirectionalRedundancy
Purpose Identifies whether a barcode must be successfully scanned in both

directions before being decoded.

Prototype int ScanGetBidirectionalRedundancy (

void);

Returned Status ENABLE

DISABLE

If an error occurs, the returned status is one of the following:

COMMUNICATIONS_ERROR

NOT_SUPPORTED

See Also ScanSetBidirectionalRedundancy
4-9

Symbol Palm Terminal Scanner System Software Manual
ScanGetDecodeLedOnTime
Purpose Identifies the amount of time the LED is to be turned on when a

successful scan is performed.

Prototype int ScanGetDecodeLedOnTime (

void);

Returned Status Integer in the range [0...100], representing a time period of 0.0 to
10.0 seconds, in 0.1-second increments.

If an error occurs, the returned status is one of the following:

COMMUNICATIONS_ERROR

NOT_SUPPORTED

See Also ScanSetDecodeLedOnTime
4-10

Hardware Parameter Functions
ScanGetLaserOnTime
Purpose Identifies the maximum scanner processing time allowed during a

scan.

Prototype int ScanGetLaserOnTime (

void);

Returned Status Integer in the range [5...99], representing a time period of 0.5 to
9.9 seconds, in 0.1-second increments.

If an error occurs, the returned status is one of the following:

COMMUNICATIONS_ERROR

NOT_SUPPORTED

See Also ScanSetLaserOnTime
4-11

Symbol Palm Terminal Scanner System Software Manual
ScanGetLinearCodeTypeSecurityLevel
Purpose Identifies the number of times the barcode is scanned before being

decoded.

Prototype int ScanGetLinearCodeTypeSecurityLevel (

void);

Returned Status SECURITY_LEVEL1

SECURITY_LEVEL2

SECURITY_LEVEL3

SECURITY_LEVEL4

If an error occurs, the returned status is one of the following:

COMMUNICATIONS_ERROR

NOT_SUPPORTED

See Also Comment for ScanSetLinearCodeTypeSecurityLevel
4-12

Hardware Parameter Functions
ScanGetPrefixSuffixValues
Purpose Identifies any prefix or suffixes appended to the scanned data.

Prototype int ScanGetPrefixSuffixValues (

CharPtr pPrefix,

CharPtr pSuffix_1,

CharPtr pSuffix_2);

Returned Status ptr[0] returns prefix

ptr[1] returns suffix_1

ptr[2] returns suffix_2

STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

COMMUNICATIONS_ERROR

NOT_SUPPORTED

See Also ScanSetPrefixSuffixValues
Appendix A for prefix/suffix values
4-13

Symbol Palm Terminal Scanner System Software Manual
ScanGetAngle
Purpose Identifies the scanner’s field of view.

Note: SPT 17X0-2D does not support scan angle selection.

Prototype int ScanGetAngle (

void);

Returned Status SCAN_ANGLE_WIDE

SCAN_ANGLE_NARROW

If an error occurs, the returned status is one of the following:

COMMUNICATIONS_ERROR

NOT_SUPPORTED

See Also ScanSetAngle
4-14

Hardware Parameter Functions
ScanGetScanDataTransmissionFormat
Purpose Identifies the scan data transmission format.

Prototype int ScanGetScanDataTransmissionFormat (

void);

Returned Status DATA_AS_IS

DATA_SUFFIX1

DATA_SUFFIX2

DATA_SUFFIX1_SUFFIX2

PREFIX_DATA

PREFIX_DATA_SUFFIX1

PREFIX_DATA_SUFFIX2

PREFIX_DATA_SUFFIX1_SUFFIX2

If an error occurs, the returned status is one of the following:

COMMUNICATIONS_ERROR

NOT_SUPPORTED

See Also ScanSetScanDataTransmissionFormat
4-15

Symbol Palm Terminal Scanner System Software Manual
ScanGetTransmitCodeIdCharacter
Purpose Determines whether a character has been selected to identify the

scanned barcode’s code type and the method selected.

Prototype int ScanGetTransmitCodeIdCharacter (

void);

Returned Status AIM_CODE_ID_CHARACTER

DISABLE

SYMBOL_CODE_ID_CHARACTER

If an error occurs, the returned status is one of the following:

COMMUNICATIONS_ERROR

NOT_SUPPORTED

See Also ScanSetTransmitCodeIdCharacter
4-16

Hardware Parameter Functions
ScanGetTriggeringModes
Purpose Identifies the type of scan engine trigger.

Prototype int ScanGetTriggeringModes (

void);

Return Status HOST

LEVEL

PULSE

If an error occurs, the returned status is one of the following:

COMMUNICATIONS_ERROR

NOT_SUPPORTED

See Also ScanSetTriggeringModes
4-17

Symbol Palm Terminal Scanner System Software Manual
ScanIsPalmSymbolUnit
Purpose Identifies whether the application is running on an SPT device

(Palm organizer with scanner hardware and software).

Prototype int ScanIsPalmSymbolUnit (

void);

Return Status Zero=Unit is not an SPT device

Non-zero=Unit is an SPT device

If an error occurs, the returned status is one of the following:

COMMUNICATIONS_ERROR

NOT_SUPPORTED

Comments Use this call when your software needs to run on both an
unmodified Palm III device and an SPT device.
4-18

Hardware Parameter Functions
ScanSetAimDuration
Purpose Sets the amount of time the aiming pattern is to be seen before a

scan begins.

Prototype int ScanSetAimDuration (

Word aim_duration);

Parameters -> aim_duration Must be an integer in the range
[0...99], representing a time
period of 0.0 to 9.9 seconds.

Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

BATCH_ERROR

Comments This function is invoked when the trigger is pressed or a
ScanCmdStartDecode command is received. This function call
does not apply to the aim signal or to the ScanCmdAimOn
command.

The aim_duration parameter is programmable in 0.1-second
increments. If a value of 0 is set for aim_duration, the aim
pattern is disabled.

See Also ScanGetAimDuration
4-19

Symbol Palm Terminal Scanner System Software Manual
ScanSetAngle
Purpose Sets the scanner’s field of view.

Note: SPT 17X0-2D does not support scan angle selection.

Prototype int ScanSetAngle (

Word scanner_angle);

Parameters -> scanner_angle Must be one of the following
values:

SCAN_ANGLE_WIDE
SCAN_ANGLE_NARROW

Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

BATCH_ERROR

Comments A SCAN_ANGLE_WIDE field of view allows the scanner to decode
more barcode characters at the same time.

See Also ScanGetAngle
4-20

Hardware Parameter Functions
ScanSetBeepAfterGoodDecode
Purpose Determines whether the unit is to beep after a good decode.

Prototype int ScanSetBeepAfterGoodDecode (

Boolean bEnableBeep);

Parameters -> bEnableBeep Must be one of the following
values:

True=ENABLE
False=DISABLE

Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

BATCH_ERROR

Comments When bEnableBeep is disabled, the beep still operates during
parameter menu scanning, and indicates error conditions.

See Also ScanGetBeepAfterGoodDecode
4-21

Symbol Palm Terminal Scanner System Software Manual
ScanSetBeepDuration
Purpose Sets the duration of the beep for the specified beep types.

Prototype int ScanSetBeepDuration (

DurationType type,

int beep_duration);

Parameters -> type Must be one of the following
values:

DECODE
SHORT
MEDIUM
LONG

-> beep_duration A numeric beep length in
milliseconds (ms).

Returned Status STATUS_OK

If an error occurs, the returned status is:

BAD_PARAM

Comments Default durations are:

Decode 90 ms
Short 70 ms
Medium 90 ms
Long 240 ms

The acceptable range for any of these durations is 0 to 10,000 ms.

See Also ScanGetBeepDuration
4-22

Hardware Parameter Functions
ScanSetBeepFrequency
Purpose Sets the frequency of the beeper for the specified beep types.

Prototype int ScanSetBeepFrequency (

FrequencyType type,

int beep_freq);

Parameters -> type Must be one of the following
values:

DECODE FREQUENCY
LOW FREQUENCY
MEDIUM FREQUENCY
HIGH FREQUENCY

-> beep_freq A numeric beep frequency in
hertz (Hz).

Returned Status STATUS_OK

If an error occurs, the returned status is:

BAD_PARAM

Comments Default frequencies are:

Decode frequency 3000 Hz
Low frequency 1500 Hz
Medium frequency 3000 Hz
High frequency 7500 Hz

The acceptable range for any of these frequencies is 0 to 15,000
Hz.

See Also ScanGetBeepFrequency
4-23

Symbol Palm Terminal Scanner System Software Manual
ScanSetBidirectionalRedundancy
Purpose Requires that a barcode be successfully scanned in both directions

before being decoded.

Prototype int ScanSetBidirectionalRedundancy (

Word redundancy);

Parameters -> redundancy Must be one of the following
values:

ENABLE
DISABLE

Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

BATCH_ERROR

Comments This parameter is only valid when the
ScanSetLinearCodeTypeSecurityLevel function call has
been enabled.

See Also ScanGetBidirectionalRedundancy
4-24

Hardware Parameter Functions
ScanSetDecodeLedOnTime
Purpose Sets the amount of time the LED will be turned on when a

successful scan is performcd.

Prototype int ScanSetDecodeLedOnTime (

Word led_on_time);

Parameters -> led_on_time Must be an integer in the range
[0...99], representing a time
period of 0.0 to 9.9 seconds.

Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

BATCH_ERROR

Comments If a value of 0 is set for led_on_time, the LED will not be
turned on. The led_on_time parameter is programmable in
0.1-second increments.

See Also ScanGetDecodeLedOnTime
4-25

Symbol Palm Terminal Scanner System Software Manual
ScanSetLaserOnTime
Purpose Sets the maximum scanner processing time to be allowed during

a scan.

Prototype int ScanSetLaserOnTime (

Word laser_on_time);

Parameters -> laser_on_time Must be an integer in the range
[5...99], representing a time
period of 0.5 to 9.9 seconds.

Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

BATCH_ERROR

Comments Your application should use the hardware trigger, instead of the
ScanCmdStartDecode command, to initiate a scan. However, if
the scanner was previously set to laser pointer mode by the
ScanCmdAimOn command and the laser is activated by the
ScanCmdStartDecode command, the laser remains on for
laser_on_time x 10 seconds.

The laser_on_time parameter is programmable in 0.1-second
increments.

See Also ScanGetLaserOnTime
4-26

Hardware Parameter Functions
ScanSetLinearCodeTypeSecurityLevel
Purpose Selects the number of times the barcode is to be scanned before

being decoded.

Prototype int ScanSetLinearCodeTypeSecurityLevel (

Word security_level);

Parameters -> security_level Must be one of the following
values:

SECURITY_LEVEL1
SECURITY_LEVEL2
SECURITY_LEVEL3
SECURITY_LEVEL4

Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

BATCH_ERROR

Comments Security levels determine the number of times linear barcodes
(such as Code 39 or I 2 of 5) are scanned before being decoded.

Security levels do not apply to code 128 function calls.

Higher security levels are needed for decreasing barcode quality.
As security levels increase, the scanner’s aggressiveness decreases,
so be sure to choose only that level of security necessary for any
given application.
4-27

Symbol Palm Terminal Scanner System Software Manual
Linear Security Level 1: The following code types must be
successfully read twice before being decoded:

CODE TYPE LENGTH

Codabar All

MSI Plessey 4 or less

D 2 of 5 8 or less

I 2 of 5 8 or less

Linear Security Level 2: The following code types must be
successfully read twice before being decoded:

Code Type Length

All All

Linear Security Level 3: Code types other than the following must
be successfully read twice before being decoded. The following
codes must be read three times:

Code Type Length

MSI Plessey 4 or less

D 2 of 5 8 or less

I 2 of 5 8 or less

Linear Security Level 4: The following code types must be
successfully read three times before being decoded:

Code Type Length

All All

See Also ScanGetLinearCodeTypeSecurityLevel
4-28

Hardware Parameter Functions
ScanSetPrefixSuffixValues
Purpose Appends a prefix or one or two suffixes to scanned data.

Prototype int ScanSetPrefixSuffixValues (

Char prefix, Char suffix_1,

Char suffix_2);

Parameters -> prefix, The desired ASCII values.
suffix_1
and suffix_2

Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

BATCH_ERROR

Comments Before setting the prefix/suffix values, set the Scan Data
Transmission Format.

See Also ScanGetPrefixSuffixValues
ScanSetScanDataTransmissionFormat
Appendix A for prefix/suffix values
4-29

Symbol Palm Terminal Scanner System Software Manual
ScanSetScanDataTransmissionFormat
Purpose Changes the scan data transmission format.

Prototype int ScanSetScanDataTransmissionFormat (

Word transmission_format);

Parameters -> transmission_ Must be one of the
format following values:

DATA_AS_IS
DATA_SUFFIX1
DATA_SUFFIX_2
DATA_SUFFIX1_

SUFFIX2
PREFIX_DATA
PREFIX_DATA_SUFFIX1
PREFIX_DATA_SUFFIX2
PREFIX_DATA_SUFFIX1_

SUFFIX2

Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

BATCH_ERROR

See Also ScanGetScanDataTransmissionFormat
4-30

Hardware Parameter Functions
ScanSetTransmitCodeIdCharacter
Purpose Selects a character that identifies the scanned barcode’s code type.

Prototype int ScanSetTransmitCodeIdCharacter (

Word code_id);

Parameters -> code_id Must be one of the following
values:

SYMBOL_CODE_ID_
CHARACTER

AIM_CODE_ID_CHARACTER
DISABLE

Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

BATCH_ERROR

Comments The code ID character is useful when the scanner is decoding
more than one code type. The code ID character is inserted
between the prefix and the decoded symbol.

The user may select:

! No code ID character

! Symbol Code ID character

! AIM Code ID character
4-31

Symbol Palm Terminal Scanner System Software Manual
The Symbol Code ID characters are listed and defined in
Table 4-3.

Table 4-3. Symbol Code ID Characters

CODE DEFINITION

A UPC-A, UPC-E, UPC-E1, EAN-8,
EAN-13

B Code 39, Code 32

C Codabar

D Code 128 or ISBT 128

E Code 93

F Interleaved 2 of 5

G Discrete 2 of 5 or Discrete 2 of 5
IATA

J MSI Plessey

K UCC/EAN-128

L Bookland EAN

M Trioptic Code 39

N Coupon Code
4-32

Hardware Parameter Functions
The definitions for each AIM Code ID character contains a three-
character string (in the format]cm). These characters are defined
in Table 4-4:

The Code characters are listed in Table 4-5:

Table 4-4. AIM Code ID Characters

CODE DEFINITION REFER TO

] Flag character
(ASCII 93)

N/A

c Code character Table 4-5

m Modifier character Table 4-6

Table 4-5. Code Characters

CODE DEFINITION

A Code 39, Code 32

C Code 128 or ISBT 128

E UPC-A, UPC-E, UPC-E1, EAN-8,
EAN-13, UCC/EAN-128

F Codabar

G Code 93

I Interleaved 2 of 5

M MSI Plessey

S Discrete 2 of 5 and Discrete 2 of 5 IATA

X Bookland EAN, Trioptic Code 39,
Coupon Code
4-33

Symbol Palm Terminal Scanner System Software Manual
The Modifier characters are listed in Table 4-6:

Table 4-6. Modifier Characters

BARCODE
TYPE

MODIFIER
CHAR OPTION EXAMPLE

Code 39 0 Decoder has not checked
any check characters or
performed a full ASCII
processing

A full ASCII barcode with
check character W,
A+I+MI+D+W, is
transmitted as]A7AimId

1 Decoder has checked one
check character

3 Decoder has checked and
stripped one check
character

4 Decoder has performed a
full ASCII character
conversion

5 Decoder has performed a
full ASCII character
conversion and checked
one check character

7 Decoder has performed a
full ASCII character
conversion, and checked
and stripped one check
character

Trioptic Code
39

0 No options A Trioptic barcode 412356
is transmitted as
]X0412356

Code 128 0 Standard data packet with
no function code 1
character in the first
symbol position

A Code 128 barcode with a
function code 1 character
in the first position, FNCI
AimId, is transmitted with
an AIM ID of]C1
4-34

Hardware Parameter Functions
Code 128
(cont’d)

1 Function code 1 character
in the first symbol
position

2 Function code 1 character
in the second symbol
position

I 2 of 5 0 No check digit processing An I 2 of 5 barcode 4123
without a check digit being
checked is transmitted as
]I04123

1 Decoder has checked the
check digit

3 Decoder has stripped the
check digit before
transmission

Codabar 0 No check digit processing A Codabar barcode 4123
without a check digit being
checked is transmitted as
]F04123

1 Decoder has checked the
check digit

3 Decoder has stripped the
check digit before
transmission

Code 93 0 No options A Code 93 barcode
012345678905 is
transmitted as
]G0012345678905

Table 4-6. Modifier Characters

BARCODE
TYPE

MODIFIER
CHAR OPTION EXAMPLE
4-35

Symbol Palm Terminal Scanner System Software Manual
MSI Plessey 0 Single check digit checked An MSI Plessey barcode
4123 with a single check
digit checked is
transmitted as]M04123

1 Two check digits checked

2 Single check digit checked
and stripped before
transmission

3 Two check digits checked
and stripped before
transmission

D 2 of 5 0 No options A D 2 of 5 barcode 4123 is
transmitted as]S04123

UPC/EAN 0 Standard packet in full
EAN country code
format: 13 digits for UPC-
A and UPC-E (not
including supplemental
data)

A UPC-A barcode
012345678905 is
transmitted as
]E0012345678905

1 Two-digit supplemental
data only

2 Five-digit supplemental
data only

4 EAN-8 data packet

Bookland EAN 0 No options, always
transmit 0

A Bookland barcode
123456789X is
transmitted as
]X0123456789X

Table 4-6. Modifier Characters

BARCODE
TYPE

MODIFIER
CHAR OPTION EXAMPLE
4-36

Hardware Parameter Functions
See Also ScanGetTransmitCodeIdCharacter
4-37

Symbol Palm Terminal Scanner System Software Manual
ScanSetTriggeringModes
Purpose Sets the type of scan engine trigger.

Prototype int ScanSetTriggeringModes (

Word triggering_mode);

Parameters -> triggering_mode Must be one of the following
values:

LEVEL—Only the terminal Scan
trigger initiates the scan; the laser
is turned off when the trigger is
released or the decode was good.

PULSE—Only the terminal Scan
trigger initiates the scan; the laser
is turned off when the value set in
ScanSetLaserOnTime
is reached or when the decode
was good.

HOST—The terminal Scan trigger
or the application’s
ScanCmdStartDecode
command initiates the scan; the
laser is turned off when the
trigger is released, or when the
value set in
ScanSetLaserOnTime
is reached, the
ScanCmdStopDecode
command is called, or the decode
was good.
4-38

Hardware Parameter Functions
Returned Status STATUS_OK

If an error occurs, the returned status is one of the following:

BAD_PARAM

BATCH_ERROR

Comments If the scanner was previously set to aim mode by the
ScanCmdAimOn command, each mode functions as described
above, except the laser will be on for the value set in
ScanSetLaserOnTime x 10, and decoding is disabled.

See Also ScanGetTriggeringModes
ScanSetLaserOnTime
ScanCmdStartDecode
ScanCmdStopDecode
ScanCmdAimOn
4-39

Symbol Palm Terminal Scanner System Software Manual
4-40

Chapter 5
Power Considerations

The power-consumption characteristics of the SPT device are different than those of a normal
Palm III device, and it is important to keep this in mind when writing your application. The
normal low-battery alert is displayed whenever the battery voltage falls below the acceptable
operating level. However, a scan operation requires a different power threshold. When
battery levels fall below this threshold (approximately 2.3 volts) an attempted scan will fail,
and the scanner is disabled. Your application must alert the end-user in this situation,
explaining why the scan failed, and directing them to install fresh batteries.

scanBatteryErrorEvent

Your code needs to handle the scanBatteryErrorEvent. The Scan Manager application
generates this event whenever it detects the low-battery condition. Consult one of the two
sample programs (ScanDemo or SScan) for an example of how to handle this event. Be sure
to catch this event in all of your event handlers that might be in effect when a scan operation
is attempted. For example, the ScanDemo program catches the scanBatteryErrorEvent
in ApplicationHandleEvent so that it is handled in whatever form being displayed.

Sudden Loss of Power

If the terminal is put into sleep mode (through the unit’s on/off button) while a scan-aware
application is running, the state of the scanner will be preserved when the unit is turned back
on. If the terminal is put into sleep mode while a scan is in progress, the scan will be aborted
before the unit goes to sleep.
5-1

Symbol Palm Terminal Scanner System Software Manual
If the end-user removes the batteries while a scan-aware application is running (and the unit
is not in sleep mode), Scan Manager removes power to the scanner and tries to maintain its
current settings. However, this is not recommended, and you may see unpredictable results.

Backlighting

If your application controls or relies on the Palm device’s backlighting feature, be aware that
Scan Manager turns backlighting off at the outset of a scan operation. It also restores
backlighting after the scan is completed.

Other Power Notes

Certain decoder settings affect power consumption, and therefore affect battery life. The
“laser pointer” mode set in ScanCmdAimOn draws a lot of power. Selecting pulse mode
rather then trigger mode generally draws more power. Also, increasing values from the
defaults for the following increases power consumption somewhat:

! LaserOnTime

! DecodeLedTime

! DecodeBeepDuration

! AimDuration

The scanner draws no power until ScanOpenDecoder() is called. It stops drawing power
when ScanDecoderClose() is called. Therefore, if you need the scanner’s capabilities
only during certain portions of your application, you may want to issue the
ScanOpenDecoder call before you enter that portion of the application, and
ScanCloseDecoder when you exit that portion of the application. For example, you may
need the scanner for entering data in fields on only one form of your application.

To avoid excessive voltage draw, the Scan Manager software puts the terminal into sleep
mode while the laser is on. You should be careful to preserve this functionality. For this
reason, it is recommended that you do not pass a timeout value to “EvtGetEvent.” (For
example, do not generate a nilEvent every few milliseconds in a scanning situation). Doing
so could cause the terminal to come out of sleep mode at one of your timeout intervals while
the laser is firing.

Finally, to reduce instantaneous power draw, your application should avoid opening the IR
Exchange Manager or HotSync port while the scanner is open.
5-2

Chapter 6
Sample Scanning Application

The Scan Manager application described in this chapter is called SScan. It is a sample scan-
aware application that demonstrates the basics of building a scan-aware application. The
sections in this chapter describe, at a high level, the components in the Sscan application. The
Scan Manager library also includes a detailed application, called Scan Demo, that exercises
nearly all of the API. Refer to the Scan Manager library for the location of Scan Demo.

Writing the Code

Include Files
The following three #include statements provide you with the Scan Manager interface
definitions, including the API functions, constants, and data structures.

#include "ScanMgrDef.h"// Scan Manager constant definitions

#include "ScanMgrStruct.h"// Scan Manager structure definitions

#include "ScanMgr.h" // Scan Manager API function definitions

PilotMain Routine
The PilotMain function is a standard Palm organizer application. It contains the code for
handling a normal application launch (sysAppLaunchCmdNormalLaunch) by calling
three other functions: StartApplication, EventLoop, and StopApplication.
6-1

Symbol Palm Terminal Scanner System Software Manual
/***
 *
 * FUNCTION: PilotMain
 *
 * DESCRIPTION: This function is the equivalent of a main()
* function in standard C. It is called by the
* Emulator to begin execution of this application.

 *
 * PARAMETERS: cmd - command specifying how to launch the
* application.

 * cmdPBP - parameter block for the command.
 * launchFlags - flags used to configure the launch.
 *
 * RETURNED: Any applicable error code.
 *
***/
DWord PilotMain(Word cmd, Ptr cmdPBP, Word launchFlags)
{

// Check for a normal launch.
if (cmd == sysAppLaunchCmdNormalLaunch)
{

Err error = STATUS_OK;

// Set up Scan Manager and the initial (Main) form.
StartApplication();

// Start up the event loop.
EventLoop();

// Close down Scan Manager, decoder
StopApplication();

}

return(0);
}

6-2

Sample Scanning Application
The StartApplication Function
Sscan’s StartApplication function demonstrates what you need to do at the outset of
your program to properly initialize the scanner.

The first thing the StartApplication function does is call ScanIsPalmSymbolUnit,
which tells the application whether it is running on a device that contains scanner hardware
and software. This function is useful when your application needs to run on both an
unmodified Palm III device and on a SPT device. Based on the result of this call, you can
continue either as a normal application or as a scan-aware application.

Before calling any other Scan Manager library function, you must call ScanOpenDecoder.
This function:

! Loads the Scan Manager shared library

! Powers on the decoder

! Initiates communication between the application and the scanner unit

Be sure to check the return value of the ScanOpenDecoder call. If it does not return a value
of STATUS_OK, do not proceed with other Scan Manager calls.

If your application successfully performs ScanOpenDecoder, you may configure the
decoder to suit your application’s needs. This could involve enabling the scanner, setting the
trigger mode, and enabling the appropriate barcode types. The Sscan application enables the
scanner by calling ScanCmdScanEnable.

Next, it calls the ScanSetTriggeringModes function with a parameter of HOST to
configure the triggering mode so that software-initiated scanning can be performed. Finally,
several UPC and EAN barcode types (or symbologies) are enabled by the function
ScanSetBarcodeEnabled.

For these parameters to actually take effect, you must call the ScanCmdSendParams
function. All ScanSet... functions must be set with this function call. You only need to
call ScanCmdSendParams once, after you have set all of your parameters.

NOTE: You are not required to call ScanCmdSendParams after you call other
ScanCmd... functions, such as ScanCmdScanEnable. ScanCmd... functions take effect
automatically.
6-3

Symbol Palm Terminal Scanner System Software Manual
/***
 *
 * FUNCTION: StartApplication
 *
 * DESCRIPTION: This routine sets up the initial state of the
* application.

 *
 * PARAMETERS: None.
 *
 * RETURNED: Nothing.
 *
***/
static void StartApplication(void)
{

Err error;

// Call up the main form.
FrmGotoForm(MainForm);

if (ScanIsPalmSymbolUnit())
{

// Now, open the scan manager library
error = ScanOpenDecoder();

// Set decoder parameters we care about...
ScanCmdScanEnable(); // enable scanning

// allow software-triggered scans (from Scan button)
ScanSetTriggeringModes(HOST);

// Enable any barcodes to be scanned
ScanSetBarcodeEnabled(barUPCA, true);
ScanSetBarcodeEnabled(barUPCE, true);
ScanSetBarcodeEnabled(barUPCE1, true);
ScanSetBarcodeEnabled(barEAN13, true);
ScanSetBarcodeEnabled(barEAN8, true);
ScanSetBarcodeEnabled(barBOOKLAND_EAN, true);
ScanSetBarcodeEnabled(barCOUPON, true);
ScanSetBarcodeEnabled(barPDF417, true);
6-4

Sample Scanning Application
// We've set our parameters...
// Call "ScanCmdSendParams" to send to decoder
ScanCmdSendParams(No_Beep);

}
}

The MainFormHandleEvent Function
After calling StartApplication, PilotMain calls EventLoop, which initiates the
standard event-processing routine familiar to Palm organizer application developers. From
the standpoint of scan-aware application developers, the most interesting code in Sscan is the
MainFormHandleEvent function, which is the event handler for Sscan's main form.

/***
 *
 * FUNCTION: MainFormHandleEvent
 *
 * DESCRIPTION: Handles processing of events for the ÒmainÓ form.
 *
 * PARAMETERS: event - the most recent event.
 *
 * RETURNED: True if the event is handled, false otherwise.
 *
***/
static Boolean MainFormHandleEvent(EventPtr event)
{

Boolean bHandled = false;
Word extendedDataFlag;

switch(event->eType)
{

case frmOpenEvent:
MainFormOnInit();
bHandled = true;
break;

case menuEvent:
MainFormHandleMenu(event->data.menu.itemID);
bHandled = true;
break;
6-5

Symbol Palm Terminal Scanner System Software Manual
case scanDecodeEvent:
// A decode has been performed.
// Use decoder API to retrieve decoder data.
// Get barcode parameters from the registers.
extendedDataFlag= ((ScanEventPtr)event)
->scanData.scanGen.data1;
extendedDataLength = (int)(((ScanEventPtr)event)
->scanData.scanGen.data2);

extend = extendedDataFlag & EXTENDED_DATA_FLAG;
OnDecoderData();
bHandled = true;
break;

case scanBatteryErrorEvent:
{

Char szTemp[10];
StrIToA(szTemp, ((ScanEventPtr)event)

->scanData.batteryError.batteryLevel);
FrmCustomAlert(BatteryErrorAlert, szTemp, NULL,

NULL);
bHandled=true;
break;

}

case ctlSelectEvent:
{

if (ScanIsPalmSymbolUnit())
{

// Scan Button
if (event->data.ctlEnter.controlID ==

MainSCANButton)
{

ScanCmdStartDecode();
bHandled = true;

}
}

 break;
}

case fldChangedEvent;
6-6

Sample Scanning Application
UpdateScrollBbar();
bHandled = true;
break;

case sclRepeatEvent:
ScrollLines(event->data.sclRepeat.newvalue - event ->
data.sclRepeat.value, false);
break;

case keyDownEvent;
{

if (event->data.keyDown.chr ==pageUpChr) {
PageScroll (up);
bHandled = true;

}else if (event->data.keyDown.chr ==pageDownChr) {
PageScroll (down);
bHandled = true;

}
break;

{

} //end switch

return(bHandled);
}

6-7

Symbol Palm Terminal Scanner System Software Manual
/***
 *
 * FUNCTION: MainFormOnInit
 *
 * DESCRIPTION: This routine sets up the initial state of the main
* form.

 *
 * PARAMETERS: None.
 *
 * RETURNED: Nothing.
 *
***/
static void MainFormOnInit()
{

FormPtr pForm = FrmGetActiveForm();
if(pForm)
{

// initialize the barcode type and barcode data fields
SetFieldText(MainBarTypeField, "No Data", 20, false);
SetFieldText(MainScandataField, "No Data", 80, false);
FrmDrawForm(pForm);

}
}

/***
 *
 * FUNCTION: MainFormHandleMenu
 *
 * DESCRIPTION: This routine handles menu selections off of the
* main form.

 *
 * PARAMETERS: None.
 *
 * RETURNED: Nothing.
 *
***/

void MainFormHandleMenu(Word menuSel)
{

switch(menuSel)
6-8

Sample Scanning Application
{
// Options menu
case OptionsResetDefaults:

if (ScanIsPalmSymbolUnit()) {
ScanCmdScanDisable();

if (ScanCmdParamDefaults () ==Status_OK)
ScanCmdScanEnable ();
//enable scanning

}
break;

case OptionsAbout:
OnAbout();
break;

}
}

/***
 *
 * FUNCTION: OnDecoderData
 *
 * DESCRIPTION: Handles processing of events for the main form.
 *
 * PARAMETERS: None
 *
 * RETURNED: True if the event is handled, false otherwise.
 *
***/

Boolean OnDecoderData() //GetSerialData()
{

static Char BarTypeStr[80]=" ";
MESSAGE decodeDataMsg;
int status;
VoidHand hExtendedData;
unsigned char*pExtendedData;
int extendedDataType;
Word numlines;
if (extend) {
6-9

Symbol Palm Terminal Scanner System Software Manual
hExtendedData = MemHandleNew (extendedDataLength);
pExtendedData = (unsigned char *) MemHandleLock
(hExtendedData);
status = ScanGetExtendedDecodedData
(extendedDataLength, &extendedDataType,
pExtendedData);

}
else {

status = ScanGetDecodedData (&decodeDataMsg);
extendedDataType = decodeDataMsg.type
extendedDataLength = decodeDataMsg.length;
hExtendedData = MemHandleNew (extendedDataLength +1)
pExtendedData = (unsigned char *) MemHandleLock

(hExtendedData);
pExtendedData [extendedDataLength] = ‘\0’;
MemMove (&pExtendedData [0], &decodeDataMsg.data [0],

extendedDataLength+1);
}
if (status == STATUS_OK) // if we successfully got the decode

// data from the API...
FieldPTR pField;
//call a function to translate barcode type into a
//string, and display it
ScanGetBarTypeStr (extendedDataType, BarTypeStr, 30);
//in Utils.c
SetFieldText (MainBarTypeField, BarTypeStr, 30, true);

//Check to see if this scan was a “No Read Data”
//(indicated by type of zero)
if (extendedDataType ==0)
{

SetFieldText (MainScandataField, “No Scan”, 30,
true);

}
else
{

// Place the barcode data into the field and
//display
/*Set up data display field to display the
memory*/
6-10

Sample Scanning Application
pField =(FieldPtr)GetObjectPtr(MainScandataField);

pField->attr.editable =true;
FldDelete (pField, 0, FldGetTextLength (pField));
//clear out old data

if (extendedDataLength -> FldGetMaxChars (pField))
FldSetMaxChars (pField, extendedDataLength);

FldEraseField (pField);//hide field so we don’t see the
//data scroll in

FldInsert(pField, (char*) (&pExtendedData [0],
extendedDataLength);

//move to top of scroll bar
numlines = FldCalcFieldHeight ((char*)&pExtendedData
[0], SCANDATA_WIDTH);
ScrollLines (-numlines, false);//scroll to top of data
FldDrawField(pField); // show field
pField->attr.editable = false;
}

}
UpdateScrollbar();

MemHandleUnlock (hExtendedData);
MemHandleFree (hExtendedData);

return(0);
}

MainFormHandleEvent handles five specific events. Most are standard Palm events that
are probably already familiar to you. However, two are events that scan-aware applications
will need to handle.

! scanDecodeEvent is a special event issued by the Scan Manager software to your
application. It signals to your code that a scan (either successful or unsuccessful) has been
completed. In response to the scanDecodeEvent, you can call the
ScanGetDecodedData Scan Manager function, which gives you the results from the
most recent scan. This is illustrated in the OnDecoderData function shown previously.
6-11

Symbol Palm Terminal Scanner System Software Manual
! scanBatteryErrorEvent is another special event issued by Scan Manager to your
application. You receive this event whenever a scan operation fails because of low battery
levels. When this condition occurs, the scanner is disabled until the batteries are replaced
or recharged. Because of this, and because this condition occurs sooner than the normal
low-battery warning of a Palm organizer, it is important that you execute some code to
alert end-users. The Sscan application does this by issuing an alert.

! frmOpenEvent is a standard event that most Palm organizer developers are familiar
with. Sscan calls MainFormOnInit to initialize and draw the main form.

! menuEvent is another standard Palm event. The menuEvent code in Sscan allows you
to issue a decoder command to reset all of the decoder parameters to their defaults. It
also allows you to display an About form with all of the version information for your
SPT scanner software.

! ctlSelectEvent is an event received by the application in response to the user pushing
a button. In Sscan, it is in response to the “Scan” button on the main form. Upon
receiving this event, a scan is initiated by calling the ScanCmdStartDecode Scan
Manager API function.

The StopApplication Function
The StopApplication function is called at the conclusion of PilotMain. This function
first uses ScanIsPalmSymbolUnit to make sure the application is running on an SPT
device. We recommend this check only if your software might be running on both unmodified
Palm III devices and SPT devices. If Sscan is running on an SPT device, we call
ScanCmdScanDisable to disable scanning. This is not required, merely suggested.

Finally, you must call the ScanCloseDecoder function before exiting your program. This
function powers down the decoder and closes the Scan Manager shared library. Failure to call
ScanCloseDecoder can cause unpredictable system problems.
6-12

Sample Scanning Application
/***
 *
 * FUNCTION: StopApplication
 *
 * DESCRIPTION: This routine does any cleanup required, including
* shutting down the decoder and Scan Manager shared
* library.
 *
 * PARAMETERS: None.
 *
 * RETURNED: Nothing.
 *
***/

static void StopApplication(void)
{

if (ScanIsPalmSymbolUnit())
{

// Disable scanner and close Scan Manager library
ScanCmdScanDisable();
ScanCloseDecoder();

}
}

6-13

Symbol Palm Terminal Scanner System Software Manual
6-14

Chapter 7
2-Dimensional Scanning Considerations

Introduction

In the Scan Manager for the SPT 1500 and SPT 17xx, the maximum length of decoded data
was set to 255, which is long enough for any 1-Dimensional barcode. However, it is possible
for the information encoded in a 2-Dimensional PDF417 symbol to exceed the 255-byte limit.
For models of the SPT 1700 that perform 2-dimensional scanning, the maximum length of
decoded data is 3000 bytes. Because of these ‘Extended Data’ barcodes, and because of the
need to maintain compatibility with legacy applications, a new method was created for
applications to retrieve this ‘Extended Data’.

Issue

Because the maximum length of decoded data is increased for 2D barcodes, the shared
scanner library needs to be changed to support this. However, the Scanner Manager cannot
just assume the application has been written to handle receiving large amounts of decode
data, since legacy applications were written assuming the maximum data length was 255
bytes. A new API, described below, allows applications written with the original scanner
library to still function properly, while also allowing applications written for 2D bar codes to
receive the extended data.

Solutions

To allow new applications to receive Extended Data bar codes, we must create a new API that
does not use the MESSAGE structure for delivering the decode data to the application.
However, to allow existing scanning applications to function on both a standard SPT 1500/
7-1

Symbol Palm Terminal Scanner System Software Manual
SPT 1700 and the SPT 1700 2-Dimensional unit, we need to ensure that if an application is
using the MESSAGE structure, then only a maximum of 255 bytes of data are returned to
that application, even if a larger bar code has been scanned. To allow the receiving of
Extended decode data, a new API has been added to the scanner SDK.

ScanGetExtendedDecodeData(int length, int *type, unsigned char *buf)

where:

length: passed to the function by the application, and is the size of the buffer pointed to
by *buf.

*type: pointer to an int, and will contain the bar code type after the API is successfully
called.

*buf: pointer to the buffer to place the decoded data.

Two dimensional scanning can be implemented as follows:

After the Scan Manager receives the decoded data, a flag is set in the scanDecodeEvent
message to notify the application that extended data is being sent and the length of the
extended data is passed to the user. The flag is bit 0 of scanData.scanGen.data1 of
struct ScanEventType, which is defined in ScanMgrStruct.h. The length of the
extended data is stored in scanData.scanGen.data2 of struct ScanEventType:

typedef struct
{

enum events eType;
Boolean penDown;
SWord screenX;
SWord screenY;
union scanData
{

struct scanGen
{

Word data1; //Bit 0 is the flag to tell app
//if decode data has extended data.

Word data2; //Length of the decoded data.
Word data3;
Word data4;
Word data5;
Word data6;
Word data7;
Word data8;

} scanGen;
struct
{

UInt batteryLevel;// The current voltage
// measured in millivolts
7-2

2-Dimensional Scanning Considerations
UInt batteryErrorType;// not used
} batteryError;

} scanData;// End of union

} ScanEventType;
typedef ScanEventType *ScanEventPtr;

In ScanMgrDef.h, we have added the following #define for the extended data flag:

#define EXTENDED_DATA_FLAG 0x01

An application gets the flag and the length of the extended data from the event in function
MainFormHandleEvent:

Word extendedDataFlag;
int extendedDataLength;
Boolean extend;
.
.
.
case scanDecodeEvent:

extendedDataFlag=((ScanEventPtr)event)->scanData.scanGen.data1;
extendedDataLength=(int)(((ScanEventPtr)event)
->scanData.scanGen.data2);
if (extendedDataFlag & EXTENDED_DATA_FLAG){

extend = true;
}
else {

extend = false;
}
OnDecoderData(extend);
.
.
.

In function OnDecoderData, check extendedDataFlag. If this is set, the application
allocates a buffer with the size of extendedDataLength and retrieves the decoded data in
it by calling ScanGetExtendedDecodedData(). Please note: this buffer must be freed by
the user after use. If this flag is not set, the application retrieves the decoded data by calling
ScanGetDecodedData() as before:

Boolean OnDecoderData(Boolean extend)
{

static Char BarTypeStr[80]=" ";
MESSAGE decodeDataMsg;
7-3

Symbol Palm Terminal Scanner System Software Manual
int status;
VoidHand hExtendedData;
unsigned char*pExtendedData;
int extendedDataType;

if (extend){
hExtendedData = MemHandleNew(extendedDataLength);
pExtendedData = MemHandleLock(hExtendedData);
status = ScanGetExtendedDecodedData(extendedDataLength,

&extendedDataType, pExtendedData);
}

else {
status = ScanGetDecodedData(&decodeDataMsg);
extendedDataType = decodeDataMsg.type;
extendedDataLength = decodeDataMsg.length;
hExtendedData = MemHandleNew(extendedDataLength+1);
pExtendedData = MemHandleLock(hExtendedData);
pExtendedData[extendedDataLength] = '\0';
MemMove(&pExtendedData[0], &decodeDataMsg.data[0],

extendedDataLength+1);

}

if(status == STATUS_OK)
{
/* if we successfully got the decode data from the API, place the
barcode data into the field and display. Please read the
sample code Scan2D.c about using scroll bar to show extended
data. */

}
.
.
.
return(0);

}

7-4

2-Dimensional Scanning Considerations
If an application ignores the extendedDataFlag and calls ScanGetDecodedData(), then the
scan manager will return only the first 255 bytes of the data.

Figure 7-1. Scanner Library

Scan Manager multiPacketFlag set?

ScanGetDecodedData

ScanGetExtendedDecodedData

ScanDecodeEvent

YN
7-5

Symbol Palm Terminal Scanner System Software Manual
7-6

Appendix A
ASCII Equivalents

Table A-1 contains the ASCII equivalents for adding prefix and suffix values to scanned data.
See ScanGetPrefixSuffixValues and ScanSetPrefixSuffixValues.

Table A-1. ASCII Equivalents

Scan Value Hex Value
Full ASCII Code 39
Encode Character Keystroke

1000 00h %U CTRL+2

1001 01h $A CTRL+A

1002 02h $B CTRL+B

1003 03h $C CTRL+C

1004 04h $D CTRL+D

1005 05h $E CTRL+E

1006 06h $F CTRL+F

1007 07h $G CTRL+G

1008 08h $H CTRL+H

1009 09h $I CTRL+I

1010 0Ah $J CTRL+J

1011 0Bh $K CTRL+K

1012 0Ch $L CTRL+L

1013 0Dh $M CTRL+M
A-1

Symbol Palm Terminal Scanner System Software Manual
1014 0Eh $N CTRL+N

1015 0Fh $O CTRL+O

1016 10h $P CTRL+P

1017 11h $Q CTRL+Q

1018 12h $R CTRL+R

1019 13h $S CTRL+S

1020 14h $T CTRL+T

1021 15h $U CTRL+U

1022 16h $V CTRL+V

1023 17h $W CTRL+W

1024 18h $X CTRL+X

1025 19h $Y CTRL+Y

1026 1Ah $Z CTRL+Z

1027 1Bh %A CTRL+[

1028 1Ch %B CTRL+\

1029 1Dh %C CTRL+]

1030 1Eh %D CTRL+6

1031 1Fh %E CTRL+-

1032 20h Space Space

1033 21h /A !

1034 22h /B ‘

1035 23h /C #

1036 24h /D $

1037 25h /E %

1038 26h /F &

1039 27h /G ‘

Table A-1. ASCII Equivalents

Scan Value Hex Value
Full ASCII Code 39
Encode Character Keystroke
A-2

ASCII Equivalents
1040 28h /H (

1041 29h /I)

1042 2Ah /J *

1043 2Bh /K +

1044 2Ch /L ,

1045 2Dh “ “

1046 2Eh . .

1047 2Fh / /

1048 30h 0 0

1049 31h 1 1

1050 32h 2 2

1051 33h 3 3

1052 34h 4 4

1053 35h 5 5

1054 36h 6 6

1055 37h 7 7

1056 38h 8 8

1057 39h 9 9

1058 3Ah /Z :

1059 3Bh %F ;

1060 3Ch %G <

1061 3Dh %H =

1062 3Eh %I >

1063 3Fh %J ?

1064 40h %V @

1065 41h A A

Table A-1. ASCII Equivalents

Scan Value Hex Value
Full ASCII Code 39
Encode Character Keystroke
A-3

Symbol Palm Terminal Scanner System Software Manual
1066 42h B B

1067 43h C C

1068 44h D D

1069 45h E E

1070 46h F F

1071 47h G G

1072 48h H H

1073 49h I I

1074 4Ah J J

1075 4Bh K K

1076 4Ch L L

1077 4Dh M M

1078 4Eh N N

1079 4Fh O O

1080 50h P P

1081 51h Q Q

1082 52h R R

1083 53h S S

1084 54h T T

1085 55h U U

1086 56h V V

1087 57h W W

1088 58h X X

1089 59h Y Y

1090 5Ah Z Z

1091 5Bh %K [

Table A-1. ASCII Equivalents

Scan Value Hex Value
Full ASCII Code 39
Encode Character Keystroke
A-4

ASCII Equivalents
1092 5Ch %L \

1093 5Dh %M]

1094 5Eh %N ^

1095 5Fh %O _

1096 60h %W ‘

1097 61h +A a

1098 62h +B b

1099 63h +C c

1100 64h +D d

1101 65h +E e

1102 66h +F f

1103 67h +G g

1104 68h +H h

1105 69h +I i

1106 6Ah +J j

1107 6Bh +K k

1108 6Ch +L l

1109 6Dh +M m

1110 6Eh +N n

1111 6Fh +O o

1112 70h +P p

1113 71h +Q q

1114 72h +R r

1115 73h +S s

1116 74h +T t

1117 75h +U u

Table A-1. ASCII Equivalents

Scan Value Hex Value
Full ASCII Code 39
Encode Character Keystroke
A-5

Symbol Palm Terminal Scanner System Software Manual
1118 76h +V v

1119 77h +W w

1120 78h +X x

1121 79h +Y y

1122 7Ah +Z z

1123 7Bh %P {

1124 7Ch %Q |

1125 7Dh %R }

1126 7Eh %S ~

1127 7Fh Undefined

Table A-1. ASCII Equivalents

Scan Value Hex Value
Full ASCII Code 39
Encode Character Keystroke
A-6

Appendix B
Parameter Definitions

Table B-1 lists the parameters available in the Scan Manager shared library. The information
in this table includes parameter name, the terminal default setting, and the acceptable values.

Table B-1. Parameter Definitions

PARAMETER
DEFAULT
SETTING

ACCEPTABLE
VALUES

ParamDefaults All defaults

BeepFrequency Decode 3000 Hz 0 - 15,000 Hz

Low 1500 Hz

Medium 3000 Hz

High 7500 Hz

BeepDuration Decode 90 ms 0 - 10,000 ms

Short 70 ms

Medium 90 ms

Long 240 ms

LaserOnTime 3.0 seconds 0 - 10

AimDuration 0.0 seconds

TriggeringModes Level Level, Pulse,
Host

BeepAfterGoodDecode Enable Enable, Disable
B-1

Symbol Palm Terminal Scanner System Software Manual
LinearCodeTypeSecurityLevel Security_Level1 Level1 - Level4

BidirectionalRedundancy Disable

BarcodeEnabled UPC-A Enable

UPC-E Enable

UPC-E1 Disable

EAN-8 Enable

EAN-13 Enable

Bookland EAN Disable

Code 128 Enable

UCC/EAN-128 Enable

ISBT 128 Enable

Code 39 Enable

Trioptic Code 39 Disable

Code 93 Disable

I2of5 Enable

D2of5 Disable

Codabar Disable

MSI Plessey Disable

DecodeUpcEanSupplementals Ignore

DecodeUpcEanRedundancy 7 2-20

TransmitCheckDigit UPC-A Enable

UPC-E Enable

UPC-E1 Enable

Table B-1. Parameter Definitions

PARAMETER
DEFAULT
SETTING

ACCEPTABLE
VALUES
B-2

Parameter Definitions
TransmitCheckDigit
(cont’d)

Code 39 Disable

I2of5 Disable

MSI Plessey Disable

UpcPreamble UPC-A System
character

UPC-E System
character

UPC-E1 System
character

Convert UPC-E to A Disable

UPC-E1 to A Disable

EAN-8 to EAN-
13

Type is EAN-13

Code 39 to Code
32

Disable

I2of5 to EAN-13 Disable

EanZeroExtend Disable

UpcEanSecurityLevel 0 Level 1 - Level 4

Code32Prefix Disable

BarcodeLengths Code 39 2-32

Code 93 4-55

I2of5 14

D2of5 12

Codabar 5-55

Table B-1. Parameter Definitions

PARAMETER
DEFAULT
SETTING

ACCEPTABLE
VALUES
B-3

Symbol Palm Terminal Scanner System Software Manual
BarcodeLengths
(cont’d)

MSI Plessey 6-55

Code39CheckDigitVerification Disable

Code39FullAscii Disable

I2of5CheckDigitVerification Disable

ClsiEditing Disable

NotisEditing Disable

MsiPlesseyCheckDigits One One, Two

MsiPlesseyCheckDigitAlgorithm Mod 10/Mod 10

TransmitCodeIdCharacter None

PrefixSuffixValues Prefix Null

Suffix 1 LF

Suffix 2 CR

ScanDataTransmissionFormat Data as is

ScanAngle Wide Wide, Narrow

DecodeLedOnTime 3 seconds 0 - 99

Table B-1. Parameter Definitions

PARAMETER
DEFAULT
SETTING

ACCEPTABLE
VALUES
B-4

	About This Guide
	Scan Manager Library API SDK Documentation
	What This Guide Contains
	Conventions Used in this Guide

	Chapter 1 Using the Scan Manager Shared Library
	Using the API
	Using the Scan Demo Application

	Chapter 2 Scanner Commands
	Introduction
	Returned Status Definitions
	Scanner Commands

	Chapter 3 Barcode Parameter Functions
	Introduction
	Returned Status Definitions
	Barcode Types
	Codabar Barcode Parameter Functions
	Code 32 Barcode Parameter Functions
	Code 39 Barcode Parameter Functions
	General Barcode Parameter Functions
	I 2 of 5 Barcode Parameter Functions
	MSI Plessey Barcode Parameter Functions
	UPC/EAN Barcode Parameter Functions

	Chapter 4 Hardware Parameter Functions
	Introduction
	Returned Status Definitions
	Hardware Parameter Functions

	Chapter 5 Power Considerations
	scanBatteryErrorEvent
	Sudden Loss of Power
	Backlighting
	Other Power Notes

	Chapter 6 Sample Scanning Application
	Writing the Code
	Include Files
	PilotMain Routine
	The StartApplication Function
	The MainFormHandleEvent Function
	The StopApplication Function

	Chapter 7 2-Dimensional Scanning Considerations
	Introduction
	Issue
	Solutions

	Appendix A ASCII Equivalents
	Appendix B Parameter Definitions

