
       

41ssm  Page 1  Tuesday, October 28, 1997  4:48 PM
Chapter 2  XSYMBIOS/ Power 
Management 

Introduction 
Because the PPT 41XX hand-held computer usually operates from battery power, 
support of power management services and their implementation in applications 
written for the PPT 41XX have a significant part in Symbol's design of system level 
software for the PPT 41XX.

The PPT 41XX Power Management subsystem is based on Advanced Power 
Management (APM) Version 1.0 and can control power to each device independently 
of the rest of the system. Symbol Technologies’ Extended BIOS (XSYMBIOS) includes 
operating system level power management services that enable applications to control 
power to individual devices and to the system as a whole.

Advanced Power Management
Advanced Power Management (APM) consists of one or more layers of software that 
support power management in computers equipped with power manageable 
hardware. It defines the hardware-independent software interface between hardware-
specific power management software and an operating system power management 
policy. It allows higher-level software to use APM with no knowledge of the hardware 
interface.

The APM software interface specification defines a layered cooperative environment in 
which applications, operating systems, device drivers, and the APM BIOS work 
together to reduce power consumption, extending the life of system batteries and 
increasing productivity and system availability.

Figure 2-1 provides a schematic of an Advanced Power Management System:
2-1



  

PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

   

41ssm  Page 2  Tuesday, October 28, 1997  4:48 PM
Figure 2-1.  Advanced Power Management System

APM partitions power management functions into three cooperating layers shown in 
Figure 2-1 and standardizes the flow of information and control across these layers. 
The software components identified in the figure are:

• APM BIOS
Software interface to the system hardware and its power-managed devices and 
components.

• APM Interface
The interaction between XSYMBIOS and the APM BIOS.

• XSYMBIOS
This software module connects to the APM BIOS, communicates with 
XSYMBIOS-aware applications, and controls power management policy.

• XSYMBIOS-aware applications
These  application programs interface with XSYMBIOS to monitor and control 
power management.

• XSYMBIOS-aware device drivers

Application
  Layer

Operating
 System
  Layer

BIOS Layer

APM-Aware
Application

  APM-Aware
Device Driver

   XSYMBIOS.EXE

Add-In
Device

APM     Interface

APM BIOS

 APM BIOS Controlled Hardware
2-2



  

PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

  

41ssm  Page 3  Tuesday, October 28, 1997  4:48 PM
These  program modules provide the power management software interfaces for 
add-in devices (i.e.,  one that is not part of the primary system hardware, e.g., a 
device that can be inserted and removed like a PCMCIA card).

As indicated in Figure 2-1, APM operates at three layers:

• the BIOS layer

• the operating system layer (XSYMBIOS)

• the application layer

The APM BIOS is the lowest level of power management software in the system. APM 
is incorporated in the BIOS and is specific to the hardware platform. An APM BIOS 
may provide some degree of power management functionality without any support 
from operating system or application software. The amount of stand-alone power 
management functionality is minimal.

The power management functionality of a system is enhanced once an APM driver like 
Symbol’s XSYMBIOS.EXE establishes a cooperative connection to the APM BIOS.  This 
connection allows the firmware to communicate power management events to the 
APM driver and to wait for APM driver concurrence, if necessary.

XSYMBIOS functions at the operating system layer and has three primary tasks:

1. to pass calls and information between applications and the APM BIOS layer

2. to arbitrate application power management calls in a multitasking environment

3. to identify power saving opportunities not apparent at the application or BIOS 
layer

XSYMBIOS must regularly poll the APM BIOS to determine whether the APM BIOS 
has effected state changes or wants a state transition to occur. XSYMBIOS does the 
appropriate processing to prepare for state changes and then calls the APM BIOS to 
perform the appropriate power state changes.

XSYMBIOS provides an interface between the APM BIOS and power management 
aware applications. This interface passes application requests to the APM BIOS and 
sends APM BIOS power management events up to the applications. 

XSYMBIOS specifies a power management-to-application interface.

XSYMBIOS-aware applications aid in power management by providing information 
that only the application knows or can obtain.
2-3



  

PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

    

41ssm  Page 4  Tuesday, October 28, 1997  4:48 PM
XSYMBIOS-aware applications may register with XSYMBIOS. XSYMBIOS notifies 
registered applications when system power management events occur, and the 
applications take suitable actions.

The rest of this chapter deals with the services Symbol has provided in XSYMBIOS to 
support PPT 41XX power management policy. For more details on the APM BIOS 
specification, refer to Advanced Power Management, (APM), BIOS Interface Specification, 
Revision 1.1, September 1993,  available from either of the following sources:

Intel Corporation 
Literature Distribution Center
PO BOX 7641Mt. Prospect, IL 60056-7641
Intel Order Number: 241704-001

Microsoft Corporation
Hardware Vendor Relations Group
1 Microsoft Way
Redmond, WA 98052
Microsoft Part Number: 781-110-X01
2-4



  

PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

         

41ssm  Page 5  Tuesday, October 28, 1997  4:48 PM
PPT 41XX Power Management Subsystem
Symbol’s Extended BIOS (XSYMBIOS) provides system-level power management 
services for PPT 41XX terminals. XSYMBIOS.EXE controls power management for the 
terminal and provides an application program interface (API) for controlling power 
management.

This section provides a description of the power management subsystem supported by 
XSYMBIOS.EXE. It consists of the following subsections:

• Power Management Overview describes the function and purpose of the PPT 41XX 
power management subsystem.

• Rules for Using the Power Management Subsystem provides rules for using the 
power management subsystem in application programs for PPT 41XX terminals.

Power Management Overview
The power management subsystem manages the distribution of power to the system 
and to individual devices on PPT 41XX terminals. It reduces power consumption 
which increases battery life without significant impact on the performance of the 
terminal. 

Figure 2-2 (see next page) depicts the PPT 41XX power management subsystem and 
suggests how it interfaces with DOS applications and with other TSRs (drivers) used 
with PPT 41XX terminals. 
2-5



  

PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

    

41ssm  Page 6  Tuesday, October 28, 1997  4:48 PM
Figure 2-2.  PPT 41XX Power Management Subsystem

Devices Managed by the Power Management Subsystem
The devices managed by the power management subsystem are:

• CPU

• LCD (Screen)

• COM1

• COM2

• PCMCIA

• SCAN

Except for “CPU,” the names used for these devices are also the text strings used to 
denote the associated devices throughout the application programming interface 
(API). Separate API functions are used to control the CPU.

Each device has a maximum of three power consumption states:

DOS Application

PPT 41XX Power Management Subsystem

BIOS APM 1.0 Services

DOS Power Management TSR (XSYMBIOS.EXE)

Invoke CPU State Change
Invoke Device State Change

Query Power State

  
Suspend Request Notification
Resume Notification

Scanner Driver
SCAN4100.EXE

Request Notification
Enter Power Save

Request Notification
Enter Power Save
Control Device State
Control Wakeups

     
  

                 RF
Communications

PCMCIA Drivers
          and
        TSRs

Control Device State
2-6



  

PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

              

41ssm  Page 7  Tuesday, October 28, 1997  4:48 PM
• Active State
This is the highest power consumption state for a managed device. In this state 
the device is fully functional and can operate at full speed. The LCD backlight is 
ON (unless specifically disabled).

• Sleep State
This is an intermediate power consumption state which can conserve power on 
some devices. In this state the device can either operate with reduced 
performance or be quickly restored to the active state. The configuration of the 
device is preserved. The LCD backlight is OFF.

• Suspend State
This is the lowest power consumption state and is supported by all devices. It is 
equivalent to the Off state. In this state the configurations of most devices are 
lost. For the CPU device, the state and the memory are preserved, allowing the 
program to resume operation when the CPU switches back to active state. For 
other devices the configuration must generally be restored to return to active 
state.

Each managed device has two inactivity timers associated with it:

• Sleep timer

• Suspend timer

Whenever a device is switched into active state, the inactivity timer starts for the 
period specified by the sleep timer. If the sleep timer expires, the device  switches into 
sleep state, and the inactivity timer starts for the period specified by the suspend timer. 
If the suspend timer also expires, the device is automatically suspended.

The CPU is always active when it is executing code, even if the code is only waiting for 
some event. Sleep state is selected automatically when the BIOS goes into a tight loop 
waiting for an event (for instance, attempting to get a key from the keyboard when 
none is present). Any input/output activity detected by XSYMBIOS sets the CPU to 
active state and restarts the sleep timer. If the sleep timer expires, the CPU sleep state 
is selected and the suspend timer starts. If the suspend timer expires, all the other 
devices are placed in suspend state prior to suspending the CPU. If the CPU is 
subsequently activated, the power management subsystem restores the power state of 
each device in the system to what it was before the CPU was suspended. However, the 
configurations of devices may not be restored correctly. Generally, device drivers 
should interface with XSYMBIOS to save and restore their device states if these states 
were not properly preserved.

The following are some exceptions to these rules:
2-7



  

PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

  

41ssm  Page 8  Tuesday, October 28, 1997  4:48 PM
• If an attempt is made to switch a device into sleep state and that device does not 
support sleep state, the device is made active instead. The timer is processed as 
if sleep state did exist, i.e., the suspend timer starts.

• Any attempt to select a power consumption state when the next lower state is 
disabled disables the timer which would cause it to switch to the next lower state.

• Any attempt to select a disabled power consumption state automatically selects 
the next higher state available and disables the timer which would cause it to 
switch to the disabled state.

Table 2-1 lists the default states and timers for the system as a whole (CPU) and for 
those devices that are managed by the power management subsystem. 
2-8



  

PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

                               

41ssm  Page 9  Tuesday, October 28, 1997  4:48 PM
 

Note 1: This parameter is defined by Setup and obtained from 
CMOS.

Note 2: These devices do not support a sleep state.

Note 3: The current SCAN device does not support any power 
states. The Scanner Driver (SCAN4100.EXE or 
SCAN4122.EXE) controls power to the scanner.

In addition to the automatic processes performed by the power management 
subsystem, XSYMBIOS.EXE supports the following methods for controlling power 
management:

• Symbol Technologies proprietary power management application programming 
interface (API). See Power Management API Commands (List) and Power 
Management API Commands (Descriptions)

This API enables/disables automatic operation at the device level and manually 
overrides automatic operation.

• Advanced Power Management (APM)

The API supported by XSYMBIOS.EXE allows applications to control the power to 
each device directly and to define how XSYMBIOS.EXE performs automatic power 
management when devices are inactive.

Table 2-1. System and Device Default States and Timers 

Device Default State Sleep Timer Suspend Timer

CPU (System) Active 5 second2 See Note 1.

LCD Active See Note 1. Infinite

COM1 Suspend N/A. See Note 2. Infinite

COM2 Suspend N/A. See Note 2. Infinite.

PCMCIA Active N/A. See Note 2. Infinite

SCAN Active. See Note 3. N/A. See Note 2 See Note 2.
2-9



  

PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

             

41ssm  Page 10  Tuesday, October 28, 1997  4:48 PM
The highest level of power saving is achieved when the application switches off all 
unused devices and sets all used devices in the lowest possible power state, as 
determined by the application’s requirements. However, most applications do not do 
this. To save power with minimal involvement from applications, XSYMBIOS.EXE 
monitors device activity and automatically switches inactive devices into 
progressively lower power states, while allowing applications to set the inactivity 
timers for each device and to define which power states can be selected. 
XSYMBIOS.EXE controls power to the system by interfacing to APM (APM version 1.0 
is built into the BIOS on the PPT 41XX). 

XSYMBIOS.EXE switches the system into sleep state when no activity is detected for a 
specified period. 

YSYMBIOS.EXE has been provided for testing applications on the development PC. 
This program is functionally equivalent to XSYMBIOS, but  ignores any commands 
specific to the PPT 41XX terminal. For a  description of YSYMBIOS, see YSYMBIOS–
PC-Loadable Version of XSYMBIOS in Chapter 1. 

Rules for Using the Power Management Subsystem
The following rules for using the power management subsystem in application 
programs for PPT 41XX terminals allow application developers to achieve low power 
consumption with good performance. Failure to follow these rules may  reduce battery 
life or present severe performance problems.

Rule 1. Set power management operating parameters before
starting an application or as part of the application’s
initialization.

Identify the devices used by the application. For each device, set the required sleep and 
suspend timer values. If the application controls the device power states (active, sleep, 
or suspend) manually, set all devices to the lowest power state that allows the program 
to operate. If power management is automatic,  set all required devices to active. 
Manual power management is generally more effective than automatic because it 
allows power to be turned on and off “just in time” rather than relying on timers.

Caution
By default, the COM1 device is set to the suspend state. Any at-
tempt to use the COM1 device without making it active will fail 
since in the suspend state no power is supplied to COM1 sup-
port hardware. Accessing the serial device by going directly to 
2-10



  

PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

        

41ssm  Page 11  Tuesday, October 28, 1997  4:48 PM
the hardware (the method usually used by PC applications) does 
not make the device active. See the descriptions of 
COM1ON.COM and COM1OFF.COM in the PPT 41XX Product 
Reference Guide (PRG).

Rule 2. Control power to devices and the system from within the
 application.
Applications are often aware of power saving opportunities before they can be 
detected by XSYMBIOS.EXE. Considerable power saving can be achieved by direct 
control from the application.

There is a producer/consumer relationship in an event-driven polled system. A 
consumer of events identifies opportunities for power management (since it knows 
when none of its desired events has yet occurred). As the primary controlling 
foreground process, the consumer also periodically polls power management to allow 
detection of asynchronous power management activities such as timeouts, power 
switch presses, etc.

If an event consumer is going to execute a long compute-intensive operation, it may 
need to indicate system activity to prevent unwanted power management from 
occurring until it has completed its processing. In such a case, the compute-intensive 
code section should also include power management polling to ensure that 
asynchronous power management activities are not delayed during the extended 
processing period. The following code fragment illustrates these points:
2-11



  

PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

          

41ssm  Page 12  Tuesday, October 28, 1997  4:48 PM
.

.

.
while (!done)
{

event_detected = FALSE;
for (i = 0; i < number_of_events; i++)

if (event_occurred (i))
{

event_detected = TRUE;
process_event (i);

}
if (!event_detected)

save_power( );
poll_power_management ( );

}
.
.
.
void process_event (int i)     /* For long processing events*/
{

int old_sleep_timer = get_system_sleep_timer ( );
set_system_sleep_timer (-1);
make_system_active ( );
while (more_event_work_to_do)
{

power_management_poll ( );
some_event_work ( );

}
set_system_sleep_timer (old_sleep_timer);

}

where:

get_system_sleep_timer is implemented via INT B1h Function 0x1400

set_system_sleep_timer is implemented via INT B1h Function 0x1402

make_system_active is implemented via INT B1h Function 0x09

save_power is implemented as one of the following:
2-12



  

PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

                         

41ssm  Page 13  Tuesday, October 28, 1997  4:48 PM
• Multiplex Application Idle API Call
This API call (INT 0x2F Function 0x1680) indicates the calling application 
wishes to relinquish its execution privilege for an unspecified time duration. 
This is the recommended method for identifying opportunities for power 
management. This method does not rely  on the presence of XSYMBIOS 
(although XSYMBIOS must be present for power savings to occur).

• Direct XSYMBIOS Sleep Request API Call
This API call (INT 0xB1 Function 0x0B) is similar to the Multiplex 
Application Idle API call, but is less convenient to use as it requires a check 
for the presence of XSYMBIOS before it is used. 

poll_power_management ( ) is implemented as one of the following:

• DOS Idle API Call
This API call (INT 0x28) is the recommended method of polling for 
asynchronous power management events. This method does not rely directly 
on the presence of XSYMBIOS (although XSYMBIOS must be present for any 
events to be detected).

• Direct XSYMBIOS Power Management Poll API Call
This API call (INT 0xB1 Function 0x15) is similar to  the DOS Idle API call, 
but it is less convenient to use as it requires a check for the presence of 
XSYMBIOS before it is used. 

 Rule 3. Indicate system activity, especially in background interrupt
 service routines.
XSYMBIOS.EXE uses various hardware interrupts to control the timers and  monitor 
system activity. If an application or a driver replaces the interrupt service routines for 
these interrupts, XSYMBIOS.EXE can not  detect activity and may unexpectedly power 
down devices (or the system). XSYMBIOS.EXE also monitors software interrupts 0x10, 
0x13, 0x16, 0x21, and 0x2F to detect system activity and identify power saving 
opportunities.

In an event-driven polled system (as described in Rule 2), a producer of an event 
should prevent unwanted power management since the production of an event 
indicates the need for activity.
2-13



  

PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

                        

41ssm  Page 14  Tuesday, October 28, 1997  4:48 PM
There are three ways in which the producer of an event can indicate system activity, 
preventing unwanted power management. The first two methods apply primarily to 
producers operating in the background (i.e., producers that detect the occurrence of the 
events they produce as a result of interrupts). The third method applies primarily to 
producers operating in the foreground (i.e., producers that detect the occurrence of the 
events they produce as a result of polling activity performed within the main 
foreground polling loop of the consumer). The three methods are described as follows:

1. Hardware Interrupt Interception and Chain On
XSYMBIOS intercepts many hardware interrupts and automatically indicates 
system activity. The producer “chains on” to the interrupt it uses rather than 
“taking over” the interrupt, allowing XSYMBIOS to continue to monitor the 
interrupt so the producer doesn’t need to modified its interrupt service routine. 
This is the easiest solution for background producers.

2. Reset Inactivity Timers API Call
This API call (INT 0xB1 Function 0x16) controls the power state of the CPU and 
the LCD.

This method is used in cases where it is not practical to “chain on” to the interrupt 
(an example of such a case is when DOS or the BIOS contains a “default” interrupt 
handler for the IRQ being used. “Chaining on” to the interrupt allows this 
“default” interrupt handler to execute after the user interrupt handler, which may 
cause undesired results.)

3. Make System Active API Call
This API call (INT 0xB1 Function 0x09) is the method recommended for a 
foreground producer to indicate system activity. This call must be used only by a 
foreground (non-interrupt service routine) process since it is non-reentrant.

Rule 4. Use caution when preventing devices or the system from
              sleeping or suspending.
When absolutely necessary, INT 0xB1, Functions 0x04, 0x05, 0x06, and 0x07 can disable 
devices or the system from entering the sleep or suspend states. Use these functions 
with caution. To avoid the risk of missing a critical asynchronous power management 
event, do not leave suspend disabled for more than a few milliseconds. Always use the 
disable and enable calls in pairs and ensure that a disable is always followed by an 
enable once the critical section of code is completed.
2-14



  

PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

   

41ssm  Page 15  Tuesday, October 28, 1997  4:48 PM
Rule 5. On exit from an application program, restore the original
              power management parameters.
Any application program that exits should restore the power management parameters 
to those that were in effect when the program started.
2-15



  

PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

              

41ssm  Page 16  Tuesday, October 28, 1997  4:48 PM
Power Management API Commands (List)
In the power management API supported by XSYMBIOS.EXE all services are accessed 
through INT 0xB1 with a function (command) code supplied in the AH register and 
parameters (if any) passed in registers. On return from calls to these services:

• if no error has been detected, the Carry Flag is cleared 

• if an error is detected, the Carry Flag is set and the AX register contains an error 
code

Table 2-2 lists the power management services supported by the PPT 41XX power 
management subsystem. The list is sorted by the hexadecimal numeral for the function 
code the application assigns to the AH register when it invokes the service via INT 
0xB1. These services and their parameter values and definitions are described in the 
following section. 

Table 2-2. Power Management API Commands (INT 0xB1)  

Function 
Code

Power Management
Service Name

0x00 Suspend System 

0x01 Set Wakeup Masks

0x02 Get Wakeup Cause

0x03 Get Battery Status

0x04 Device Sleep Disable Control

0x05 System Sleep Disable Control

0x06 Device Suspend Disable Control

0x07 System Suspend Disable Control

0x08 Activate Device

0x09 Activate System

0x0A Sleep Device

0x0B Sleep System

0x0C Suspend Device

0x0D Suspend System

0x0E Register for Device Suspend Notification 

0x0F Register for System Suspend Notification

0x10 Register for Device Resume Notification 
2-16



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 17  Tuesday, October 28, 1997  4:48 PM
0x11 Register for System Resume Notification

0x12 Get Power Source 

0x13 Get/Set Device Timer Value

0x14 Get/Set System Timer Value

0x15 Poll Power Management

0x16 Reset Inactivity Timers

0x17 Get/Set Low Battery LED Flash-On Time

0x18 Enable/Disable Power Management Poll on INT 0x16

0x1A Get Extended Wakeup Cause

Table 2-2. Power Management API Commands (INT 0xB1)  (Continued)

Function 
Code

Power Management
Service Name
2-17



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 18  Tuesday, October 28, 1997  4:48 PM
Power Management API Commands 
(Descriptions)
The following descriptions of the functions in Table 2-2 are given in function code 
order. 

Note: Prior to using any of the functions of the Power 
Management API, an application must verify that the 
XSYMBIOS.EXE TSR is installed by issuing a Get 
XSYMBIOS Version Number call (INT 0x32, Function 
0x85) to ensure that the major and minor version 
numbers are not both zero (0).

Issuing an INT 0xB1 when XSYMBIOS is not loaded 
crashes the system.

For a more detailed description of the Get XSYMBIOS 
Version Number service, see  XSYMBIOS General System 
Services (INT 0x32) (List) in Chapter 1.
2-18



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 19  Tuesday, October 28, 1997  4:48 PM
Suspend System
Function: 0x00
Description
Enables the application to suspend the system and, optionally, to specify a wakeup 
time either as month-day-hour-minute or as a number of seconds from the current 
time.

If the terminal cannot power down for any reason, the routine returns an error reply 
(see the error codes under Output Registers). Otherwise, all devices managed by the 
power management system power down (CPU last). If the system resumes, the power 
down caller receives a valid reply.

The two subfunctions with alarm wakeup wake up the terminal at the specified time if 
it has not previously been awakened by some other cause.

Interrupt
0xB1

Input Registers
AH = 0x00

AL = subfunction code, as follows:

     0x00: Power down with no alarm wakeup
     0x01: Power down with alarm wakeup specified in seconds
     0x02: Power down with alarm wakeup specified as date/time

If AL = 0x01

     CX = number of seconds to alarm (1 - 3600)

If AL = 0x02:

     DH = Month (1 - 12)
     DL = Day (1 - 31)
     CH = Hour (0 - 23)
     CL = Minute (0 - 59) 
2-19



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 20  Tuesday, October 28, 1997  4:48 PM
Output Registers
If no error is detected:

Carry Flag is cleared
AX = 0x0000

If an error is detected:

Carry flag is set
AX = Error code as follows:

0x0001: Incorrect function code or subfunction code passed in register 
AH or AL, respectively

: The requested function is disallowed
0x000A: The battery level is too low to allow the terminal to resume

Notes
If the return code is 0x0002, Function 0x07 (System Suspend State Control) or 
Function 0x06 (Device Suspend State Control) has been used to disallow suspend 
state on the CPU or on some other device.

Function 0x0D (Suspend System) provides identical functionality.

Example
The following code sample illustrates the XSYMBIOS power management services 
below:

Suspend System (Function 0x00)
Set Wakeup Masks (Function 0x01)
Get Wakeup Cause (Function 0x02)
Get Battery Status (Function 0x03)
Device Sleep Disable Control (Function 0x04)
Device Suspend Disable Control (Function 0x06)
Activate System (Function 0x09)
Register for System Resume Notification(Function 0x11)
Get Power Source (Function 0x12)
Register for System Suspend Notification (Function 0x0F)
Get/Set Low Battery LED Flash-On Time (Function 0x17)
Enable/Disable Power Management Poll on INT 0x16 (Function 0x18)
2-20



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 21  Tuesday, October 28, 1997  4:48 PM
This example is contained in the following file in the PPT 41XX Software Development 
Kit (SDK):

c:\SDK4100\SAMPLES\MANUAL\MANUAL\CHAP2\POWER1.C

where c:\SDK4100 is the default installation directory.

/* Include Files *********************************************/

#include <stdio.h>
#include <dos.h>

/* Defines ****************************************/

#ifndef FALSE
#  define FALSE 0
#endif

#ifndef TRUE
#  define TRUE !FALSE
#endif
2-21



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 22  Tuesday, October 28, 1997  4:48 PM
#define PWR_MGMT_INT 0xB1 /* XSYMBIOS Power Management  */
/* Services                                        */

#define XSYMBIOS_INT      0x32 /* XSYMBIOS General System   */
/* Services                                      */

#define PM_SYS_SPND       0x00 /* system suspend               */
#define PM_SET_WAKE_MASK 0x01 /* set wakeup masks             */
#define PM_GET_WAKE_CAUSE 0x02 /* get wakeup cause             */
#define PM_GET_BATT_STAT 0x03 /* get battery status           */
#define PM_DEV_SLEEP_CTRL 0x04 /* device sleep ctrl            */
#define PM_DEV_SUSP_CTRL 0x06 /* device suspend ctrl          */
#define PM_SET_SYS_ACTIVE 0x09 /* set system active            */
#define PM_SYS_RES_NOTIF 0x11 /* system resume notification   */
#define PM_GET_PWR_SOURCE 0x12 /* get power source             */
#define PM_SYS_SUSP_NOTIF 0x0F /* system suspend notification  */
#define XB_GET_VERSION 0x85 /* get XSYMBIOS Version         *
#define XB_FLASH_ON_TIME 0x17 /* set low battery LED            */

/* flash-on time                  */
#define XB_DISAB_PM_POLL 0x18 /* enable/disable pm poll   */

/*  on INT 0x16                   */

typedef unsigned char BYTE; /* 8 bit data type         */
typedef unsigned short WORD;   /* 16 bit data type        */
typedef unsigned long DWORD;   /* 32 bit data type        */

typedef enum {ALARM_NONE, ALARM_SECS, ALARM_DATE}
 ALARM_TYPE;

typedef enum {STATE_DSBL, STATE_ENBL, STATE_STAT} 
 STATE_CTRL_TYPE;

typedef enum {GET_PWRDN, GET_TIMEOUT, SET_PWRDN, SET_TIMEOUT}
 GETSET_EXT_TYPE;

typedef struct
{
   BYTE month;
   BYTE day;
   BYTE hour;
   BYTE minute;

} DATE_TIME_TYPE;
2-22



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 23  Tuesday, October 28, 1997  4:48 PM
typedef struct
{
   unsigned char data[8];
} STORAGE_TYPE;

BYTE suspended = FALSE;

BYTE resumed = FALSE;

/* Public Variables **************************************************/

union REGS inregs; /* input regs to int86x     */
union REGS outregs;   /* output regs from int86x  */
struct SREGS segregs; /* seg regs to/from int86x  */

/* Local Functions Prototypes ****************************************/

WORD pm_SystemSuspend(ALARM_TYPE alarm, /* alarm wakeup type */
 WORD seconds,    /* seconds to wakeup */
DATE_TIME_TYPE far *date_time);

/* date/time to wakeup */

WORD pm_SetWakeupMasks(BYTE system_mask,  /* mask for system timeout */
 BYTE pwrdn_mask); /* mask for normal pwr down */

WORD pm_GetWakeupCause(void);

WORD pm_GetBatteryStatus(void);

WORD pm_DevSleepCtrl(STATE_CTRL_TYPE sleep_ctrl, /* action flag */
 char far *device, /* device name */
 WORD far *dsbl_count); /* disable count */

WORD pm_DevSuspCtrl(STATE_CTRL_TYPE susp_ctrl, /* action flag */
char far *device, /* device name */
WORD far *dsbl_count); /* disable count */

WORD pm_SetSysActive(void);

WORD pm_SysSuspNotif(int action, /* action flag   */
 STORAGE_TYPE far *storage, /* storage area  */
 void (interrupt far *routine)());  /* notif routine */
2-23



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 24  Tuesday, October 28, 1997  4:48 PM
WORD pm_SysResumeNotif(int action,  /* action flag   */
  STORAGE_TYPE far *storage, /* storage area  */
 void (interrupt far *routine)()); /* notif routine */

WORD pm_GetPowerSource(void);

void xb_GetVersion(BYTE far *major, /* major version id */
BYTE far *minor); /* minor version id */

void interrupt far susp_routine();

void interrupt far res_routine();

WORD xb_SetFlashOnTime(BYTE ontime);  /*LED flash-on time*/

WORD xb_EnDisablePMPoll(int action);        /* power Management poll */

int main (void)
{
   BYTE  major;   /* XSYMBIOS major version id */
   BYTE  minor;         /* XSYMBIOS minor version id */
   WORD  batt_stat;     /* Battery status */
   WORD  power_state;   /* Power state */
   WORD  syswakeup;     /* 4100 system wakeup cause */
   DWORD devwakeup; /* 4100 device wakeup cause */
   WORD dsbl_count;    /* sleep/suspend disable count */
   static STORAGE_TYPE susp_storage;
   static STORAGE_TYPE res_storage;

   /* Obtain and display TSR version */

   xb_GetVersion(&major, &minor);
   printf("XSYMBIOS version is: %x.%2.2x\n", major, minor);

   /* Obtain and display current power source */
   printf("Current power source is: ");
   switch (pm_GetPowerSource())
   {
      case 0:
         printf("battery\n");
         /* If battery power, display battery state */
         batt_stat = pm_GetBatteryStatus();
         printf("Battery status is: ");
2-24



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 25  Tuesday, October 28, 1997  4:48 PM
         if (batt_stat & 0x01)
            printf("Power fault\n");
         else if (batt_stat & 0x02)
            printf("Low, level 2\n");
         else if (batt_stat & 0x04)
            printf("Low, level 1\n");
         else
            printf("good\n");
         break;

      case 1:
         printf("Cradle\n");
         break;

      case 2:
         printf("Charger\n");
         break;
   }

pm_DevSleepCtrl(STATE_STAT, "LCD", &dsbl_count);
printf("Current LCD sleep disable count = %i\n", dsbl_count);

/* Disable sleep state for the LCD device*/

pm_DevSleepCtrl(STATE_DSBL, "LCD", &dsbl_count);

/* Perform application-specific operations here */
/* ...                                          */
/* ...                                          */

   /* Enable sleep state */
   pm_DevSleepCtrl(STATE_ENBL, "LCD", &dsbl_count);

   pm_DevSuspCtrl(STATE_STAT, "PCMCIA1", &dsbl_count);
   printf("Current PCMCIA1 susp disable count = %i\n", dsbl_count);

   /* Disable suspend state for the PCMCIA1 device */
   pm_DevSuspCtrl(STATE_DSBL, "PCMCIA1", &dsbl_count);

   /* Perform application-specific operations here */
   /* ...                                          */
   /* ...                                          */
2-25



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 26  Tuesday, October 28, 1997  4:48 PM
   /* Enable suspend state */
   pm_DevSuspCtrl(STATE_ENBL, "PCMCIA1", &dsbl_count);

   /* Reset CPU inactivity timer */
   printf("Setting CPU to active state\n");
   pm_SetSysActive();

   /* Setup wakeup mask prior to powering down */
   pm_SetWakeupMasks(0x02, 0x02);

   /* Setup for system suspend and resume notification */
   memset(susp_storage, 0, sizeof(susp_storage));
   pm_SysSuspNotif(TRUE, &susp_storage, susp_routine);
   memset(res_storage, 0, sizeof(res_storage));
   pm_SysResumeNotif(TRUE, &res_storage, res_routine);

   /* Power down unit with wakeup via alarm or trigger */
   printf("Unit will power down and wakeup in 20\n");
   printf("seconds or when left switch is depressed\n");

   printf("Press enter to continue\n");
   getchar();
   pm_SystemSuspend(ALARM_SECS, 20, NULL);

   /* Report wakeup cause */
   printf("Wakeup cause = %04X\n", pm_GetWakeupCause());

 /* Report notification results */
   if (suspended)
      printf("Suspend notification occurred\n");
   else
      printf("No suspend notification occurred\n");

   if (resumed)
      printf("Resume notification occurred\n");
   else
      printf("No resume notification occurred\n");

   /* Be sure to remove notification before exiting application */
2-26



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 27  Tuesday, October 28, 1997  4:48 PM
   pm_SysSuspNotif(FALSE, &susp_storage, susp_routine);
   pm_SysResumeNotif(FALSE, &res_storage, res_routine);

   return 0;

}

void interrupt far susp_routine()
{
   suspended = TRUE;
}

void interrupt far res_routine()
{
   resumed = TRUE;
}

/********** Suspend System service *****************************/

WORD pm_SystemSuspend(ALARM_TYPE alarm, /* alarm wakeup type */
                      WORD seconds, /* seconds to wakeup */
                     DATE_TIME_TYPE far *date_time)

 /* date/time to wakeup */
{
   inregs.h.ah = PM_SYS_SPND;
   inregs.h.al = alarm;

   switch (alarm)
   {
      case ALARM_SECS:
         inregs.x.cx = seconds;
         break;

      case ALARM_DATE:
         inregs.h.dh = date_time->month;
         inregs.h.dl = date_time->day;
         inregs.h.ch = date_time->hour;
         inregs.h.cl = date_time->minute;
         break;
2-27



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 28  Tuesday, October 28, 1997  4:48 PM
   }
   

int86(PWR_MGMT_INT, &inregs, &outregs);
   
   return outregs.x.ax;
}

/**************** Set Wakeup Masks service ******************************/

WORD pm_SetWakeupMasks(BYTE system_mask, /* mask for system timeout */
  BYTE pwrdn_mask) /* mask for normal pwr down */
{
   inregs.h.ah = PM_SET_WAKE_MASK;

   inregs.h.ch = system_mask;
   inregs.h.cl = pwrdn_mask;

int86x(PWR_MGMT_INT, &inregs, &outregs, &segregs);
   
   return outregs.x.ax;
}

/**************** Get Wakeup Cause service ******************************/

WORD pm_GetWakeupCause(void)
{
   inregs.h.ah = PM_GET_WAKE_CAUSE;

int86x(PWR_MGMT_INT, &inregs, &outregs, &segregs);
   
   return outregs.x.ax;
}

2-28



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 29  Tuesday, October 28, 1997  4:48 PM
/**************** Get Battery Status service ******************************/

WORD pm_GetBatteryStatus(void)
{
   inregs.h.ah = PM_GET_BATT_STAT;

int86x(PWR_MGMT_INT, &inregs, &outregs, &segregs);
   
   return outregs.x.ax;
}

/**************** Device Sleep Disable Control service ********************/

WORD pm_DevSleepCtrl(STATE_CTRL_TYPE sleep_ctrl,/* action flag */
 char far *device, /* device name */
 WORD far *dsbl_count) /* disable count */
{
   WORD retval;

   inregs.h.ah = PM_DEV_SLEEP_CTRL;

   inregs.h.al = sleep_ctrl;

   segregs.ds = FP_SEG(device);
   inregs.x.dx = FP_OFF(device);

int86x(PWR_MGMT_INT, &inregs, &outregs, &segregs);
   
   if (outregs.x.cflag)
      retval = outregs.x.ax;
   else
   {
      *dsbl_count = outregs.x.ax;
      retval = 0;
   }

   return retval;
}

2-29



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 30  Tuesday, October 28, 1997  4:48 PM
/**************** Device Suspend Disable Control service ********************/

WORD pm_DevSuspCtrl(STATE_CTRL_TYPE susp_ctrl,/* action flag */
 char far *device,    /* device name */
 WORD far *dsbl_count) /* disable count */
{

WORD retval;

  inregs.h.ah = PM_DEV_SUSP_CTRL;

   inregs.h.al = susp_ctrl;

   segregs.ds = FP_SEG(device);
 inregs.x.dx = FP_OFF(device);

int86x(PWR_MGMT_INT, &inregs, &outregs, &segregs);
   
   if (outregs.x.cflag)
      retval = outregs.x.ax;
  else
   {
      *dsbl_count = outregs.x.ax;
      retval = 0;
   }

   return retval;
}

/*********** Activate System service ********************************/

WORD pm_SetSysActive(void)
{

   inregs.h.ah = PM_SET_SYS_ACTIVE;

int86x(PWR_MGMT_INT, &inregs, &outregs, &segregs);
   
   return outregs.x.ax;
}

2-30



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 31  Tuesday, October 28, 1997  4:48 PM
/******* Register for System Suspend Notification service ******/

WORD pm_SysSuspNotif(int action, /* action flag   */
STORAGE_TYPE far *storage, /* storage area  */
void (interrupt far *routine)()) /* notif routine */

{
 inregs.h.ah = PM_SYS_SUSP_NOTIF;
 inregs.h.al = (action ? 0x01 : 0x00);

 segregs.ds = FP_SEG(storage);
 inregs.x.di = FP_OFF(storage);

 segregs.es = FP_SEG(routine);
 inregs.x.bx = FP_OFF(routine);

        int86x(PWR_MGMT_INT, &inregs, &outregs, &segregs);
   

 return outregs.x.ax;
}

2-31



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 32  Tuesday, October 28, 1997  4:48 PM
/**** Register for System Resume Notification service *****/

WORD pm_SysResumeNotif(int action, /* action flag   */
STORAGE_TYPE far *storage, /* storage area  */
void (interrupt far *routine)()) /* notif routine */

{
   inregs.h.ah = PM_SYS_RES_NOTIF;
   inregs.h.al = (action ? 0x01 : 0x00);

   segregs.ds = FP_SEG(storage);
   inregs.x.di = FP_OFF(storage);

   segregs.es = FP_SEG(routine);
   inregs.x.bx = FP_OFF(routine);

int86x(PWR_MGMT_INT, &inregs, &outregs, &segregs);
   
   return outregs.x.ax;
}

/************ Get Power Source service ***************/

WORD pm_GetPowerSource(void)
{
   inregs.h.ah = PM_GET_PWR_SOURCE;

int86x(PWR_MGMT_INT, &inregs, &outregs, &segregs);
   
   return outregs.x.ax;
}

2-32



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 33  Tuesday, October 28, 1997  4:48 PM
/********** Get XSYMBIOS Version Number service ********/

void xb_GetVersion(BYTE far *major, /* major version id */
 BYTE far *minor) /* minor version id */
{

 inregs.h.ah = XB_GET_VERSION;

int86x(XSYMBIOS_INT, &inregs, &outregs, &segregs);

 *major = outregs.h.bh;
 *minor = outregs.h.bl;
   
  return;
}

/********** Set Low Battery LED Flash-On Time service ********/

WORD xb_SetFlashOnTime(BYTE ontime)          /* LED flash-on time */ 
{
   WORD retval;

   inregs.h.ah = XB_FLASH_ON_TIME;
   inregs.h.al = ontime;

   int86x(PWR_MGMT_INT, &inregs, &outregs);
   retval = outregs.h.al;
   
   if (outregs.x.cflag)
   {
      retval = outregs.x.ax;
      printf(“Error calling Int B1 Func 17 = %x\n”, retval);
    }
   else
      retval = outregs.h.al;
 
   return (retval & 0x00ff);
}

2-33



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 34  Tuesday, October 28, 1997  4:48 PM
/**** Enable/Disable Power Management Poll on INT 0x16 service ***/

WORD xb_EnDisablePMPoll(int action)    /* enable disable power poll */
 {
   WORD retval;

   inregs.h.ah = XB_DISAB_PM_POLL;
   inregs.h.al = (action ? 0x01 : 0x00);

   int86x(PWR_MGMT_INT, &inregs, &outregs);

   if (outregs.x.cflag)
      retval = outregs.x.ax;
   else
   {
      if (action == 0x80)
        retval = outregs.h.al;
   }

   return retval;
}

2-34



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 35  Tuesday, October 28, 1997  4:48 PM
Set Wakeup Masks
Function: 0x01
Description
Enables an application to specify the wakeup events that can power up the terminal 
after a system time-out or a normal power down. 

Interrupt
0xB1

Input Registers
AH = 0x01

CH = Wakeup mask for resume after system time-out

CL = Wakeup mask for resume after normal power down

The wakeup masks are encoded as:

Bit 7: Reserved - must be 0
Bit 6: Reserved - must be 0
Bit 5: Reserved - must be 0
Bit 4: Reserved - must be 0
Bit 3: RS232 ring
Bit 2: Pen touch
Bit 1: Left trigger
Bit 0: Right trigger

Encode a bit value of 1 for each selected wakeup event and a bit value of 0 for each 
event not selected.

Output Registers
If no error is detected:

     Carry Flag is cleared
     AX = 0x0000

If an error is detected:

Carry flag is set
AX = Error code as follows:
2-35



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 36  Tuesday, October 28, 1997  4:48 PM
0x0001: Incorrect function code passed in register AH
0x0002: Invalid wakeup mask specified

Example
See the Example for Suspend System (0x00) for a code sample that illustrates  the Set 
Wakeup Masks service. 
2-36



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 37  Tuesday, October 28, 1997  4:48 PM
Get Wakeup Cause
Function: 0x02
Description
Returns the cause of the last system wakeup. See Notes.

Interrupt
0xB1

Input Registers
AH = 0x02

Output Registers
AX contains the wakeup cause encoded as follows:

Bit 11: Power fault resume
Bit   9: System boot
Bit   8: System resume
Bit   7: Alarm wakeup
Bit   6: Cradle removal (always enabled)
Bit   5: Cradle insertion (always enabled)
Bit   4: Power switch
Bit   3: RS232 ring
Bit   2: Pen touch
Bit   1: Left trigger
Bit   0: Right trigger

One bit is set from bits 11 through 8, and one or more bits are set from bits 7 through 0. 
All other bits and the Carry Flag are set to 0.

There are no error codes returned from this service.

Notes
Applications that need to monitor Spectrum24 wakeup should use Get Extended 
Wakeup Cause (0x1A).

Example
See the Example for Suspend System (0x00) for a code sample that illustrates the Get 
Wakeup Cause service. 
2-37



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 38  Tuesday, October 28, 1997  4:48 PM
Get Battery Status
Function: 0x03
Description
Returns the current status of the battery. See Notes section below.

The status conditions reported by this service are:

• Low Battery Warning, Level 1
This indicates that the battery is starting to get low, but not in imminent danger of 
failing.

• Low Battery Warning, Level 2
This indicates that the battery is very low and should be replaced or re-charged as 
soon as possible. Failure to replace or re-charge the battery within a short time 
results in a power fault. Five seconds after Low Battery Warning, Level 2, the unit 
is automatically suspended if XSYMBIOS is loaded.

• Power Fault
This indicates that the battery is not capable of sustaining the normal operation of the 
terminal. It causes a non-maskable interrupt, so the power fault status is not 
visible to applications. When it detects a Power Fault condition, the power 
management system shuts down the terminal automatically with no notification. 
When the terminal resumes, the peripheral devices may need to be re-initialized.

Interrupt
0xB1

Input Registers
AH = 0x03

Output Registers
AX contains the status of the battery encoded as follows:

Bit 2 = 1 indicates a low battery warning, level 1.
Bit 1 = 1 indicates a low battery warning, level 2.
Bit 0 = 1 indicates a power fault.

No errors are returned by this service. The Carry Flag is always clear.
2-38



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 39  Tuesday, October 28, 1997  4:48 PM
Notes
This function returns a bit mask. Therefore, more than one bit is set in the case of 
warning level 2.

If the power fault bit is set, the system automatically suspends to prevent data loss. The 
system does not resume until the power fault condition clears.

If the Low Battery Warning, Level 2 bit (Bit 1) is set, the system does not resume until 
Bit 1 clears.

Example
See the Examples provided for Suspend System (0x00) and Get Power Source (0x12) 
for code samples that illustrate the Get Battery Status service. 
2-39



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 40  Tuesday, October 28, 1997  4:48 PM
Device Sleep Disable Control
Function: 0x04
Description
Controls access to the sleep state for a specified device. This service does not apply to 
the CPU (see System Sleep Disable Control, Function 0x05).

This service contains three subfunctions:

• Disable Sleep State

• Enable Sleep State

• Get Current Sleep State Status

Disable Sleep State increments the count. Enable Sleep State decrements the count. Get 
Current Sleep State Status returns the count to the caller.

Sleep state is enabled only when the count is 0, so different tasks can disable sleep state 
on the device for various reasons. The device is allowed to sleep only when all tasks 
that have disabled sleep state re-enable it.

Sleep state is normally entered when one of the following conditions occurs:

• an application program issues INT 0xB1, Function 0x0A

• no I/O activity is detected on an active device for the period specified by the 
sleep timer 

When sleep state is enabled, the inactivity timer is set to the value specified by the 
suspend timer, and the device is suspended if no activity is detected before the suspend 
timer expires.

The Disable Sleep State subfunction prevents sleep state from being selected until all 
disables are removed. If the device is already sleeping or sleep state is selected while 
the state is disabled, the device is forced to the active state with no inactivity timer.

Interrupt
0xB1

Input Registers
AH = 0x04
2-40



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 41  Tuesday, October 28, 1997  4:48 PM
AL = Subfunction code as follows:

0x00: Disable Sleep State
0x01: Enable Sleep State
0x02: Get Sleep State Status

DS:DX = Address of the ASCIIZ string (LCD, COM1, COM2, PCMCIA,
or SCAN) that identifies the device to which the service is being
applied.

Output Registers
If no error is detected:

Carry Flag is cleared
AX = Number of sleep state disables

If an error is detected:

Carry flag is set
AX = Error code as follows:

0x0001: Incorrect function code or subfunction code passed in
              register AH or register AL, respectively
0x0004: Unable to find specified power management device
0x0005: Sleep/Suspend disable count overflow

Notes
This function is one method for disabling sleep state on a device by an application. 
Another method is to change the inactivity timer to -1 (see Get/Set Device Timer 
Value, INT 0xB1, Function 0x13), which disables sleep state for the device globally 
within the system.

In either method, keep sleep state disabled only until the important activity is 
completed. Using this function may be easier for applications, since an enable call 
reverses the effect of disable without requiring the prior value of the inactivity timer to 
be saved and restored. This function allows several applications to cooperate in 
enabling/disabling.

Applications are discouraged from disabling sleep states, except in situations where 
maximum performance is required, since this is likely to increase power consumption 
on more advanced hardware.   
2-41



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 42  Tuesday, October 28, 1997  4:48 PM
Example
See the Example for Suspend System (0x00) for a code sample that illustrates the 
Device Sleep Disable Control service. 
2-42



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 43  Tuesday, October 28, 1997  4:48 PM
System Sleep Disable Control
Function: 0x05
Description
Controls access to the sleep state for the system.

This service contains three subfunctions:

• Disable Sleep State

• Enable Sleep State

• Get Current Sleep State Status

Disable Sleep State increments a count. Enable Sleep State decrements the count. Get 
Current Sleep State Status returns the count to the caller.

Sleep state is enabled only when the count is 0, so different tasks can disable sleep state 
on the CPU for various reasons. The system is allowed to sleep only when all tasks that 
have disabled sleep state re-enable it.

CPU Sleep state is normally entered when one of the following conditions occurs:

• an application program issues INT 0xB1, Function 0x0B

• an application program issues INT 0x2F, Function 0x1680

• certain BIOS calls cause the BIOS to enter a tight loop waiting for an external 
event to occur

• no I/O activity is detected for a period determined by the CPU sleep timer 

When sleep state is enabled, the inactivity timer is set to the value specified by the 
suspend timer, and the system is suspended if no activity is detected before the 
suspend timer expires.

Disable sleep state prevents sleep state from being selected until all disables are 
removed. If the system is already sleeping or sleep state is selected while the state is 
disabled, the device is forced to the active state with no inactivity timer.

Interrupt
0xB1

Input Registers
AH = 0x05
2-43



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 44  Tuesday, October 28, 1997  4:48 PM
AL = Subfunction code as follows:

0x00: Disable Sleep State
0x01: Enable Sleep State
0x02: Get Sleep State Status

Output Registers
If no error is detected:

Carry Flag is cleared
AX = Number of Sleep Disable requests

If an error is detected:

Carry flag is set
AX = Error code as follows:

0x0001: Incorrect function code or subfunction code passed in
              register AH or register AL, respectively
0x0005: Sleep/Suspend disable count overflow

Notes
This function is one method for disabling system sleep state by an application. Another 
method is to change the inactivity timer to -1 (see Get/Set System Timer Value), which 
disables system sleep state globally within the system.

In either method, disable sleep state only until the important activity is completed. 
Using this function may be easier for applications, since an enable call reverses the 
effect of disable without requiring the prior value of the inactivity timer to be saved 
and restored.  This function allows several applications to cooperate in enabling/
disabling.

Currently, system sleep state is implemented by halting the system until an interrupt 
is detected. Applications that process data for excessive periods without any I/O 
activity can use this function to disable sleep state to prevent the inactivity timer from 
selecting the system sleep state. Future releases may use other techniques such as 
slowing the processor clock speed to implement the system sleep state.

Applications should only disable sleep states in situations where maximum 
performance is required, since this is likely to increase power consumption on more 
advanced hardware.
2-44



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 45  Tuesday, October 28, 1997  4:48 PM
Example
The following code sample illustrates the XSYMBIOS power management services 
below:

System Sleep Disable Control (Function 0x05)
System Suspend Disable Control (Function 0x06)
Sleep System (Function 0x0B)
Poll Power Management (Function 0x15)
Reset Inactivity Timers (Function 0x16)

This example is contained in the following file in the PPT 41XX Software Development 
Kit (SDK):

c:\SDK4100\SAMPLES\MANUAL\MANUAL\CHAP2\POWER3.C

where c:\SDK4100 is the default installation directory.
2-45



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 46  Tuesday, October 28, 1997  4:48 PM
/* Include Files *****************************************************/

#include <stdio.h>
#include <dos.h>

/* Defines *******************************************/

#ifndef FALSE
#  define FALSE 0
#endif

#ifndef TRUE
#  define TRUE !FALSE
#endif

#define PWR_MGMT_INT 0xB1 /* power management      */
#define PM_SYS_SLEEP_CTRL 0x05 /* system sleep ctrl     */
#define PM_SYS_SUSP_CTRL 0x07 /* system suspend ctrl   */
#define PM_SLEEP_SYS 0x0B /* sleep system
#define PM_PWR_MGMT_POLL 0x15 /* get/set system timer value
#define PM_RESET_TIMERS 0x16 /* reset inactivity timers

typedef unsigned char BYTE;    /* 8 bit data type         */
typedef unsigned short WORD;   /* 16 bit data type        */
typedef unsigned long DWORD;   /* 32 bit data type        */

typedef enum {STATE_DSBL, STATE_ENBL, STATE_STAT} STATE_CTRL_TYPE;

/* Public Variables **************************************************/

union REGS inregs;                       /* input regs to int86x     */
union REGS outregs;                      /* output regs from int86x  */
struct SREGS segregs;                    /* seg regs to/from int86x  */

/* Local Functions Prototypes ****************************************/

WORD pm_SysSleepCtrl(STATE_CTRL_TYPE sleep_ctrl, /* action flag */
WORD far *dsbl_count); /* disable count */

WORD pm_SysSuspCtrl(STATE_CTRL_TYPE susp_ctrl, /* action flag */
WORD far *dsbl_count); /* disable count */

WORD pm_SleepSys(void);
2-46



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 47  Tuesday, October 28, 1997  4:48 PM
WORD pm_PowerMgmtPoll(void);

void pm_ResetTimers(int lcd_flag);          /* make lcd active flag */

**********************************************************************/

int main (void)
{
   WORD dsbl_count;              /* sleep/suspend disable count */

   pm_SysSleepCtrl(STATE_STAT, &dsbl_count);
   printf("Current system sleep disable count = %i\n", dsbl_count);

   /* Disable CPU sleep state */
   pm_SysSleepCtrl(STATE_DSBL, &dsbl_count);

   /* Perform application-specific operations here */
   /* ...                                          */
   /* ...                                          */

   /* Enable CPU sleep state */
   pm_SysSleepCtrl(STATE_ENBL, &dsbl_count);

   pm_SysSuspCtrl(STATE_STAT, &dsbl_count);
   printf("Current system susp disable count = %i\n", dsbl_count);

   /* Disable CPU suspend state */
   pm_SysSuspCtrl(STATE_DSBL, &dsbl_count);

   /* Perform application-specific operations here */
   /* ...                                          */
   /* ...                                          */

   /* Enable CPU suspend state */
   pm_SysSuspCtrl(STATE_ENBL, &dsbl_count);

   /* In order to conserve power, applications should */
   /* call pm_SleepSys within polling loops if no     */
2-47



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 48  Tuesday, October 28, 1997  4:48 PM
   /* event is detected                               */
   pm_SleepSys();

   /* Applications should periodically call pm_PowerMgmtPoll */
   /* to allow any pending power management operations to    */
   /* take place                                             */
   pm_PowerMgmtPoll();

   /* Although it can be called by applications, pm_ResetTimers    */
   /* is intended to be called by interrupt service routines to    */
   /* prevent the CPU, and optionally the display, from timing out */
   pm_ResetTimers(TRUE);

   return 0;
}

/********** System Sleep Disable Control service *********************/

WORD pm_SysSleepCtrl(STATE_CTRL_TYPE sleep_ctrl, /* action flag */
WORD far *dsbl_count) /* disable count */

{
   WORD retval;

   inregs.h.ah = PM_SYS_SLEEP_CTRL;

   inregs.h.al = sleep_ctrl;

int86x(PWR_MGMT_INT, &inregs, &outregs, &segregs);
   
   if (outregs.x.cflag)
      retval = outregs.x.ax;
   else
   {
      *dsbl_count = outregs.x.ax;
      retval = 0;
   }

   return retval;
}

2-48



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 49  Tuesday, October 28, 1997  4:48 PM
/********** System Suspend Disable Control service ***********/

WORD pm_SysSuspCtrl(STATE_CTRL_TYPE susp_ctrl, /* action flag */
  WORD far*dsbl_count) /* disable count */

{
   WORD retval;

   inregs.h.ah = PM_SYS_SUSP_CTRL;

   inregs.h.al = susp_ctrl;

   int86x(PWR_MGMT_INT, &inregs, &outregs, &segregs);
   
   if (outregs.x.cflag)
      retval = outregs.x.ax;
   else
   {
      *dsbl_count = outregs.x.ax;
      retval = 0;
   }

   return retval;
}

/*************** Sleep System service ********************/

WORD pm_SleepSys(void)
{

   inregs.h.ah = PM_SLEEP_SYS;

int86x(PWR_MGMT_INT, &inregs, &outregs, &segregs);
   
   return outregs.x.ax;
}

/********** Poll Power Management service ****************/
2-49



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 50  Tuesday, October 28, 1997  4:48 PM
WORD pm_PowerMgmtPoll(void)
{
   inregs.h.ah = PM_PWR_MGMT_POLL;

int86x(PWR_MGMT_INT, &inregs, &outregs, &segregs);
   
   return outregs.x.ax;
}

/******* Reset Inactivity Timers service **************************/

void pm_ResetTimers(int lcd_flag)       /* make lcd active flag */
{

   inregs.h.ah = PM_RESET_TIMERS;
   inregs.h.al = (lcd_flag ? 0x01 : 0x00);

int86x(PWR_MGMT_INT, &inregs, &outregs, &segregs);
   
   return;
}

2-50



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 51  Tuesday, October 28, 1997  4:48 PM
Device Suspend Disable Control
Function: 0x06
Description
Controls access to the suspend state for the specified device. This service does not 
apply to the CPU (see System Suspend Disable Control, Function 0x07).

This service contains three subfunctions:   

• Disable Suspend State

• Enable Suspend State

• Get Current Suspend State Status

Disable Suspend State increments a count. Enable Suspend State decrements the count. Get 
Current Suspend State Status returns the count to the caller.

Suspend state is enabled only when the count is 0, so different tasks can disable 
suspend state on a device for various reasons. The device is allowed to suspend only 
when all tasks that have disabled suspend state re-enable it.

Suspend state is normally entered when one of the following conditions occurs:

• an application program issues Interrupt 0xB1, Function 0x0C

• the device continues to sleep for the period specified by the suspend timer 

The Disable Suspend State subfunction prevents suspend state from being selected 
until all disables are removed. If the device is already suspended or if suspend state is 
selected when the state is disabled, the device is forced to the next available higher 
power consumption state with no inactivity timer.

Interrupt
0xB1

Input Registers
AH = 0x06

AL = Subfunction code as follows:

0x00: Disable Suspend State
0x01: Enable Suspend State
0x02: Get Suspend State Status
2-51



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 52  Tuesday, October 28, 1997  4:48 PM
DS:DX = Address of the ASCIIZ string (LCD, COM1, COM2, PCMCIA,
or SCAN) that identifies the device to which the service is being
applied. 

Output Registers
If no error is detected:

Carry Flag is cleared
AX = Number of Suspend Disable requests

If an error is detected:

Carry flag is set
AX = Error code as follows:

0x0001: Incorrect function code or subfunction code passed in
              register AH or register AL, respectively
0x0004: Unable to find specified power management device
0x0005: Sleep/Suspend disable count overflow

Notes
This function is one method for disabling suspend state on a device by an application. 
Another method is to change the inactivity timer to -1 (see Get/Set Device Timer 
Value), which disables sleep state for the device globally within the system.

In either method, disable suspend state only until the important activity is completed. 
Using this function may be easier for applications, since an enable call reverses the 
effect of disable without requiring the prior value of the inactivity timer to be saved 
and restored. This function allows several applications to cooperate in enabling/
disabling.

Using this function to prevent a device from suspending also prevents the system from 
being suspended since suspending the system requires that all devices be suspended 
first. This is acceptable only for short time periods. For this reason, an application that 
simply needs to prevent a device from suspending due to timeout but that does not 
want to prevent the device from suspending as the result of a system suspend should 
either set the suspend timer for the device to -1 (see Get/Set Device Timer Value, INT 
0xB1 Function 0x13) or periodically set the device to the active state (see Activate 
Device, INT 0xB1 Function 0x08) to prevent the timer from timing out.
2-52



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 53  Tuesday, October 28, 1997  4:48 PM
Example
See the Example for Suspend System (0x00) for a code sample that illustrates the 
Device Suspend Disable Control service. 
2-53



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 54  Tuesday, October 28, 1997  4:48 PM
System Suspend Disable Control
Function: 0x07
Description
Controls access to the suspend state for the system.

 This service contains three subfunctions:

• Disable Suspend State

• Enable Suspend State

• Current Suspend State Status

Disable Suspend State increments a count. Enable Suspend State decrements the count. Get 
Current Suspend State Status returns the count to the caller.

Suspend state is enabled only when the count is 0, so different tasks can disable 
suspend state on the system for various reasons. The system is allowed to suspend only 
when all tasks that have disabled suspend state re-enable it.

System Suspend state is normally entered when one of the following conditions occurs:

• an application program issues INT 0xB1, Function 0x00 or Function 0x0D

• no I/O activity is detected for a period determined by the system suspend timer 
while the system is sleeping 

When suspend state is enabled, the inactivity timer is set to the value specified by the 
suspend timer, and the system is suspended if no activity is detected before the 
suspend timer expires.

Disable suspend state prevents suspend state from being selected until all disables are 
removed. If the system suspend state is selected while the state is disabled, then the 
system is forced to the next available higher power consumption state with no activity 
timer.

Interrupt
0xB1

Input Registers
AH = 0x07
2-54



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 55  Tuesday, October 28, 1997  4:48 PM
AL = Subfunction code as follows:

0x00: Disable Suspend State
0x01: Enable Suspend State
0x02 Get Suspend State Status

Output Registers
If no error is detected:

Carry Flag is cleared
AX = Number of Suspend Disable requests

If an error is detected:

Carry flag is set
AX = Error code as follows:

0x0001: Incorrect function code or subfunction code passed in
              register AH or register AL, respectively
0x0005: Sleep/Suspend disable count overflow

Notes
This function is one method for disabling system suspend state by an application. 
Another method is to change the inactivity timer to -1 (see Get/Set System Timer 
Value), which disables system suspend state globally within the system.

In either method, disable suspend state only until the important activity is completed. 
Using this function may be easier for applications, since an enable call reverses the 
effect of disable without requiring the prior value of the inactivity timer to be saved 
and restored. This function allows several applications to cooperate in enabling/
disabling.

Disable suspend state for the system only for short periods of time as it is a drastic 
measure which prevents the system from powering down until a power fault is 
detected. 

If the terminal is powered by battery and a power fault condition is detected, the 
system suspends with no notification, even if suspends are disabled. In this condition, 
failing to suspend would result in unacceptable loss of data. 
2-55



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 56  Tuesday, October 28, 1997  4:48 PM
To prevent timeout rather than to prevent suspend, use Get/Set System Timer Value 
(INT 0xB1 Function 0x14) to set the system suspend timer to -1 or, periodically, to force 
the system to active state by using Activate System (INT 0xB1, Function 0x09) to 
prevent the timer from expiring. Refer to Rule 2 in Rules for Using the Power Management 
Subsystem.

Example
See the Example for System Sleep Disable Control (0x05) for a code sample that 
illustrates the System Suspend Disable Control service. 
2-56



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 57  Tuesday, October 28, 1997  4:48 PM
Activate Device
Function: 0x08
Description
Sets a device other than the CPU to the active state.

This function places the device in the highest power consumption state, making it 
available for use, and starts the inactivity timer at the full value specified by the sleep 
timer for the selected device (unless sleep state is disabled).

Interrupt
0xB1

Input Registers
AH = 0x08

DS:DX = Address of the ASCIIZ string (LCD, COM1, COM2, PCMCIA,
or SCAN) that identifies the device to which the service is being
applied.

Output Registers
If no error is detected:

Carry Flag is cleared
AX = 0x0000

If an error is detected:

Carry flag is set
AX = Error code as follows:

0x0001: Incorrect function code passed in register AH 
0x0004: Unable to find the specified power management device

Notes
This function is called automatically to make LCD active whenever a trigger or a 
keystroke is detected. All other devices can be switched into the active state only by 
explicit calls to this function from an application. Making the LCD active switches on 
the backlight unless the backlight has been disabled. For description of the Get/Set 
Backlight Brightness service, refer to XSYMBIOS General System Services (INT 0x32) 
(List) in Chapter 1.
2-57



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 58  Tuesday, October 28, 1997  4:48 PM
Call this function only from the foreground (e.g., not from an interrupt handler), since 
it is not re-entrant.

Example
The following code sample illustrates the XSYMBIOS power management services 
below:

Activate Device (Function 0x08)
Sleep Device (Function 0x0A)
Suspend Device (Function 0x0C)
Suspend System (Function 0x0D)
Register for Device Suspend Notification (Function 0x0E)
Register for Device Resume Notification (Function 0x10)
Get/Set Device Timer Value (Function 0x13)
Get/Set System Timer Value (Function 0x14)

This example is contained in the following file in the PPT 41XX Software Development 
Kit (SDK):

c:\SDK4100\SAMPLES\MANUAL\CHAP2\POWER2.C

where c:\SDK4100 is the default installation directory.
2-58



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 59  Tuesday, October 28, 1997  4:48 PM
/* Include Files *****************************************************/

#include <stdio.h>
#include <dos.h>

/* Defines ********************************************/

#ifndef FALSE
#  define FALSE 0
#endif

#ifndef TRUE
#  define TRUE !FALSE
#endif

#define PWR_MGMT_INT 0xB1 /* power management    */
#define PM_SET_DEV_ACTIVE 0x08 /* set device active   */
#define PM_SLEEP_DEV 0x0A /* sleep device        */
#define PM_SUSP_DEV 0x0C /* suspend device      */
#define PM_SUSP_SYS 0x0D /* suspend system      */
#define PM_DEV_SUSP_NOTIF 0x0E /* device suspend notification */
#define PM_DEV_RES_NOTIF 0x10 /* device resume notification */
#define PM_DEV_TIMER_VAL 0x13 /* get/set device timer value */
#define PM_SYS_TIMER_VAL 0x14 /* get/set system timer value */

typedef unsigned char BYTE; /* 8 bit data type         */
typedef unsigned short WORD; /* 16 bit data type        */
typedef unsigned long DWORD; /* 32 bit data type        */

typedef enum {ALARM_NONE, ALARM_SECS, ALARM_DATE} ALARM_TYPE;
typedef enum {GET_SLEEP, GET_SUSPEND, SET_SLEEP, SET_SUSPEND}

  GETSET_ACTION_TYPE;

typedef struct
{
   BYTE month;
   BYTE day;
   BYTE hour;
   BYTE minute;
} DATE_TIME_TYPE;
2-59



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 60  Tuesday, October 28, 1997  4:48 PM
typedef struct
{
   unsigned char data[8];
} STORAGE_TYPE;

/* Public Variables *********************************/

union REGS inregs;                       /* input regs to int86x     */
union REGS outregs;                      /* output regs from int86x  */
struct SREGS segregs;                    /* seg regs to/from int86x  */

BYTE suspended = FALSE;
BYTE resumed = FALSE;

/* Local Functions Prototypes ****************************************/

WORD pm_SetDevActive(char far *device); /* device name */
WORD pm_SleepDev(char far *device);     /* device name */
WORD pm_SuspDev(char far *device);     /* device name */

WORD pm_SuspSys(ALARM_TYPE alarm, /* alarm wakeup type */
WORD seconds,    /* seconds to wakeup */
DATE_TIME_TYPE far *date_time);/* date/time to wakeup */

WORD pm_DevSuspNotif(int action, /* action flag   */
char far *device, /* device name   */
STORAGE_TYPE far *storage, /* storage area  */
void (interrupt far *routine)()); /* notif routine */

WORD pm_DevResumeNotif(int action,       /* action flag   */
                      char far *device,      /* device name   */
                      STORAGE_TYPE far *storage,  /* storage area  */
                      void (interrupt far *routine)());  /* notif routine */

WORD pm_GetSetDevTimerVal(GETSET_ACTION_TYPE action, /* action flag */
 char far *device,  /* device name */

WORD far *value); /* value to set/get */

WORD pm_GetSetSysTimerVal(GETSET_ACTION_TYPE action, /* action flag */
WORD far *value); /* value to set/get */

void interrupt far susp_routine();

void interrupt far res_routine();
2-60



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 61  Tuesday, October 28, 1997  4:48 PM
/*********************************************************************/
int main (void)
{
   static STORAGE_TYPE susp_storage;
   static STORAGE_TYPE res_storage;
   WORD time_value;

   /* Set the device active to see the full sleep timer count */
   pm_SetDevActive("PCMCIA2");

   /* Report sleep timer value */
   pm_GetSetDevTimerVal(GET_SLEEP, "PCMCIA2", &time_value);
   printf("PCMCIA2 sleep time = %i\n", time_value);

   /* Set the device to sleep to see the full suspend timer count */
   pm_SleepDev("PCMCIA2");

   /* Report suspend timer value */
   pm_GetSetDevTimerVal(GET_SUSPEND, "PCMCIA2", &time_value);
   printf("PCMCIA2 suspend time = %i\n", time_value);

   /* Start the device out active before testing notification */
   pm_SetDevActive("PCMCIA2");

   /* Setup for PCMCIA2 device suspend and resume notification */
   memset(susp_storage, 0, sizeof(susp_storage));
   pm_DevSuspNotif(TRUE, "PCMCIA2", &susp_storage, susp_routine);
   memset(res_storage, 0, sizeof(res_storage));
   pm_DevResumeNotif(TRUE, "PCMCIA2", &res_storage, res_routine);

   /* Suspend and resume device to test notification */
   pm_SuspDev("PCMCIA2");
   pm_SetDevActive("PCMCIA2");

   /* Report notification results */
   if (suspended)
      printf("Suspend notification occurred\n");
   else
      printf("No suspend notification occurred\n");
2-61



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 62  Tuesday, October 28, 1997  4:48 PM
   if (resumed)
      printf("Resume notification occurred\n");
   else
      printf("No resume notification occurred\n");

   /* Report system suspend timer value */
   pm_GetSetSysTimerVal(GET_SUSPEND, &time_value);
   printf("System suspend time = %i\n", time_value);

   /* Set CPU sleep count to -1 before long interrupt-less loop */
   /* to prevent CPU from halting during loop                   */
   time_value = -1;
   pm_GetSetSysTimerVal(SET_SLEEP, &time_value);
   /* Perform application-specific long loop here */

   /* Be sure to remove notification before exiting application */
   pm_DevSuspNotif(FALSE, "PCMCIA2", &susp_storage, susp_routine);
   pm_DevResumeNotif(FALSE, "PCMCIA2", &res_storage, res_routine);

   /* Power down with no wakeup alarm */
   printf("Unit will power down with no alarm\n");
   printf("Press enter to continue\n");
   getchar();
   pm_SuspSys(ALARM_NONE, 0, NULL);
   return 0;
}

void interrupt far susp_routine()
{
   suspended = TRUE;
}

void interrupt far res_routine()
{
   resumed = TRUE;
}

2-62



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 63  Tuesday, October 28, 1997  4:48 PM
/*********** Activate Device service **************************/

WORD pm_SetDevActive(char far *device)      /* device name */
{

   inregs.h.ah = PM_SET_DEV_ACTIVE;

   segregs.ds = FP_SEG(device);
   inregs.x.dx = FP_OFF(device);

int86x(PWR_MGMT_INT, &inregs, &outregs, &segregs);
   
   return outregs.x.ax;
}

/*********** Sleep Device service ***************************/

WORD pm_SleepDev(char far *device)          /* device name */
{

   inregs.h.ah = PM_SLEEP_DEV;

   segregs.ds = FP_SEG(device);
   inregs.x.dx = FP_OFF(device);

int86x(PWR_MGMT_INT, &inregs, &outregs, &segregs);
   
   return outregs.x.ax;
}

/*************** Suspend Device Service *******************/

WORD pm_SuspDev(char far *device)          /* device name */
{

   inregs.h.ah = PM_SUSP_DEV;

   segregs.ds = FP_SEG(device);
   inregs.x.dx = FP_OFF(device);

int86x(PWR_MGMT_INT, &inregs, &outregs, &segregs);
   
2-63



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 64  Tuesday, October 28, 1997  4:48 PM
   return outregs.x.ax;
}

/**************** Suspend System service *********************/

WORD pm_SuspSys(ALARM_TYPE alarm, /* alarm wakeup type */
WORD seconds, /* seconds to wakeup */
DATE_TIME_TYPE far *date_time) /* date/time to wakeup */

{
   inregs.h.ah = PM_SUSP_SYS;
   inregs.h.al = alarm;

   switch (alarm)
   {
      case ALARM_SECS:
         inregs.x.cx = seconds;
         break;

      case ALARM_DATE:
         inregs.h.dh = date_time->month;
         inregs.h.dl = date_time->day;
         inregs.h.ch = date_time->hour;
         inregs.h.cl = date_time->minute;
         break;
   }
   

int86x(PWR_MGMT_INT, &inregs, &outregs, &segregs);
   
   return outregs.x.ax;
}

/******* Register for Device Suspend Notification service ******/

WORD pm_DevSuspNotif(int action, /* action flag   */
char far *device, /* device name*/
STORAGE_TYPE far *storage, /* storage area  */
void (interrupt far *routine)()) /* notif routine */

{
   inregs.h.ah = PM_DEV_SUSP_NOTIF;
   inregs.h.al = (action ? 0x01 : 0x00);

   segregs.ds = FP_SEG(device);
2-64



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 65  Tuesday, October 28, 1997  4:48 PM
   inregs.x.dx = FP_OFF(device);

   inregs.x.di = FP_OFF(storage);

   segregs.es = FP_SEG(routine);
   inregs.x.bx = FP_OFF(routine);

int86x(PWR_MGMT_INT, &inregs, &outregs, &segregs);
   
   return outregs.x.ax;
}

/******* Register for Device Resume Notification service ******/

WORD pm_DevResumeNotif(int action, /* action flag   */
 char far *device, /* device name   */
 STORAGE_TYPE far *storage, /* storage area  */
 void (interrupt far *routine)()) /* notif routine */
{
   inregs.h.ah = PM_DEV_RES_NOTIF;
   inregs.h.al = (action ? 0x01 : 0x00);

   segregs.ds = FP_SEG(device);
   inregs.x.dx = FP_OFF(device);

   inregs.x.di = FP_OFF(storage);

   segregs.es = FP_SEG(routine);
   inregs.x.bx = FP_OFF(routine);

int86x(PWR_MGMT_INT, &inregs, &outregs, &segregs);
   
   return outregs.x.ax;
}

2-65



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 66  Tuesday, October 28, 1997  4:48 PM
/******* Get/Set Device Timer Value service ****************/

WORD pm_GetSetDevTimerVal(GETSET_ACTION_TYPE action,/* action flag */
char far *device, /* device name */
WORD far *value) /* value to set/get */

{
   WORD  retval;

   inregs.h.ah = PM_DEV_TIMER_VAL;
   inregs.h.al = action;

   inregs.x.cx = *value;
   segregs.ds = FP_SEG(device);
   inregs.x.dx = FP_OFF(device);

int86x(PWR_MGMT_INT, &inregs, &outregs, &segregs);
   
   if (outregs.x.cflag)
      retval = outregs.x.ax;
   else
   {
      *value = outregs.x.ax;
      retval = 0;
   }

   return retval;
}

/******* Get/Set System Timer Value service ****************/

WORD pm_GetSetSysTimerVal(GETSET_ACTION_TYPE action,  /* action flag */
WORD far *value) /* value to set/get */

{
   WORD  retval;

   inregs.h.ah = PM_SYS_TIMER_VAL;
   inregs.h.al = action;

   inregs.x.cx = *value;

   int86x(PWR_MGMT_INT, &inregs, &outregs, &segregs);
2-66



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 67  Tuesday, October 28, 1997  4:48 PM
   
   if (outregs.x.cflag)
      retval = outregs.x.ax;
   else
   {
      *value = outregs.x.ax;
      retval = 0;
   }

   return retval;
}

2-67



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 68  Tuesday, October 28, 1997  4:48 PM
Activate System
Function: 0x09
Description
Sets the system to the active state.

If CPU sleep state changes the CPU clock speed, it sets the clock speed to the high value 
and starts the inactivity timer at the full value specified by the sleep timer for the CPU 
(unless sleep state is disabled).

Interrupt
0xB1

Input Registers
AH = 0x09

Output Registers
Carry Flag is cleared
AX = 0x0000

Notes
Applications may periodically call this service to reset the inactivity timer if required. 
Refer to Rule 2 in the Rules for Using the Power Management Subsystem section of this 
chapter.

This function must only be called from the foreground (e.g., not from an interrupt 
handler), since it is not re-entrant.

Example
See the Example for Suspend System (0x00) for a code sample that illustrates the 
Activate System service. 
2-68



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 69  Tuesday, October 28, 1997  4:48 PM
Sleep Device
Function: 0x0A
Description
Places the specified device into the sleep state and processes the inactivity timer for 
that device. This service does not apply to the CPU (see Sleep System, Function 0x0B).

If sleep state is not available (either the device does not support it or it is disabled), this 
service makes the device active.

The inactivity timer for the specified device is processed as follows:

•  If sleep state is disabled (i.e., the device is made active), the
 inactivity timer is disabled.

•  If suspend state is disabled, the inactivity timer is disabled.

•  If sleep state is newly selected, the inactivity timer is set to the
 full value of the suspend timer for the device. The device is 
 suspended if no activity is detected on the device before the 
 timer expires.

•  If sleep state was previously selected, the inactivity timer is
 allowed to count down from its previous value.

Interrupt
0xB1

Input Registers
AH = 0x0A

DS:DX = Address of the ASCIIZ string (LCD, COM1, COM2, PCMCIA,
or SCAN) that identifies the device to which the service is being
applied. 

Output Registers
If no error is detected:

     Carry Flag is cleared
     AX = 0x0000
2-69



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 70  Tuesday, October 28, 1997  4:48 PM
If an error is detected:

Carry flag is set
AX = Error code as follows:

0x0001: Incorrect function code passed in register AH 
0x0004: Unable to find the specified power management device

Notes
This function is called automatically if the inactivity timer for an active device expires.

The function does not return an error code if sleep state is not available or has been 
disabled, since these are not true error conditions. In each case, the function makes the 
device active. 

Example
See the Example for Activate Device (0x08) for a code sample that illustrates the Sleep 
Device service. 
2-70



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 71  Tuesday, October 28, 1997  4:48 PM
Sleep System
Function: 0x0B
Description
Places the system into sleep state and processes the system inactivity timer.

If sleep state is disabled, then this function makes the system active.

The inactivity timer for the system is processed as follows:

• If sleep state for the system is disabled (the system is made active),
the inactivity timer is disabled.

• If suspend state for any device (including the system) is disabled,
the inactivity timer is disabled.

• If sleep state is newly selected, the inactivity timer is set to the
full value of the system suspend timer. (The system is suspended
if no I/O activity is detected before the timer expires.)

• If sleep state was previously selected, the inactivity timer is
allowed to count down from its previous value.

Interrupt
0xB1

Input Registers
AH = 0x0B

Output Registers
This service always returns AX = 0x0000 with the Carry Flag clear.

Notes
Calling the function sets the CPU into sleep state (if available), but the CPU 
automatically comes out of sleep state whenever any interrupt occurs.

This function is called automatically by XSYMBIOS at various points where 
XSYMBIOS goes into a tight loop waiting for an external event to occur.

Applications using a polling loop to wait for activity can make a significant 
contribution to power management by calling this function.
2-71



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 72  Tuesday, October 28, 1997  4:48 PM
At the top of the loop, the application should clear a flag indicating that no activity has 
been detected. The polling loop should then be executed.

Any active processes detected in the loop should set the flag to indicate that an active 
process was found and set the CPU to the active state (Interrupt 0xB1, Function 0x09). 
This allows the process to be executed at full speed if the processor clock is slowed in 
sleep state.

At the bottom of the loop, the activity flag should be checked. If the flag is zero (i.e., no 
activity detected), the application should call the function to force the CPU into sleep 
state and then return to the top of the loop.

If the flag is set at the bottom of the loop, the application should return to the top of the 
loop immediately to check for multiple events without putting the CPU into sleep 
state.

Example
See the Example for System Sleep Disable Control (0x05) for a code sample that 
illustrates the Sleep System service. 
2-72



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 73  Tuesday, October 28, 1997  4:48 PM
Suspend Device
Function: 0x0C
Description
Suspends (switches off) the specified device and notifies any registered users that the 
device is about to be suspended. This service does not apply to the CPU (for which see 
Function 0x0D, described below).

If suspend state for the device is disabled, this function selects the lowest available 
power consumption state for the device (sleep or active).

Interrupt
0xB1

Input Registers
AH = 0x0C

DS:DX = Address of the ASCIIZ string (LCD, COM1, COM2, PCMCIA,
or SCAN) that identifies the device to which the service is being
applied. 

Output Registers
If no error is detected:

Carry Flag is cleared
AX = 0x0000

If an error is detected:

Carry flag is set
AX = Error code as follows:

0x0001: Incorrect function code passed in register AH 
0x0004: Unable to find the specified power management device

Notes
Registered users are notified only if the device is switched from active or sleep state 
into suspend state. No error is returned if the device cannot be suspended because 
suspend state has been disabled.        
2-73



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 74  Tuesday, October 28, 1997  4:48 PM
Example
See the Example for Activate Device (0x08) for a code sample that illustrates  the 
Suspend Device service. 
2-74



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 75  Tuesday, October 28, 1997  4:48 PM
Suspend System
Function: 0x0D
Description
Powers off the terminal.

If the terminal cannot be powered down for any reason, the routine immediately 
returns an error reply (see the error codes under Output Registers). Otherwise, all 
devices managed by the power management system power down (CPU last). If the 
system resumes a valid reply returns to the power down caller.

Interrupt
0xB1

Input Registers
AH = 0x0D

AL = subfunction code, as follows:

     0x00: Power down with no alarm wakeup
     0x01: Power down with alarm wakeup specified in seconds
     0x02: Power down with alarm wakeup specified as date/time

If AL = 0x01:

     CX = number of seconds to alarm (1 - 3600)

If AL = 0x02:

     DH = Month (1 - 12)
     DL = Day (1 - 31)
     CH = Hour (0 - 23)
     CL = Minute (0 - 59) 

Output Registers
If no error is detected:

Carry Flag is cleared
AX = 0x0000
2-75



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 76  Tuesday, October 28, 1997  4:48 PM
If an error is detected:

Carry flag is set
AX = Error code as follows:

0x0001: Incorrect function code or subfunction code passed in 
              register AH or AL, respectively
0x0002: The requested function is disallowed
0x000A: The battery level is too low to allow the terminal to resume

Notes
The functionality of this service is identical to that of Function 0x00, described above.

If the return code is 0x0002, then Function 0x07 (System Suspend State Control) or 
Function 0x06 (Device Suspend State Control) has been used to disallow suspend 
state on the CPU or on some other device.

Example
See the Example for Activate Device (0x08) for a code sample that illustrates the 
Suspend System service. 
2-76



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 77  Tuesday, October 28, 1997  4:48 PM
Register for Device Suspend Notification
Function: 0x0E
Description
Registers or de-registers with the power management subsystem for notification when 
the specified device is about to be suspended. This service does not apply to the CPU 
(for which see Function 0x0F, described below).

Interrupt
0xB1

Input Registers
AH = 0x0E

AL = subfunction code as follows:

0x00 specifies de-register
0x01 specifies register

DS:DX = Address of the ASCIIZ string (LCD, COM1, COM2, PCMCIA,
or SCAN) that identifies the device to which the service is being
applied

DS:DI = Pointer to an 8-byte storage area (See Notes below)

ES:BX = Pointer to the function to be called by Subfunction 0x01 prior to
               suspending the specified device

Output Registers
If no error is detected:

Carry Flag is cleared
AX = 0x0000

If an error is detected:

Carry flag is set
AX = Error code as follows:

0x0001: Incorrect function code or subfunction code passed in 
             register AH or AL, respectively
0x0004: Unable to find the specified power management device
2-77



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 78  Tuesday, October 28, 1997  4:48 PM
0x0006: Invalid storage area specified
0x0007: User already registered for notification
0x0008: User not registered for notification

Notes
The storage area pointed to by DS:DI must be static and set to 0 before registering with 
this function.

After registering, the caller must not modify the storage area prior to de-registering.

When de-registering, the same storage area that was used to register must be supplied 
to the function.

Any registrations from an application must be de-registered prior to deleting the 
application.

If these rules are not followed, the system will probably crash if the device resumes.

Return codes 0x0006, 0x0007, and 0x00008 indicate that the storage area pointed to by 
DS:DI is invalid. If the storage area is corrupted, incorrect error codes return.

There is no limit to the number of users that may register for notification on any device.

Once registered for notification, the specified routine is called prior to suspending the 
device with AX containing a code indicating the reason for the suspension as follows:
2-78



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 79  Tuesday, October 28, 1997  4:48 PM
Code Explanation

0x0001 Device timed out.

0x0004 Device shut down by program command.

The notification routine should terminate with an IRET instruction after restoring all 
registers to the values supplied when the routine was called.

The notification routine should not make any assumptions about the amount of space 
available on the stack.

Example
See the Example for Activate Device (0x08) for a code sample that illustrates the 
Register for Device Suspend Notification service. 
2-79



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 80  Tuesday, October 28, 1997  4:48 PM
Register for System Suspend Notification
Function: 0x0F
Description
Registers or de-registers with the power management subsystem for notification when 
the system is about to be suspended.

Interrupt
0xB1

Input Registers
AH = 0x0F

AL = subfunction code as follows:

0x00 specifies de-register
0x01 specifies register

DS:DI = Pointer to an 8-byte storage area (See Notes below)
ES:BX = Pointer to the function to be called prior to suspending
               the system (Subfunction 0x01 only)

Output Registers
If no error is detected:

Carry Flag is cleared
AX = 0x0000

If an error is detected:

Carry flag is set
AX = Error code as follows:

0x0001: Incorrect function code or subfunction code passed in 
              register AH or AL, respectively
0x0006: Invalid storage area specified
0x0007: User already registered for notification
0x0008: User not registered for notification
2-80



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 81  Tuesday, October 28, 1997  4:48 PM
Notes
The storage area pointed to by DS:DI must be static and set to 0 before registering with 
this function.

After registering, the caller must not modify the storage area prior to de-registering.

When de-registering, the same storage area that was used to register must be supplied 
to the function.

Any registrations from an application must be de-registered prior to deleting the 
application.

If these rules are not followed, the system will probably crash if the device resumes.

Return codes 0x0006, 0x0007, and 0x0008 indicate that the storage area pointed to by 
DS:DI is invalid. If the storage area is corrupted,  incorrect error codes are returned.

There is no limit to the number of users that may register for notification.

Once registered for notification, the specified routine is called prior to suspending the 
device with AX containing a code indicating the reason for the suspension as follows:

Code Explanation

0x0002 System timed out.

0x0004 System shut down by program command.

Any necessary device suspend notifications are processed by the system suspend 
notification.

The notification routine should terminate with an IRET instruction after restoring all 
registers to the values supplied when the routine was called.

The notification routine should not make any assumptions about the amount of space 
available on the stack.

Example
See the Example for Suspend System (0x00) for a code sample that illustrates the 
Register for System Suspend Notification service. 
2-81



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 82  Tuesday, October 28, 1997  4:48 PM
Register for Device Resume Notification
Function: 0x10
Description
Registers or de-registers with the power management subsystem for notification when 
a power management device has resumed (i.e., been switched out of suspend state). 
This service does not apply to the CPU (see Register for System Resume Notification, 
Function 0x11).

Interrupt
0xB1

Input Registers
AH = 0x10

AL = subfunction code as follows:

0x00 specifies de-register
0x01 specifies register

DS:DX = Address of the ASCIIZ string (LCD, COM1, COM2, PCMCIA,
or SCAN) that identifies the device to which the service is being
applied

DS:DI = Pointer to an 8-byte storage area (See Notes below)

ES:BX = Pointer to the function to be called by Subfunction 0x01 after
               resuming (i.e., being switched out of suspend state)

Output Registers
If no error is detected:

Carry Flag is cleared
AX = 0x0000

If an error is detected:

Carry flag is set
AX = Error code as follows:

0x0001: Incorrect function code or subfunction code passed in 
              register AH or AL, respectively
2-82



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 83  Tuesday, October 28, 1997  4:48 PM
0x0004: Unable to find the specified power management device
0x0006: Invalid storage area specified
0x0007: User already registered for notification
0x0008: User not registered for notification

Notes
The storage area pointed to by DS:DI must be static and set to 0 before registering with 
this function.

After registering, the caller must not modify the storage area prior to de-registering.

When de-registering, the same storage area that was used to register must be supplied 
to the function.

Any registrations from an application must be de-registered prior to deleting the 
application.

If these rules are not followed, the system will probably crash if the device resumes.

Return codes 0x0006, 0x0007, and 0x0008 indicate that the storage area pointed to by 
DS:DI is invalid. If the storage area is corrupted, incorrect error codes are returned.

There is no limit to the number of users that may register for notification on any device.

Once registered for notification, the specified routine is called after the device is 
switched out of suspend state with AX containing a code indicating the reason for the 
resumption as follows:
2-83



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 84  Tuesday, October 28, 1997  4:48 PM
Code Reason for Resumption

0x0100 Device powered up by system resume.

0x0400 Device powered up by program.

0x0800 System resumed after power fault.

The notification routine should terminate with an IRET instruction after restoring all 
registers to the values supplied when the routine was called.

The notification routine should not make any assumptions about the amount of space 
available on the stack.

Example
See the Example for Activate Device (0x08) for a code sample that illustrates the 
Register for Device Resume Notification service. 
2-84



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 85  Tuesday, October 28, 1997  4:48 PM
Register for System Resume Notification
Function: 0x11
Description
Registers or de-registers with the power management subsystem for notification when 
the system is resumed.

Interrupt
0xB1

Input Registers
AH = 0x11

AL = subfunction code as follows:

0x00 specifies de-register
0x01 specifies register

DS:DI = Pointer to an 8-byte storage area (See Notes below)

ES:BX = Pointer to the function to be called prior to resuming
               the system (Subfunction 0x01 only)

Output Registers
If no error is detected:

Carry Flag is cleared
AX = 0x0000

If an error is detected:

Carry flag is set
AX = Error code as follows:

0x0001: Incorrect function code or subfunction code passed in 
              register AH or AL, respectively
0x0006: Invalid storage area specified
0x0007: User already registered for notification
0x0008: User not registered for notification
2-85



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 86  Tuesday, October 28, 1997  4:48 PM
Notes
The storage area pointed to by DS:DI must be static and set to 0 before registering with 
this function.

After registering, the caller must not modify the storage area prior to de-registering.

When de-registering, the same storage area that was used to register must be supplied 
to the function.

Any registrations from an application must be de-registered prior to deleting the 
application.

If these rules are not followed, the system will probably crash if the device resumes.

Return codes 0x0006, 0x0007, and 0x0008 indicate that the storage area pointed to by 
DS:DI is invalid. If the storage area is corrupted,  incorrect error codes is returned.

There is no limit to the number of users that may register for notification.

Once registered for notification, the specified routine is called whenever the system 
resumes with AH containing a resume code and AL containing a wakeup code as 
indicated in the following:

Resume Code Reason for Resumption

0x01 System resumed after shutdown.
0x08 System resumed after power fault.

Wakeup Code Cause of Wakeup

0x00 Right Trigger
0x02 Left Trigger
0x04 Pen Touch
0x08 RS232 ring
0x10 Power switch
0x20 Cradle Insertion
0x40 Cradle Removal
0x80 Resumed on alarm

Note: This function does not support Spectrum24 wakeup.

If the wakeup code is 0x00, the application should call 
the Get Extended PPT 4100 Wakeup Cause service 
2-86



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 87  Tuesday, October 28, 1997  4:48 PM
(INT 0xB1, Function 0x1A) to determine the true 
wakeup cause.

System resume notifications are processed before any device resume notifications.

The notification routine should terminate with an IRET instruction after restoring all 
registers to the values supplied when the routine was called.

The notification routine should not make any assumptions about the amount of space 
available on the stack.

Example
See the Example for Suspend System (0x00) for a code sample that illustrates the 
Register for System Resume Notification service. 
2-87



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 88  Tuesday, October 28, 1997  4:48 PM
Get Power Source
Function: 0x12
Description
Returns an indicator of the current power source being used by the terminal. 

Interrupt
0xB1

Input Registers
AH = 0x12

Output Registers
AX = Indicator of current power source as follows:

0x0000: Battery
0x0001: Cradle
0x0002: Charger

Example
The following code sample illustrates the XSYMBIOS power management services 
below:

Get Power Source (Function 0x12)
Get Battery Status (Function 0x03)

This example is contained in the following file in the PPT 41XX Software Development 
Kit (SDK):

c:\SDK4100\SAMPLES\MANUAL\CHAP2\POWERSRC.C

where c:\SDK4100 is the default installation directory.
2-88



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 89  Tuesday, October 28, 1997  4:48 PM
/* Include Files *****************************************************/

#include <dos.h>
#include <stdio.h>

/* Defines **********************************************************/

enum {BATTERY, CRADLE, CHARGER};

/*  Define the Services by Interrupt Vector number                  */

#define XB_POWER_INT   0xB1

/*  Define the Functions                                            */

#define XB_GET_BATTERY_STATUS 0x03
#define XB_GET_POWER_SOURCE   0x12

/* Public Variables *************************************************/

union REGS inregs; /* input regs to int86          */
union REGS outregs; /* output regs from int86       */

/*************Get Power Source service ******************************/ 

void xb_GetPowerSource(unsigned char _far *source)
{
 inregs.h.ah = XB_GET_POWER_SOURCE;
 int86(XB_POWER_INT, &inregs, &outregs);
 *source = outregs.h.al;
}

/*************Get Battery Status service *****************************/

void xb_GetBatteryStatus(unsigned char _far *level)
{

inregs.h.ah = XB_GET_BATTERY_STATUS;
 int86(XB_POWER_INT, &inregs, &outregs);
 *level = outregs.h.al;
}

2-89



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 90  Tuesday, October 28, 1997  4:48 PM
/*********************************************************************/

void main()
{

/* Local Variables ***************************************************/
 char source; / * Power source */

xb_GetPowerSource( (char _far *) &source );

  switch (source)
{

case BATTERY:
fprintf(stdout,"Power source is battery");
break;

case CRADLE:
fprintf(stdout,"Power source is cradle");
break;

case CHARGER:
fprintf(stdout,"Power source is charger");
break;

default:
fprintf(stdout,"Power source is unknown");
break;

}
}

Note: For an additional illustration of the use of the Get Power 
Source service, refer to the Example provided in the 
description of the Suspend System (0x00) service earlier 
in this section. 
2-90



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 91  Tuesday, October 28, 1997  4:48 PM
Get/Set Device Timer Value
Function: 0x13
Description
Allows the calling application to examine or to set the sleep and suspend inactivity 
timers for a specified device. This service does not apply to the CPU (for which see 
Function 0x14, described below).

Timer values are specified in seconds. Values of -1 and zero through 3600 are valid. A 
value of -1 indicates that a timer never expires; a value of 0 indicates a timer that 
expires immediately. Any value greater than 3600 (i.e., one hour) returns an error code 
of 0x0009 (timer out of range).

Interrupt
0xB1

Input Registers
AH = 0x13

AL = the appropriate subfunction code from the following:

0x00 specifies Get Sleep Inactivity Timer
0x01 specifies Get Suspend Inactivity Timer
0x02 specifies Set Sleep Inactivity Timer
0x03 specifies Set Suspend Inactivity Timer

CX = Required timer values for subfunction 0x02 or 0x03

DS:DX = Address of the ASCIIZ string (LCD, COM1, COM2, PCMCIA,
or SCAN) that identifies the device to which the service is being
applied.

Output Registers
If no error is detected:

Carry Flag is cleared
AX = Current value of the specified timer

If an error is detected:

Carry flag is set
AX = Error code as follows:
2-91



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 92  Tuesday, October 28, 1997  4:48 PM
0x0001: Incorrect function code or subfunction code passed in 
             register AH or AL, respectively
0x0004: Unable to find specified power management device
0x0009: The value specified for the timer is out-of-range

Example
See the Example for Activate Device (0x08) for a code sample that illustrates the Get/
Set Device Timer Value service. 
2-92



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 93  Tuesday, October 28, 1997  4:48 PM
Get/Set System Timer Value
Function: 0x14
Description
Allows the calling application to examine or to set the sleep and suspend inactivity 
timers for the system.

Timer values are specified in seconds. Values of -1 and zero through 3600 are valid. A 
value of -1 indicates a timer that never expired; a value of 0 indicates a timer that 
expires immediately. Any value greater than 3600 (i.e., one hour) returns an error code 
of 0x0009 (Timer out of range).

Interrupt
0xB1

Input Registers
AH = 0x14

AL = the appropriate subfunction code from the following:

0x00 specifies Get Sleep Inactivity Timer
0x01 specifies Get Suspend Inactivity Timer
0x02 specifies Set Sleep Inactivity Timer
0x03 specifies Set Suspend Inactivity Timer

CX = Required timer values for subfunction 0x02 or 0x03

Output Registers
If no error is detected:

Carry Flag is cleared
AX =Current value of the specified timer

If an error is detected:

Carry flag is set
AX = Error code as follows:

0x0001: Incorrect function code or subfunction code passed in 
              register AH or AL, respectively
0x0009: The value specified for the timer is out-of-range
2-93



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 94  Tuesday, October 28, 1997  4:48 PM
Example
See the Example for Activate Device (0x08) for a code sample that illustrates the Get/
Set System Timer Value service. 
2-94



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 95  Tuesday, October 28, 1997  4:48 PM
Poll Power Management
Function: 0x15
Description
Sets all devices to the required state and performs notifications of power management 
events.

Note: This function can also be invoked more simply by 
calling the MS-DOS Idle API (INT 0x28). 

Interrupt
0xB1

Input Registers
AH = 0x15

Output Registers
If no error is detected:

     Carry Flag is cleared
     AX = 0x0000

This service returns no errors. AX and the Carry Flag are always clear.

Notes
The timers used to control the power management sub-system use the standard PC 
timer tick (INT 0x08). If any timer expires, the subsystem sets a flag indicating that 
some action is pending. It does not perform the pending action from within the 
interrupt service routine since this could interfere with the operation of time-critical 
portions of programs and cause re-entrancy problems. 

The Poll routine automatically executes any pending actions. Applications should call 
this routine periodically to allow the timer-controlled sections of the program to 
activate. The Poll routine is called automatically from the DOS Idle Handler interrupt 
(INT 0x28), allowing the subsystem to operate with such programs as 
COMMAND.COM which call this interrupt whenever they are waiting for an event.

Example
See the Example for System Sleep Disable Control (0x05) for a code sample that 
illustrates the Poll Power Management service. 
2-95



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 96  Tuesday, October 28, 1997  4:48 PM
Reset Inactivity Timers
Function: 0x16
Description
Makes the system and, optionally, the LCD active. This service can safely be called 
from the background, e.g., an interrupt service routine.

Interrupt
0xB1

Input Registers
AH = 0x16

AL = Subfunction code, as follows:

0x00 = Make system active
0x01 = Make system and LCD active        

Output Registers
Carry Flag is cleared
AX = 0x0000

Example
See the Example for System Sleep Disable Control (0x05) for a code sample that 
illustrates the Reset Inactivity Timers service. 
2-96



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 97  Tuesday, October 28, 1997  4:48 PM
Get/Set Low Battery LED Flash-On Time
Function: 0x17
Description 
This function gets or sets the timer used to control the frequency with which the 
scanner LED flashes when the battery is low. This frequency is determined by the AL 
register setting that has been specified by the application.

The LED flash-on time is always fixed by the application in timer-tick units (i.e., 18.2 per 
sec. or 55 millisecs.).

The LED flash-off time is controlled by the state of the battery as specified in the 
following chart: 

Note: The actual flashing of the LED is controlled by the timer 
tick service (INT 0x08).

Interrupt
0xB1

Input Registers
AH = 0x17

AL = Subfunction code, as follows:

0x00 through 0x14: LED flash-on time in timer tick units (55 msec)
0x80: Get current LED flash-on time in timer tick units

Note: If AL = 0x00, LED flashing has been disabled.

Battery Level LED Flash-off Time

Normal Infinite (i.e., no LED flashing at all).

Low 32 times the LED flash-on time specified in the 
AL register by the application.

Very Low 2 times the LED flash-on time specified in the 
AL register by the application.
2-97



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 98  Tuesday, October 28, 1997  4:48 PM
Output Registers
If no error is detected:

Carry Flag is cleared
AL = Current value for the LED flash-on time in timer tick 

units (55 milliseconds)

If an error is detected:

Carry flag is set
AX = Error code as follows:

0x0001: Incorrect function code or subfunction code passed in 
 register AH or AL, respectively

Example
See the Example for Suspend System (0x00) for a code sample that illustrates the Get/
Set Low Battery LED Flash-On Time service. 
2-98



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 99  Tuesday, October 28, 1997  4:48 PM
Enable/Disable Power Management Poll on INT 0x16
Function: 0x18
Description 
This function enables the application to control whether or not the INT 0x16 (keyboard) 
services poll power management when INT 0x16 check-for-key and key-read functions 
(0x00, 0x01, 0x10, and 0x11) are called. 

The keyboard services interrupt (INT 0x16) performs some pre-processing before 
chaining on to the original routine. If the keyboard service called is 0x00, 0x01, 0x10, or 
0x11, XSYMBIOS polls the power management services to set all devices to the 
required power state. This poll is not performed if polling is disabled by Interrupt 
0xB1, Function 0x18, Subfunction 0x01 (see Input Registers, below).

XSYMBIOS checks to see if the keyboard service is a read key request and if so if there 
is a key to be processed. If there is no key to satisfy the read key request, XSYMBIOS 
polls power management, puts the CPU to sleep until the next interrupt, and restarts 
at the top of the routine.

By default, polling is enabled, but if required can be disabled by this power 
management service. If disabled, power management polling is called only when an 
application tries to read a key and there is no key in the buffer.

Each disable call to this service increments a count; each enable call decrements the 
count. Polling is enabled only if the count is zero.

Input Registers
AH = 0x18

AL = Subfunction code, as follows:

0x00: Enable poll on INT 0x16
0x01: Disable poll on INT 0x16
0x80: Get disable count 

Output Registers
If no error is detected:

Carry Flag is cleared
AL = Current number of disables
2-99



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 100  Tuesday, October 28, 1997  4:48 PM
If an error is detected:

Carry flag is set.
AX = Error code as follows

0x0001: Incorrect function code passed in register AH
or register AL, respectively

0x0005: Overflow of disables count

Example
See the Example for Suspend System (0x00) for a code sample that illustrates the 
Enable/Disable Power Management Poll on INT 0x16 service. 
2-100



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 101  Tuesday, October 28, 1997  4:48 PM
Get Extended Wakeup Cause
Function: 0x1A
Description
Returns the extended cause of the last wakeup. See Notes below.

Interrupt
0xB1

Input Registers
AH = 0x1A

Output Registers
DX contains extended wakeup causes encoded as follows:

Bits 15 - 0: Note used

AX contains extended wakeup causes encoded as follows:

Bits 15 - 9: Not used
Bit 8: Spectrum24
Bit 7: Not used
Bit 6: Not used
Bit 5: Cradle Insertion/Removal
Bit 4: Power Switch
Bit 3: RS - 232 Ring
Bit 2: Pen Down
Bit 1: Left Button
Bit 0: Right Button

Notes
Applications that need to monitor Spectrum24 wakeup should use this service. 
Otherwise, use Get Wakeup Cause (Function 0x02) which provides several more 
standard wakeup causes.

Example
The following code sample illustrates the use of the Get Extended Wakeup Cause 
(0x1A) service. 
2-101



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 102  Tuesday, October 28, 1997  4:48 PM
void WakeupCause(void)
{

union _REGS inregs, outregs;

/*Get extended resume code */
inregs.h.ah = 0x1a;
_int86(0xb1, &inregs, &outregs);

/* Display the results */
printf(“Extended Resume: %04x:%04x\n”, outregs.x.dx, outregs.x.ax);

}

2-102



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 103  Tuesday, October 28, 1997  4:48 PM
Power Management Auxiliary API 
Commands

As indicated in Rule 2 in Rules for Using the Power Management Subsystem and in the 
Note under Poll Power Management (INT 0xB1 Function 0x15), there are two services 
that applications may use to identify power management opportunities and operate 
outside of XSYMBIOS. These are:

• Multiplex Application Idle API, which an application invokes with INT 0x2F 
and Function Code 0x1680.

• MS-DOS Idle API, which an application invokes with INT 0x28.

Descriptions of these commands are provided in the following sections.
2-103



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 104  Tuesday, October 28, 1997  4:48 PM
Multiplex Application Idle API (MS-DOS Idle Call)
Description
This function signals that the application has nothing to do and that any other 
processes can get processing time.

Interrupt
0x2F

Input Registers
AX = 0x1680

Output Registers
None. All registers are preserved.

Notes
Refer to Rule 2 in the Rules for Using the Power Management Subsystem. Also see Note in 
Poll Power Management (Function 0x15) in the Power Management API Commands 
(Descriptions).

XSYMBIOS intercepts this call and enters a power saving state until the next interrupt 
occurs.

This function is not blocking and should be called repeatedly while the caller is idle.
2-104



PPT 41xx System Software Manual: Chapter 2, XSYMBIOS Power Management

41ssm  Page 105  Tuesday, October 28, 1997  4:48 PM
MS-DOS Idle API Call (MS-DOS Idle Handler)
Description
This interrupt is invoked each time one of the DOS character input functions loops 
while waiting for input. TSRs can hook this interrupt if they need to perform DOS calls 
while the foreground program is waiting for user input. 

Interrupt
0x28

Input Registers
None.

Output Registers
None, all registers preserved.

Notes
Refer to Rule 2 in the Rules for Using the Power Management Subsystem. Also see Note in 
Poll Power Management (Function 0x15) in the Power Management API Commands 
(Descriptions).

This interrupt handler may invoke any INT 0x21 function except functions 0x00 
through 0x0C.

The default handler is an IRET instruction.

XSYMBIOS intercepts this call and calls the Poll Power Management (Function 0x15) 
service. DOS applications should use this function periodically in non-time-critical 
sections of the program to allow XSYMBIOS to update power state for all devices.
2-105


	Chapter 2 XSYMBIOS/ Power Management
	Introduction
	Advanced Power Management

	PPT 41XX Power Management Subsystem
	Power Management Overview
	Devices Managed by the Power Management Subsystem

	Rules for Using the Power Management Subsystem
	Rule 1. Set power management operating parameters before starting an application or as part of th...
	Rule 2. Control power to devices and the system from within the application.
	Rule 3. Indicate system activity, especially in background interrupt service routines.
	Rule 4. Use caution when preventing devices or the system from sleeping or suspending.
	Rule 5. On exit from an application program, restore the original power management parameters.


	Power Management API Commands (List)
	Power Management API Commands (Descriptions)
	Suspend System
	Function: 0x00
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	Set Wakeup Masks
	Function: 0x01
	Description
	Interrupt
	Input Registers
	Output Registers
	Example

	Get Wakeup Cause
	Function: 0x02
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	Get Battery Status
	Function: 0x03
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	Device Sleep Disable Control
	Function: 0x04
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	System Sleep Disable Control
	Function: 0x05
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	Device Suspend Disable Control
	Function: 0x06
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	System Suspend Disable Control
	Function: 0x07
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	Activate Device
	Function: 0x08
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	Activate System
	Function: 0x09
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	Sleep Device
	Function: 0x0A
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	Sleep System
	Function: 0x0B
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	Suspend Device
	Function: 0x0C
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	Suspend System
	Function: 0x0D
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	Register for Device Suspend Notification
	Function: 0x0E
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	Register for System Suspend Notification
	Function: 0x0F
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	Register for Device Resume Notification
	Function: 0x10
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	Register for System Resume Notification
	Function: 0x11
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	Get Power Source
	Function: 0x12
	Description
	Interrupt
	Input Registers
	Output Registers
	Example

	Get/Set Device Timer Value
	Function: 0x13
	Description
	Interrupt
	Input Registers
	Output Registers
	Example

	Get/Set System Timer Value
	Function: 0x14
	Description
	Interrupt
	Input Registers
	Output Registers
	Example

	Poll Power Management
	Function: 0x15
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	Reset Inactivity Timers
	Function: 0x16
	Description
	Interrupt
	Input Registers
	Output Registers
	Example

	Get/Set Low Battery LED Flash-On Time
	Function: 0x17
	Description
	Interrupt
	Input Registers
	Output Registers
	Example

	Enable/Disable Power Management Poll on INT 0x16
	Function: 0x18
	Description
	Input Registers
	Output Registers
	Example

	Get Extended Wakeup Cause
	Function: 0x1A
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	Multiplex Application Idle API (MS-DOS Idle Call)
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes

	MS-DOS Idle API Call (MS-DOS Idle Handler)
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes




