

41ssm Page 1 Tuesday, October 28, 1997 4:48 PM
Chapter 5 Mouse Emulator

Introduction
Mouse emulator software has been developed for use on PPT 41XX terminals as a
Terminate and Stay Resident (TSR) program to support pen-aware applications. The
mouse emulator software (PEN4100.EXE) along with associated files is shipped with
the PPT 41XX Software Development Kit (SDK) and must be loaded on the terminal
prior to using the terminal to run DOS mouse-aware applications using the pen.

The main topic of this chapter is the use of the mouse emulator API to process function
calls through INT 0x33 from pen-aware application programs. This is the same
software interrupt as that used by the Microsoft Mouse driver.

No special action is required to activate mouse emulation on the PPT 41XX. When a
pen-aware application is loaded on the terminal, the pen functions the way a mouse
usually does. For example, the user issues mouse points by touching points on the
screen with the pen to move the cursor or touching menus and choice boxes with the
pen to select items for display, execution, etc. The tip of the pen acts as the left mouse
button. In pen down state (i.e., when the pen touches the tablet), the mouse emulator
performs the analogous function(s) associated with pressing the left mouse button. The
mouse emulator interprets the pen up state (i.e., when the pen is not touching the
terminal screen) as analogous to the release of the left mouse button. Unlike a mouse,
however, the “mouse position” reported never changes unless the pen is down.

In effect, the mouse emulator TSR program provided with the PPT 41XX replaces
Microsoft Mouse functions that support mouse-aware applications with its own
compatible API. Refer to the Supported API Commands section, below, for a list and
descriptions of these mouse emulator functions.

Usually, the mouse emulator is loaded as a TSR from the AUTOEXEC.BAT file when
the terminal is booted. If the appropriate statements have not been placed in the
AUTOEXEC.BAT file or if you choose not to use this method of invoking the mouse
emulator, you can change to the directory in which PEN4100.EXE file has been stored
on the terminal and enter:

PEN4100

on the command line. This loads the mouse emulator as a TSR program and makes
available to application programs the API described in Supported API Commands.
5-1

PPT 41xx System Software Manual: Chapter 5, Mouse Emulator

41ssm Page 2 Tuesday, October 28, 1997 4:48 PM
Supported API Commands
PEN4100.EXE is the TSR program that provides the API for applications that need to
emulate mouse services on the PPT 41XX terminal. It provides access to a set of pen
functions which pass to the application information such as whether the pen is up or
down, its current position, etc. All services provided by the mouse emulator are
accessed through software interrupt 0x33.

This section consists of the following subsections:

• Mouse Emulator API Commands (Listing) lists the API commands supported by the
mouse emulator.

• Mouse Emulator API Commands (Descriptions) provides individual descriptions of
the API commands (functions) supported by the mouse emulator.
5-2

PPT 41xx System Software Manual: Chapter 5, Mouse Emulator

41ssm Page 3 Tuesday, October 28, 1997 4:48 PM
Mouse Emulator API Commands (List)
Table 5-1 lists the functions supported by the mouse emulator TSR program on the PPT
41XX terminal. The list is sorted by the hexadecimal numeral for the function code that
an application must assign to the AX register prior to calling INT 0x33 to request the
desired service. Descriptions of the functions in Table 5-1 are provided in the Command
Descriptions subsection that follows the table.

Note: Issuing a Mouse Emulator API command other than one
of those listed in Table 5-1 returns with register contents
unchanged.

Table 5-1. Mouse Emulator API Commands (INT 0x33)

Function
Code

Mouse Emulator Service Name

0x00 Reset Mouse Emulator

0x03 Get Pen State and Pen Position

0x05 Get Pen Down Information

0x06 Get Pen Up Information

0x07 Set Horizontal Pen Limits

0x08 Set Vertical Pen Limits

0x0B Read Pen Motion Counters

0x0C Set User-Defined Pen Event Handler

0x14 Swap User-Defined Pen Event Handlers

0x24 Get Mouse Emulator Information (Version Number,
Type, and IRQ Number))
5-3

PPT 41xx System Software Manual: Chapter 5, Mouse Emulator

41ssm Page 4 Tuesday, October 28, 1997 4:48 PM
Mouse Emulator API Commands (Descriptions)
The following descriptions of the Mouse Emulator API commands (functions) in Table
5-1 are given in function code order.
5-4

PPT 41xx System Software Manual: Chapter 5, Mouse Emulator

41ssm Page 5 Tuesday, October 28, 1997 4:48 PM
Reset Mouse Emulator
Function: 0x00
Description
Resets or initializes the mouse emulator and returns its status.

Use this function to initialize the mouse (pen) and prepare it for its first use.

This function returns (in the AX register) the status of the mouse emulator (i.e.,
installed/not installed) and sets defaults.

The value returned for the number of buttons (in the BX register) should be one
(0x0001); that is, the pen down position emulates a single button mouse on PPT 41XX
terminals on which the mouse emulator has been installed.

Interrupt
0x33

Input Registers
AX = 0x00

Output Registers
AX = Status of mouse emulator as follows:

 0x0000: Hardware/Driver (Mouse Emulator) not installed
 0xFFFF: Hardware/Driver (Mouse Emulator) installed

BX = 0x0001

Note: The value returned in BX indicates the number of mouse
buttons supported by the installed mouse driver. In this
case, this value should be one, since the mouse emulator
supports only the pen down position as emulating a
mouse button.

Notes
Mouse-aware applications should issue a reset before using the mouse, particularly
important with PEN4100.EXE which may not work properly in all cases unless the
reset call is made. If a recalibration operation is performed, the reset call must be used
to restore proper operation.
5-5

PPT 41xx System Software Manual: Chapter 5, Mouse Emulator

41ssm Page 6 Tuesday, October 28, 1997 4:48 PM
Example
For a code sample that illustrates the use of the Reset Mouse Emulator service, refer to
the Appendix at the end of this chapter.
5-6

PPT 41xx System Software Manual: Chapter 5, Mouse Emulator

41ssm Page 7 Tuesday, October 28, 1997 4:48 PM
Get Pen State and Pen Position
Function: 0x03
Description
Returns current pen state (up/down) and pen position (in virtual screen coordinates).
See Notes section.

Interrupt
0x33

Input Registers
AX = 0x03

Output Registers
BX = Pen state as follows:

 0x00: Pen is up
 0x01: Pen is down

 CX = Horizontal pen position (See Notes section.)

 DX = Vertical pen position (See Notes section.)

Notes
The coordinates for the pen positions are based on virtual screen size. The virtual
screen size is initially set by the video mode call as indicated in the following chart:

Video Mode Virtual Screen Size

 02 640 x 200
 03 640 x 200

An application can modify virtual screen size by calling functions 0x07 (Set Horizontal
Pen Limits) and 0x08 (Set Vertical Pen Limits).

Example
For a code sample that illustrates the Get Pen State and Position service, refer to the
Appendix at the end of this chapter.
5-7

PPT 41xx System Software Manual: Chapter 5, Mouse Emulator

41ssm Page 8 Tuesday, October 28, 1997 4:48 PM
Get Pen Down Information
Function: 0x05
Description
Returns pen state (up or down) and pen position (in virtual screen coordinates). See
Notes section.

Interrupt
0x33

Input Registers
AX = 0x05

BX = 0x00

Output Registers
AX = Pen state as follows:

 0x00: Pen is up
 0x01: Pen is down

BX = Number of Pen Down’s since last call of Function 0x05

CX = Horizontal pen position at Pen Down (See Notes section, below.)

DX = Vertical pen position at Pen Down (See Notes section, below.)

Notes
The coordinates for the pen positions are based on virtual screen size. The virtual
screen size is initially set by the video mode call as indicated in the following chart:

Video Mode Virtual Screen Size

 02 640 x 200
 03 640 x 200

An application can modify virtual screen size by calling functions 0x07 (Set Horizontal
Pen Limits) and 0x08 (Set Vertical Pen Limits).
5-8

PPT 41xx System Software Manual: Chapter 5, Mouse Emulator

41ssm Page 9 Tuesday, October 28, 1997 4:48 PM
Example
For a code sample that illustrates the Get Pen Down Information service, refer to the
Appendix at the end of this chapter.
5-9

PPT 41xx System Software Manual: Chapter 5, Mouse Emulator

41ssm Page 10 Tuesday, October 28, 1997 4:48 PM
Get Pen Up Information
Function: 0x06
Description
Returns pen state (up or down) and pen position (in virtual screen coordinates). See
Notes section, below.

Interrupt
0x33

Input Registers
AX = 0x06

Output Registers
AX = Pen state as follows:

 0x00: Pen is up
 0x01: Pen is down

BX = Number of Pen Up’s since last call of Function 0x06

CX = Horizontal pen position at last Pen Up (See Notes section.)

DX = Vertical pen position at last Pen Up (See Notes section.)

Notes
The coordinates for the pen positions are based on virtual screen size. The virtual
screen size is initially set by the video mode call as indicated in the following chart:

Video Mode Virtual Screen Size

 02 640 x 200
 03 640 x 200

An application can modify virtual screen size by calling functions 0x07 (Set Horizontal
Pen Limits) and 08h (Set Vertical Pen Limits).

Example
For a code sample that illustrates the Get Pen Up Information service, refer to the
Appendix at the end of this chapter.
5-10

PPT 41xx System Software Manual: Chapter 5, Mouse Emulator

41ssm Page 11 Tuesday, October 28, 1997 4:48 PM
Set Horizontal Pen Limits
Function: 0x07
Description
Restricts the horizontal movement of the pen position to a specified area on the screen.

The position values specified in CX and DX should be within the valid range of
horizontal values for the current screen mode. See Notes section.

Interrupt
0x33

Input Registers
AX = 0x07

CX = Minimum horizontal position (See Notes section, below.)

DX = Maximum horizontal position (See Notes section, below.)

Output Registers
None

Notes
The coordinates for the pen positions are based on virtual screen size. The virtual
screen size is initially set by the video mode call as indicated in the following chart:

Video Mode Virtual Screen Size

 02 640 x 200
 03 640 x 200

Example
For a code sample that illustrates the Set Horizontal Pen Limits service, refer to the
Appendix at the end of this chapter.
5-11

PPT 41xx System Software Manual: Chapter 5, Mouse Emulator

41ssm Page 12 Tuesday, October 28, 1997 4:48 PM
Set Vertical Pen Limits
Function: 0x08
Description
Restricts the vertical movement of the pen position to a specified area on the screen.

The position values specified in CX and DX should be within the valid range of vertical
values for the current screen mode. See Notes section.

Interrupt
0x33

Input Registers
AX = 0x08

CX = Minimum vertical position (See Notes section.)

DX = Maximum vertical position (See Notes section.)

Output Registers
None

Notes
The coordinates for the pen positions are based on virtual screen size. The virtual
screen size is initially set by the video mode call as indicated in the following chart:

Video Mode Virtual Screen Size

 02 640 x 200
 03 640 x 200

Example
For a code sample that illustrates the Set Vertical Pen Limits service, refer to the
Appendix at the end of this chapter.
5-12

PPT 41xx System Software Manual: Chapter 5, Mouse Emulator

41ssm Page 13 Tuesday, October 28, 1997 4:48 PM
Read Pen Motion Counters
Function: 0x0B
Description
Returns the relative change of the pen position since the last time this function was
called. See Notes section.

Interrupt
0x33

Input Registers
AX = 0x0B

Output Registers
CX = Horizontal relative motion count in mickeys

DX = Vertical relative motion count in mickeys

Notes
It is strongly recommended that this function not be used in pen-based applications,
since the concept of relative motion makes little sense with an absolute pointing device
like the pen. It has been implemented primarily in an attempt to be compatible with
the existing base of applications that do use it.

Example
For a code sample that illustrates the Read Pen Motion Counters service, refer to the
Appendix at the end of this chapter.
5-13

PPT 41xx System Software Manual: Chapter 5, Mouse Emulator

41ssm Page 14 Tuesday, October 28, 1997 4:48 PM
Set User-Defined Pen Event Handler
Function: 0x0C
Description
Enables an application to tack on its own subroutine after certain pen actions.

Bit settings in the mask passed in the CX register specify the pen action on which the
subroutine should be called. The value passed in the ES:DX register pair contains the
address of the far routine to be called when the specified pen action occurs. See Notes
section.

Interrupt
0x33

Input Registers
AX = 0x0C

CX = Call mask with bit settings as follows:

 Bit 0 = Pen position changed
 Bit 1 = Pen down event
 Bit 2 = Pen up event
 Bits 3 through 15 are not used.

ES:DX = Segment and offset of the subroutine address

Output Registers
None
5-14

PPT 41xx System Software Manual: Chapter 5, Mouse Emulator

41ssm Page 15 Tuesday, October 28, 1997 4:48 PM
Notes
When the mouse emulator calls the subroutine the application has identified in this
function call, it loads the following information into the processor's registers:

AX = Condition mask (similar to the call mask input in CX by the
 application except that a bit is set only if the condition associated
 with it in the call mask occurs)

BX = Pen state as follows:

 0x00: pen is up
 0x01: pen is down

CX = Horizontal pen position

DX = Vertical pen position

SI = Horizontal relative motion count in mickeys

DI = Vertical relative motion count in mickeys

DS is not used.

Example
For a code sample that illustrates the Set User-Defined Pen Event Handler service,
refer to the Appendix at the end of this chapter.
5-15

PPT 41xx System Software Manual: Chapter 5, Mouse Emulator

41ssm Page 16 Tuesday, October 28, 1997 4:48 PM
Swap User-Defined Pen Event Handlers
Function: 0x14
Description
Replaces an address and a mask for an interrupt subroutine set by a previous call to
Function 0x0C (see Set User-Defined Pen Event Handler) or to this function with the
address and mask for a different interrupt subroutine required in an application
program.

Bit settings in the mask passed in the CX register specify the pen action on which the
subroutine should be called. The value passed in the ES:DX register pair contains the
address of the far routine to be invoked when the pen action occurs.

Upon return, the address of the old interrupt subroutine and the interrupt mask that
invoked it are in the ES:DX and CX registers and can be stored for future use.

Interrupt
0x33

Input Registers
AX = 0x14

CX = Call mask with bit settings as follows:

 Bit 0 = Pen position changed
 Bit 1 = Pen down event
 Bit 2 = Pen up event
 Bits 3 through 15 are not used.

ES:DX = Segment and offset of the subroutine address

Output Registers
CX = Call mask of the previous interrupt routine

ES:DX = Far address of the previous interrupt routine
5-16

PPT 41xx System Software Manual: Chapter 5, Mouse Emulator

41ssm Page 17 Tuesday, October 28, 1997 4:48 PM
Notes
When the mouse emulator calls the subroutine the application has identified in this
function call, it loads the following information into the processor's registers:

AX = Condition mask (similar to the call mask input in CX by the
 application except that a bit is set only if the condition associated
 with it in the call mask occurs)

BX = Pen state as follows:

 0x00: pen is up
 0x01: pen is down

CX = Horizontal pen position

DX = Vertical pen position

SI = Horizontal relative motion count in mickeys

DI = Vertical relative motion count in mickeys

DS is not used.

Notes
It is strongly recommended that this function not be used in pen-based applications,
since the concept of relative motion makes little sense with an absolute pointing device
like the pen. It has been implemented to be compatible with the existing base of
applications that do use it.

Example
For a code sample that illustrates the Swap User-Defined Pen Event Handlers service,
refer to the Appendix at the end of this chapter.
5-17

PPT 41xx System Software Manual: Chapter 5, Mouse Emulator

41ssm Page 18 Tuesday, October 28, 1997 4:48 PM
Get Mouse Emulator Information (Version Number,
Type, and IRQ Number)
Function: 0x24
Description
Returns the mouse emulator version number, the mouse emulation type, and the IRQ
number.

Interrupt
0x33

Input Registers
AX = 0x24

Output Registers
BH = 0x06 (Mouse emulator major version number)

BL = 0x26 (Mouse emulator minor version number)

CH = 0x02 (i.e., serial type)

CL = 0x05 (IRQ number)

Example
For a code sample that illustrates the Get Mouse Emulator Information service, refer
to the Appendix at the end of this chapter.
5-18

PPT 41xx System Software Manual: Chapter 5, Mouse Emulator

41ssm Page 19 Tuesday, October 28, 1997 4:48 PM
Appendix. PENMOUSE.C
This appendix contains the code samples referred to in Example sections of API
function descriptions in the Mouse Emulator API Commands (Descriptions) section
of this chapter. It is also contained in the SDK file

C:\SDK4100\SAMPLES\MANUAL\CHAP5\PENMOUSE.C

where C:\SDK4100 is the default installation directory.

Note: This application requires that ANSI.SYS be loaded in the
CONFIG.SYS file.

/* Include Files **/

#include <dos.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* Defines, typdefs, etc. ***/

typedef enum {FALSE, TRUE} boolean;

#define PN_SET_PEN_RESET 0x00 /* Pen/Mouse Driver */
#define PN_GET_PEN_STATE_INFO 0x03 /* Function codes */
#define PN_GET_PEN_DOWN_INFO 0x05
#define PN_GET_PEN_UP_INFO 0x06
#define PN_SET_MIN_MAX_HORZ 0x07
#define PN_SET_MIN_MAX_VERT 0x08
#define PN_GET_PEN_POS_REL 0x0B
#define PN_SET_USER_HANDLER 0x0C
#define PN_SWAP_USER_HANDLERS 0x14
#define PN_GET_VERSION_NUMBER 0x24

/* Define the Services by Interrupt Vector number */

#define PENMS_INT 0x33 /* Pen interrupt number */
#define UNDEFINED 0xff /* Used to check version # */

enum {PEN_UP, PEN_DOWN} pen_state; /* Used for button status */
5-19

PPT 41xx System Software Manual: Chapter 5, Mouse Emulator

41ssm Page 20 Tuesday, October 28, 1997 4:48 PM
enum {DISABLE_CALLBACK,
PEN_POSITION_CHANGED, /* Event mask used by Call- */
PEN_DOWN_EVENT, /* back routine. */
PEN_UP_EVENT} pen_event_mask;

/* ANSI escape sequences */

#define CLEAR_SCREEN "\x1b[2J" /* clear entire screen */
#define REVERSE_VIDEO "\x1b[7m" /* put text in reverse video */
#define NORMAL_VIDEO "\x1b[m" /* put text in normal video */
#define SET_CURSOR "\x1b[" /* set cursor to row:col */

/* Public Variables ***/

/* global flag that get sets to TRUE when callback routine */
/* conditions are met. */

int callbackOccurred = FALSE; /* callback occurred flag */

union REGS inregs; /* input regs to int86x */
union REGS outregs; /* output regs from int86x */
struct SREGS segregs; /* seg regs to/from int86x */

/* Local Function Prototypes ***/

/***
* SYNOPSIS: void callbackRoutine(unsigned wParam)
* DESCRIPTION: This routine is called from Pen_TSRCB which
* is called from the TSR (Careful about I/O in
* this routine).
* Stack Checking MUST Be Disabled For This Routine
* PARAMETERS: CPU register set
* RETURN VALUE: None
* INPUTS: None
* OUTPUTS: None
* NOTES:
* On entry: AX = ISR Condition mask
5-20

PPT 41xx System Software Manual: Chapter 5, Mouse Emulator

41ssm Page 21 Tuesday, October 28, 1997 4:48 PM
* BX = Button Status
* CX = x location
* DX = y location
* SI = horizontal mickey count
* DI = vertical mickey count
* PSEUDOCODE: Notify the compiler to suppress generating stack
* checking by declaring the routine type "interrupt"
* Set global flag (callbackOccurred = TRUE) that
* call back occurred when conditions are met
* FARRETURN to caller, never executing IRET generated
* by the compiler.
***/

#ifdef _MSC_VER
#define FAR_RETURN __asm mov sp,bp __asm pop es __asm pop ds __asm popa __asm retf

#pragma optimize ("g2",on)
void interrupt far callback (int es_Reg, int ds_Reg,

 int di_Reg, int si_Reg,
 int bp_Reg, int sp_Reg,
 int bx_Reg, int dx_Reg,
 int cx_Reg, int ax_Reg,
 int ip_Reg, int cs_Reg)

#else
#define FAR_RETURN asm mov sp,bp; asm add sp,12h; asm retf
void interrupt far callback (int bp_Reg,

 int di_Reg, int si_Reg,
 int ds_Reg, int es_Reg,
 int dx_Reg, int cx_Reg,
 int bx_Reg, int ax_Reg,
 int ip_Reg, int cs_Reg)

#endif
5-21

PPT 41xx System Software Manual: Chapter 5, Mouse Emulator

41ssm Page 22 Tuesday, October 28, 1997 4:48 PM
{
if (callbackOccurred == FALSE)
{

if (bx_Reg == PEN_DOWN)
{

if (cx_Reg < 40 && dx_Reg < 10)
{

callbackOccurred = TRUE;
}

}
}
FAR_RETURN

}

/********** Reset Mouse Emulator function ***********************/

void pn_SetPenReset(signed int far *pen_reset_state)
{

inregs.x.ax = PN_SET_PEN_RESET;
int86(PENMS_INT, &inregs, &outregs);
*pen_reset_state = outregs.x.ax;

}

/********** Get Pen State and Position function *********************/

void pn_GetPenStateandPosition(unsigned char far *pen_state,
 unsigned int far *horz_pos,

unsigned int far *vert_pos)
{

inregs.x.ax = PN_GET_PEN_STATE_INFO;
int86(PENMS_INT, &inregs, &outregs);
*pen_state = outregs.h.bl;
*horz_pos = outregs.x.cx;
*vert_pos = outregs.x.dx;

}

5-22

PPT 41xx System Software Manual: Chapter 5, Mouse Emulator

41ssm Page 23 Tuesday, October 28, 1997 4:48 PM
/********** Get Pen Down Information function **********************/

void pn_GetPenDownInformation(unsigned char far *pen_state,
 unsigned int far *horz_pos,

unsigned int far *vert_pos)
{

inregs.x.ax = PN_GET_PEN_DOWN_INFO;
inregs.x.bx = 0;
int86(PENMS_INT, &inregs, &outregs);
*pen_state = outregs.h.al;
*horz_pos = outregs.x.cx;
*vert_pos = outregs.x.dx;

}

/********** Get Pen Up Information function **********************/

void pn_GetPenUpInformation(unsigned char far *pen_state,
 unsigned int far *horz_pos,

unsigned int far *vert_pos)
{

inregs.x.ax = PN_GET_PEN_UP_INFO;
inregs.x.bx = 0;
int86(PENMS_INT, &inregs, &outregs);
*pen_state = outregs.h.al;
*horz_pos = outregs.x.cx;
*vert_pos = outregs.x.dx;

}

/********** Set Horizontal Pen Limits function *******************/

void pn_SetMinandMaxHorizontalPenPosition(unsigned int min_horz_pos,
unsigned int max_horz_pos)

{
inregs.x.ax = PN_SET_MIN_MAX_HORZ;
inregs.x.cx = min_horz_pos;
inregs.x.dx = max_horz_pos;
int86(PENMS_INT, &inregs, &outregs);

}

5-23

PPT 41xx System Software Manual: Chapter 5, Mouse Emulator

41ssm Page 24 Tuesday, October 28, 1997 4:48 PM
/********** Set Vertical Pen Limits function *******************/

void pn_SetMinandMaxVerticalPenPosition(unsigned int min_vert_pos,
unsigned int max_vert_pos)

{
inregs.x.ax = PN_SET_MIN_MAX_VERT;
inregs.x.cx = min_vert_pos;
inregs.x.dx = max_vert_pos;
int86(PENMS_INT, &inregs, &outregs);

}

/************* Read Pen Motion Counters function ******************/

void pn_SetMinandMaxVerticalPenPosition(unsigned int min_vert_pos,
unsigned int max_vert_pos)

{
inregs.x.ax = PN_SET_MIN_MAX_VERT;
inregs.x.cx = min_vert_pos;
inregs.x.dx = max_vert_pos;
int86(PENMS_INT, &inregs, &outregs);

}

/********* Set User-Defined Pen Event Handler function ***************/

void pn_SetUserDefinedPenEventHandler(int pen_event_mask,
void far *callback)

{
inregs.x.ax = PN_SET_USER_HANDLER;
inregs.x.cx = pen_event_mask;
inregs.x.dx = FP_OFF(callback);
segregs.es = FP_SEG(callback);
int86x(PENMS_INT, &inregs, &outregs, &segregs);

}

5-24

PPT 41xx System Software Manual: Chapter 5, Mouse Emulator

41ssm Page 25 Tuesday, October 28, 1997 4:48 PM
/********** Swap User-Defined Pen Event Handlers function ************/

void pn_SwapUserDefinedPenEventHandlers(int pen_event_mask,
void far *newcallback)

{
inregs.x.ax = PN_SWAP_USER_HANDLERS;
inregs.x.cx = pen_event_mask;
inregs.x.dx = FP_OFF(newcallback);
segregs.es = FP_SEG(newcallback);
int86x(PENMS_INT, &inregs, &outregs, &segregs);

}

/******* Get Mouse Emulator Information (Version Number) ********/

void pn_GetVersionNumber (unsigned char far *major,
unsigned char far *minor,
unsigned char far *serial_t,
unsigned char far *irq_n)

{
inregs.x.ax = PN_GET_VERSION_NUMBER;
inregs.x.bx = 0xffff;
int86(PENMS_INT, &inregs, &outregs);
*major = outregs.h.bh;
*minor = outregs.h.bl;
*serial_t = outregs.h.ch;
*irq_n = outregs.h.cl;

}

5-25

PPT 41xx System Software Manual: Chapter 5, Mouse Emulator

41ssm Page 26 Tuesday, October 28, 1997 4:48 PM
void main()
{

/* Local Variables **/

unsigned char major; /* major version # of PENMS */
unsigned char minor; /* minor version # of PENMS */
unsigned char serial_type; /* serial type of PENMS */
unsigned char irq_num; /* int request number */

int pen_reset_state;

unsigned char pen_state; /* pen state info at call */
unsigned int horz_pos;
unsigned int vert_pos;

unsigned int horz_rel; /* rel motion counter for x */
unsigned int vert_rel; /* rel motion counter for y */
unsigned char pen_state_dn; /* pen down state info */
unsigned int horz_pos_dn;
unsigned int vert_pos_dn;

unsigned char pen_state_up; /* pen up state info */
unsigned int horz_pos_up;
unsigned int vert_pos_up;

int min_horz_pos; /* min-max horizontal limits*/
int max_horz_pos;

int min_vert_pos; /* min-max vertical limits */
int max_vert_pos;

char inbuf[132], *iptr; /* keyboard input buffer */

/**/
5-26

PPT 41xx System Software Manual: Chapter 5, Mouse Emulator

41ssm Page 27 Tuesday, October 28, 1997 4:48 PM
/* Check if PENMS is loaded before requesting services */

if (_dos_getvect(PENMS_INT) == NULL)
{

fprintf (stderr,"PENMS not loaded.\nProgram aborted.");
exit(0);

}

/* Extended call to get PENMS version number */

pn_GetVersionNumber(&major, &minor, &serial_type, &irq_num);

if (major == UNDEFINED)
{

fprintf (stderr,"PENMS handler not recognized."
"\nProgram terminated.");
exit(0);

}
pn_SetPenReset(&pen_reset_state);
if (pen_reset_state != -1)
{

fprintf(stderr,"\nPen is not attached\nProgram terminating");
exit(0);

}

/* clear screen, print info returned from GetVersion call */

printf(CLEAR_SCREEN);

pen_event_mask = PEN_DOWN_EVENT;
pn_SetUserDefinedPenEventHandler(pen_event_mask, callback);

printf(SET_CURSOR "1;1H" REVERSE_VIDEO "PENMS" NORMAL_VIDEO
" reported version # as : %x.%02x", major, minor);

printf("\nSerial type as : %d", serial_type);
printf(" and IRQ # as : %d", irq_num);

printf(SET_CURSOR "3;1HEnter Min, Max Horizontal [0,319]"
"\n<CR> for defaults ");
5-27

PPT 41xx System Software Manual: Chapter 5, Mouse Emulator

41ssm Page 28 Tuesday, October 28, 1997 4:48 PM
/* Get input from keyboard */

gets(inbuf);

/* If user entered Horizontal min-max data, try to process it ... */

if (strlen(inbuf) > 2)
{

min_horz_pos = atoi(inbuf);
iptr = strchr(inbuf, ',');
if (iptr != NULL)

max_horz_pos = atoi(iptr+1);

/* call the pen driver to set new horizontal defaults. */

pn_SetMinandMaxHorizontalPenPosition(min_horz_pos, max_horz_pos);
}

printf(SET_CURSOR "4;1H ");
printf(SET_CURSOR "3;1HEnter Min, Max Vertical [0,479] "

"\n<CR> for defaults ");

/* Get input from keyboard */

gets(inbuf);

/* If user entered Vertical min-max data, try to process it ... */

if (strlen(inbuf) > 2)
{

min_vert_pos = atoi(inbuf);
iptr = strchr(inbuf, ',');
if (iptr != NULL)

max_vert_pos = atoi(iptr+1);

/* call the pen driver to set new vertical defaults. */

pn_SetMinandMaxVerticalPenPosition(min_vert_pos, max_vert_pos);

}

5-28

PPT 41xx System Software Manual: Chapter 5, Mouse Emulator

41ssm Page 29 Tuesday, October 28, 1997 4:48 PM
printf(SET_CURSOR "3;1HTouch pen anywhere on screen, "
"\nto exit touch " REVERSE_VIDEO "PENMS" NORMAL_VIDEO " on "
"top line.");

do
{

/* Wait for pen touch */
do
{

pn_GetPenStateandPosition(&pen_state, &horz_pos, &vert_pos);
} while(pen_state == PEN_UP);

printf(SET_CURSOR "3;1HPen down @ x=%3d, y=%3d ",
horz_pos, vert_pos);

pn_ReadPenMotionCounters((unsigned int far *)&horz_rel,
(unsigned int far *)&vert_rel);

printf("\nRelative motion counters: %4d, %4d",
horz_rel, vert_rel);

/* Pen is down, wait for pen to be lifted before proceeding */
/* This will prevent the same touch from being processed */
/* twice. */

do
{

pn_GetPenStateandPosition(&pen_state, &horz_pos, &vert_pos);
} while (pen_state == PEN_DOWN);

pn_GetPenDownInformation(&pen_state_dn, &horz_pos_dn,
&vert_pos_dn);

printf("\nPen down @ x=%3d, y=%3d", horz_pos_dn, vert_pos_dn);

pn_GetPenUpInformation(&pen_state_up, &horz_pos_up,
 &vert_pos_up);

printf("\nPen up @ x=%3d, y=%3d", horz_pos_up, vert_pos_up);

} while(callbackOccurred == FALSE);
5-29

PPT 41xx System Software Manual: Chapter 5, Mouse Emulator

41ssm Page 30 Tuesday, October 28, 1997 4:48 PM
pen_event_mask = DISABLE_CALLBACK;
pn_SetUserDefinedPenEventHandler(pen_event_mask, callback);

printf(SET_CURSOR "1;1H" NORMAL_VIDEO "PENMS"
" reported version # as : %x.%02x", major, minor);

printf("\nSerial type as : %3d", serial_type);
printf(" and IRQ # as : %3d", irq_num);
printf(SET_CURSOR "6;1H");

}

5-30

	Chapter 5 Mouse Emulator
	Introduction
	Supported API Commands
	Mouse Emulator API Commands (List)
	Mouse Emulator API Commands (Descriptions)
	Reset Mouse Emulator
	Function: 0x00
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	Get Pen State and Pen Position
	Function: 0x03
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	Get Pen Down Information
	Function: 0x05
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	Get Pen Up Information
	Function: 0x06
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	Set Horizontal Pen Limits
	Function: 0x07
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	Set Vertical Pen Limits
	Function: 0x08
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	Read Pen Motion Counters
	Function: 0x0B
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	Set User-Defined Pen Event Handler
	Function: 0x0C
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	Swap User-Defined Pen Event Handlers
	Function: 0x14
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Notes
	Example

	Get Mouse Emulator Information (Version Number, Type, and IRQ Number)
	Function: 0x24
	Description
	Interrupt
	Input Registers
	Output Registers
	Example

	Appendix. PENMOUSE.C

