

41ssm Page 1 Tuesday, October 28, 1997 4:48 PM
Chapter 4 Scanning Operations

Introduction
This chapter describes SCAN4100 and SCAN4122, the scanner drivers that enable
applications running on PPT 4100/4110/4140 (referred to as PPT 41XX) terminals to
read bar-coded data. For more information on bar code concepts and operations, see
The Bar Code Book, Second Edition, 1991 written by Roger C. Palmer and published by
Helmers Publishing, Inc., 174 Concord Street, Peterborough, NH.

Product Overview
This manual covers both versions of the PPT 4100 scanner drivers:

• SCAN4100 is used with terminals with model number PPT41X0S0XX01

• SCAN4122 is used with terminals with model number PPT41X0S0XX00

The Scanner Type Identifier Program (SCANTYPE) describes how to use the scanner type
identification program (SCANTYPE.EXE) to load the correct scanner driver in mixed
terminal configurations.

“SCAN41XX” is used when driver functions in SCAN4100 and SCAN4122 are
common; differences between the drivers are noted by their individual names.

The PPT 41XX scan driver programs are TSRs that enable applications running on PPT
41XX terminals to read bar-coded data. They are loaded once upon terminal
initialization and control the internal scan module.

SCAN41XX uses the SE-1000 scan module. Its functions are to:

• control the scanning device (See Note below.)

• decode data (SCAN4100 only)

• pass decoded data on to the application program

Note: SCAN41XX can accommodate additional scanner
devices.
4-1

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 2 Tuesday, October 28, 1997 4:48 PM
Scanner Driver Features
The SCAN41XX driver is based on the Series 3000 scanner driver with the following
differences.

Some API conventions of SCAN3000 are modified to reorganize decoder control
variables.

SCAN41XX is not compatible with programs which use the SCAN3000 TSR on the
Series 3000 type terminals. SCAN3000’s command structure differs significantly from
that of the SCAN41XX drivers used on PPT 41XX terminals.

Refer to Porting Series 3000 Applications to PPT 41xx Terminals for a description of the
differences between the Series 3000 scanner driver and SCAN41XX.

The user may customize the operation of the SCAN41XX TSR by defining the
appropriate parameters in a scanner driver configuration file. Refer to the Execution and
Configuration section in this chapter.

Programming Guidelines
Following are recommendations for using the Scanner Driver programming interface.
This section identifies potential programming errors and promotes future software
compatibility between various driver releases and the applications that use them.

Programming Pitfalls
SCBs (Scanner Control Blocks) and data buffers should be located in permanently
mapped static memory. Most 'C' programs, for example, allocate a function's local
work area on the stack when the function is invoked; this area is de-allocated when the
function terminates. Thus, if a function creates an SCB or data buffer in local space, it
ceases to exist when the function terminates. Locating SCBs or data buffers in
temporarily mapped paged memory results in losing the associated data structure if
the appropriate memory page were swapped out before the command is complete.
Refer to User Interface for a description of an SCB and its function in the interaction
between the scanner driver and application programs.

A command is not actually completed until the post processing routine is executed, so
a post processing routine can not modify or delete the SCB. The SCAN41XX Driver
accesses the SCB after the post processing routine completes to perform housekeeping
tasks. The post processing routine can delete or modify any data buffers, since all
processing on data buffers is complete by this time.
4-2

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 3 Tuesday, October 28, 1997 4:48 PM
When using No Wait commands, an application can initiate multiple requests and
check the status field for a final completion code (less than 0xF0). When polling SCB
status, keep in mind that, although the driver completes commands in the order
requested, it may complete more than one SCB in the background. Refer to User
Interface for definitions of immediate and queued, wait and no wait as these terms
apply to the operation of the scanner driver.

An application ensures that all of the SCBs that it issues are returned or flushed by the
SCAN41XX driver before the application terminates. The application must verify that
pending commands are complete or were successfully canceled before relinquishing
its program space. In the DOS environment, all address space used by an application
is returned to the free chain upon program termination. (TSR programs retain some
memory space.) Unpredictable results occur if the driver continues to access memory
that was part of the application address space returned to the system when the
program terminated.

Programming Conventions
Before using the Scanner Driver, the application should verify that the driver is
installed. It should first check the interrupt vector for a non-zero far address, then
either make an out-of-range (0xFF) command request and look for the Unknown
Command return code (1), or issue a Get Version Information request and check for the
correct version of the driver.

To ensure compatibility with future driver releases, the application should clear (zero)
reserved or undefined fields before invoking the driver. The new driver can then use a
zero value for compliance with older releases while using non-zero values to add
functionality.

The recommended method of modifying one or more fields in a selected information
block is to:

1. read the current values of the information block into a buffer by using the
associated Get command, allowing the caller to determine both the actual
information block size and which fields are available in this driver release.

2. modify the desired fields in the information block

3. use the associated Set command to write the updated information block to the
driver
4-3

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 4 Tuesday, October 28, 1997 4:48 PM
Execution and Configuration
This section describes the execution and configuration of the PPT 41XX Scanner Driver
on the terminal under the following main headings:

• Scanner Driver Execution describes conditions and procedures for loading the
scanner driver on a PPT 41XX terminal, and specifies the command line format
and optional command-line parameters.

• Load Time Messages lists and describes messages displayed on the terminal screen
to indicate the load status of the driver and to report any configuration file errors
detected during the loading process.

• Scanner Configuration File describes the content and structure of a scanner
configuration (.CFG) text file and provides a table of parameter names and
values.

Scanner Driver Execution
The PPT 41XX Scanning Driver is shipped as an executable TSR program along with a
default configuration file (SCAN41XX.CFG). The Extended Symbol BIOS Services
driver (XSYMBIOS.EXE) must be loaded before loading SCAN41XX. XSYMBIOS
contains functions which allow SCAN41XX to interface with the PPT 41XX hardware
platform.

Place the driver program SCAN41XX and a configuration file in the terminal either on
the flash disk or on a PCMCIA card. If the default configuration file name is to be used
(SCAN41XX.CFG), be sure it is located on the same drive and directory as
SCAN41XX.EXE. If an alternate configuration file is to be used, specify the file as an
command-line parameter with SCAN41XX, and specify its entire path and drive letter.
If SCAN41XX cannot locate the default configuration file, it uses default values to
parameterize SCAN41XX. See Tables 4-3 through 4-8 for parameter default values.
Table 4-1 shows possible invocations of SCAN41XX and the associated driver actions.
4-4

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 5 Tuesday, October 28, 1997 4:48 PM
Initial invocation of SCAN41XX causes the configuration file to be read in and verified.
If any errors are found in the configuration file, the driver displays the error messages
on the screen. These messages are among those listed and described in Table 4-2. After
SCAN41XX is parameterized, the program terminates, removing the initialization and
parameterization portion of code, and stays resident. SCAN41XX can be loaded once;
further attempts to load display the SCAN41XX banner and the error message:
“ERROR: Scan driver already installed.”

Table 4-1. SCAN41XX Invocations and Associated Driver Actions

Command Line Usage Driver Action

SCAN4100
 or
SCAN4122

The driver attempts to find and process
the default configuration file
(SCAN4100.CFG or SCAN4122.CFG as
appropriate) on the current drive and
directory. If it does not locate this file, it
uses the default settings (see Tables 4-3
through 4-8).

SCAN4100 user.CFG
 or
SCAN4122 user.CFG,
where user is a user-specified name
for an alternate configuration file.

The driver attempts to find and process
the specified alternate configuration file
(user.CFG) on the current drive and
directory. If the file is not located, the
driver displays an error message and
does not load. See Table 4-2 for a list of
possible error messages.

SCAN4100 dr:\dir\user.CFG
 or
SCAN4122 dr:\dir\user.CFG,
where user is a user-specified name
for an alternate configuration file,
dr is the drive letter and dir is the
directory on which the
configuration file resides.

The driver attempts to find and process
the alternate configuration file on the
drive and directory specified on the
command line. If it does not locate the
file, the driver displays an error message
and does not load. See Table 4-2 for a list
of possible error messages.
4-5

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 6 Tuesday, October 28, 1997 4:48 PM
Load Time Messages
SCAN41XX displays messages to the PPT 41XX screen to indicate the load status of the
driver and configuration file errors. When an error occurs, the terminal beeps twice,
displays an error message, and terminates the loading process. Correct the error and
cold-boot the PPT 41XX.

Table 4-2 lists SCAN41XX status messages that can be displayed when SCAN41XX is
invoked and a brief description of the cause.

Table 4-2. SCAN41XX Status Messages

Status Message Cause

PPT 41XX Scanner Driver Version x.xx
Copyright Symbol Technologies, Inc.
1993-1997. All rights reserved.?

Displayed on every invocation of SCAN41XX.
x.xx specifies the current version and release
numbers of the driver.

PPT 41XX Scan driver successfully loaded. No errors occurred during the load process. The
driver has been installed.

ERROR: Scan driver already installed. The driver is already in memory. The driver in
memory is retained.

ERROR: Cannot communicate with scanner
card.

The driver cannot detect the scanner device.

ERROR: XSYMBIOS is not loaded. Extended Symbol BIOS Services were not loaded
prior to the invocation of SCAN41XX.

ERROR: Power management hook error. XSYMBIOS did not allow power management
registration.

No errors detected in configuration file. The configuration file has been located and
contains no errors.

No configuration file -- using defaults. SCAN41XX.CFG was not found; default settings
have been used.

ERROR: Configuration file does not exist. The configuration file specified on the command
line was not found.

CFG FILE ERROR: Line -xxx- Extra characters
on line.

Extra characters were found on Line xxx in the
configuration file.

CFG FILE ERROR: Line -xxx- Missing
parameter value.

No value has been specified for the parameter at
Line xxx in the configuration file.

CFG FILE ERROR: Line -xxx- Invalid
parameter value.

The value for the parameter at Line xxx in
the configuration file is not valid.

CFG FILE ERROR: Line -xxx- No starting
section name.

No section name is specified at the beginning of
the configuration file.
4-6

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 7 Tuesday, October 28, 1997 4:48 PM
Scanner Configuration File
A scanner configuration file is a text file that customizes the scanner driver. A default
configuration file (SCAN4100.CFG or SCAN4122.CFG as appropriate) is shipped with
the scanner driver, however any configuration file, including SCAN4100.CFG and
SCAN4122.CFG, may be edited by any PC text editor to allow customization of the
driver.

The structure of a scanner configuration file is similar to that of a Windows
initialization (WIN.INI) file. It has the following format:

[Parameter_Section_Heading1]

parameter name1 = parameter value1

parameter name2 = parameter value2

.

.

.

CFG FILE ERROR: Line -xxx- Invalid keyword
for current section.

An invalid parameter name was specified for the
current section in the configuration file.

CFG FILE ERROR: Line -xxx- Missing
Parameter_Index setting.

A parameter_index was not specified in the
Reader_Parameters section in the configuration
file.

CFG FILE ERROR: Line -xxx- Parameter value
out of range.

The parameter value specified at Line xxx in the
configuration file is out of range.

Table 4-2. SCAN41XX Status Messages (Continued)

Status Message Cause
4-7

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 8 Tuesday, October 28, 1997 4:48 PM
For example, the section on Scan Parameters might look like this:

[Scan_Parameters]

bidir_redundancy = 1

xmit_code_id = 1

 auto_iata = 1

The following are some additional items to note about the scanner configuration file
and the way it functions:

• Enclose section headings in square brackets.

• Section names and keyword names are not case sensitive.

• If a section is omitted from the configuration file, the scanner driver applies the
default values for its parameters. See Tables 2-3 through 2-8 for scanner
parameters and their default values.

• Within any section, any parameters that are omitted keep their default values.
Place only those parameters that are to be changed in the file, and under the
appropriate section.

• If more than one instance of a parameter is specified, only the last setting of that
parameter is used by the scanner driver.

• Place comments on a separate line by starting the line with a semicolon.

• Blank lines are ignored.

To change the reader profile, the parameter_index keyword must be specified prior to
any parameter settings. If multiple reader profiles require initialization, specify each in
the Reader_Parameters section by setting values after the associated parameter index.
(See Table 4-3, below, for valid values for parameter_index.)
4-8

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 9 Tuesday, October 28, 1997 4:48 PM
The following example illustrates multiple reader parameter settings in the
configuration file:

[Reader_Parameters]

;Set up SE-1022 parameters

parameter_index = 4

dec_feedb_time = 2

;Set up SMC parameters

parameter_index = 3

dec_feedb_time = 4

;Use SE-1022 parameters as default

default_parameter = 4

Refer to Table 4-2 (SCAN41XX Status Messages) for messages displayed on the
terminal screen when SCAN41XX does not locate a configuration file or finds errors in
a file it locates during the scanner driver loading process.

Tables 4-3 through 4-8 list the available scanner configuration sections, along with
associated parameter names and values for use in configuration files, as follows:

Note: Parameters followed by an asterisk (*) in the following
tables are provided for future expansion and are not
supported in the first versions of SCAN4122 and
SCAN4100.

Parameters that are followed by a number sign (#) in the
following tables are provided for future expansion are
not supported in the first versions of SCAN4122. These
parameters are, however, supported in SCAN4100.

Table 4-3. Reader Parameters

Table 4-4. Scan Parameters

Table 4-5. Decoder Parameters

Table 4-6. UPC/EAN General Parameters
4-9

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 10 Tuesday, October 28, 1997 4:48 PM
Table 4-7. Trigger Mode Parameters

Table 4-8. Decoder Enable Parameters

Each table contains:

• the parameters associated with the section heading

• the default value the scanner driver applies for each parameter if the
parameter or its section is omitted from the configuration file

• the value or range of values for each parameter

• a definition for each parameter value
4-10

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 11 Tuesday, October 28, 1997 4:48 PM
Table 4-3. Reader Parameters

Section: [Reader_Parameters]
Keyword Default Values Value Definition

default_parameter 4 for
SCAN4122;

3 for
SCAN4100

1 to 10 Set parameter index to use as default.

255 Auto-discriminate between laser and
contact.

parameter_index 4 for
SCAN4122;

3 for
SCAN4100

1 Set Standard Laser Gun Parameters.

2 Set Standard Contact Wand Parameters.

3 Set SMC Card.

4 Set SE-1022.

5 to 10 Set User Parameters.

scan_mode 5 for
SCAN4122;

4 for
SCAN4100

1 Standard Contact Wand

2 Standard Laser Gun.

3 CCD Gun.

4 Scan Module Card.

5 SE-1022 Module.

6 Unknown Scanner.

enable_settle_time* 0 0 to 65535 Time in microseconds.

power_settle_time* 0 0 to 65535 Time in microseconds.

inverse_label_flag* 0 0 Normal (black on white)

1 Inverse (white on black)

white_data_logic_lvl* 1 0 Low Level.

1 High Level.

dec_beep_time 110 0 to 65535 Time in milliseconds.

dec_beep_freq 2048 0 to 65535 Frequency in megahertz.

scans_per_label* 1 1 to 255 Number of scans.

clk_speed_toggle* 0 0 Do not toggle.

1 Toggle.

trans_resolution* 8 2, 4, 8, 16 Clock divisor value.

subseq_scan_time* 3 0 to 65 Time in seconds.
4-11

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 12 Tuesday, October 28, 1997 4:48 PM
no_data_time 3 0 to 65 Time in seconds.

post_dec_action* 0 0 Pulse/Wait.

1 Acquire.

2 Stop.

dec_fail_action* 0 0 Pulse/Wait.

1 Acquire.

2 Stop.

prod_trigger* 1 0 Does not trigger.

1 Can trigger.

two_stage_trigger* 0 0 Does not have two stage trigger.

1 Does have two stage trigger.

multiple_scan* 1 0 Does not multiple scan.

1 Does multiple scan.

prod_direction* 1 0 Does not give direction.

1 Does give direction.

dec_feedb_time 3 0 to 65 Time in seconds.

dec_feedb_lvl 1 0 Low level.

1 High level.

scan_led_ctl* 0 0 Cannot control scanning LED.

1 Can control scanning LED.

scan_led_lvl* 1 0 Low level.

1 High level.

KE_enable* 0 0 Klasse Eins disabled.

1 Klasse Eins enabled.

qz_ratio* 0 0 to 255 Quiet zone ratio value.

init_scan_time* 0 0 to 65 Time in seconds.

pulse_delay* 0 0 to 65535 Time in milliseconds.

Table 4-3. Reader Parameters (Continued)

Section: [Reader_Parameters]
Keyword Default Values Value Definition
4-12

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 13 Tuesday, October 28, 1997 4:48 PM
Table 4-4. Scan Parameters

Section: [Scan_Parameters]
Keyword Default Values Value Definition

bidir_redundancy 0 0 Disabled.

1 Enabled.

xmit_code_id 0 0 Disabled.

1 Transmit Symbol Technologies Code ID.

2 Transmit AIM Code ID.
Note:
This value for the xmit_code_id
parameter is included for future
expansion.

Table 4-5. Decoder Parameters

Section: [Decoder_Parameters]
Keyword Default Values Value Definition

UPCE0_minlength 0 0 to 65535 Minimum length number of
characters.

UPCE0_maxlength 0 0 to 65535 Maximum length number of
characters.

UPCE0_ret_CD 0 0 Do not return check digit.

1 Return check digit.

UPCE0_preamble 0 0 No number system, no country code.

1 No number system, country code.

2 Number system, country code.

UPCE0_convert 0 0 Do not convert UPC E0 to UPC A.

1 Convert UPC E0 to UPC A.

UPCE1_minlength# 0 0 to 65535 Minimum length number of
characters.

UPCE1_maxlength# 0 0 to 65535 Maximum length number of
characters.
4-13

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 14 Tuesday, October 28, 1997 4:48 PM
UPCE1_ret_CD# 0 0 Do not return check digit.

1 Return check digit.

UPCE1_preamble# 0 0 No number system, no country code.

1 No number system, country code.

2 Number system, country code.

UPCE1_convert# 0 0 Do not convert UPC E1 to UPC A.

1 Convert UPC E1 to UPC A.

UPCA_minlength 0 0 to 65535 Minimum length number of
characters.

UPCA_maxlength 0 0 to 65535 Maximum length number of
characters.

UPCA_ret_CD 1 0 Do not return check digit.

1 Return check digit.

UPCA_preamble 1 0 No number system, no country code.

1 No number system, country code.

2 Number system, country code.

MSI_minlength 4 0 to 65535 Minimum length number of
characters.

MSI_maxlength 55 0 to 65535 Maximum length number of
characters.

MSI_redundancy 0 0 Disabled.

1 Enabled.

MSI_CD 1 1 to 2 Number of check digits.

MSI_ret_CD 0 0 Do not return check digit.

1 Return check digit.

EAN8_minlength 0 0 to 65535 Minimum length number of
characters.

EAN8_maxlength 0 0 to 65535 Maximum length number of
characters.

Table 4-5. Decoder Parameters (Continued)

Section: [Decoder_Parameters]
Keyword Default Values Value Definition
4-14

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 15 Tuesday, October 28, 1997 4:48 PM
EAN8_convert 0 0 Do not convert EAN 8 to EAN 13.

1 Convert EAN 8 to EAN 13.

EAN13_minlength 0 0 to 65535 Minimum length number of
characters.

EAN13_maxlength 0 0 to 65535 Maximum length number of
characters.

Codabar_minlength 0 0 to 65535 Minimum length number of
characters.

Codabar_maxlength 0 0 to 65535 Maximum length number of
characters.

Codabar_redundancy 0 0 Disabled.

1 Enabled.

Codabar_CLSI 0 0 Disabled.

1 Enabled.

Codabar_NOTIS 0 0 Disabled.

1 Enabled.

Code39_minlength 0 0 to 65535 Minimum length number of
characters.

Code39_maxlength 0 0 to 65535 Maximum length number of
characters.

Code39_CD 0 0 Disabled.

1 Enabled.

Code39_concat 0 0 Disabled.

1 Enabled.

Code39_full_ASCII 0 0 Disabled.

1 Enabled.

Code39_redundancy 0 0 Disabled.

1 Enabled.

D2of5_minlength# 0 0 to 65535 Minimum length number of
characters.

Table 4-5. Decoder Parameters (Continued)

Section: [Decoder_Parameters]
Keyword Default Values Value Definition
4-15

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 16 Tuesday, October 28, 1997 4:48 PM
D2of5_maxlength# 14 0 to 65535 Maximum length number of
characters.

D2of5_redundancy# 0 0 Disabled.

1 Enabled.

I2of5_minlength 14 0 to 65535 Minimum length number of
characters.

I2of5_maxlength 10 0 to 65535 Maximum length number of
characters.

I2of5_redundancy 0 0 Disabled.

1 Enabled.

Code11_minlength# 4 0 to 65535 Minimum length number of
characters.

Code11_maxlength# 55 0 to 65535 Maximum length number of
characters.

Code11_redundancy# 0 0 Disabled.

1 Enabled.

Code11_CD# 1 0 to 2 Number of check digits.

Code11_ret_CD# 0 0 Do not return check digit.

1 Return check digit.

Code93_minlength# 0 0 to 65535 Minimum length number of
characters.

Code93_maxlength# 0 0 to 65535 Maximum length number of
characters.

Code93_redundancy# 0 0 Disabled

1 Enabled.

Code128_minlength 0 0 to 65535 Minimum length number of
characters.

Code128_maxlength 0 0 to 65535 Maximum length number of
characters.

Code128_redundancy 0 0 Disabled.

1 Enabled.

Table 4-5. Decoder Parameters (Continued)

Section: [Decoder_Parameters]
Keyword Default Values Value Definition
4-16

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 17 Tuesday, October 28, 1997 4:48 PM
Table 4-6. UPC/EAN General Parameters

Section: UPC/EAN General Parameters
Keyword Default Values Value Definition

security_level 0 0 No security checking.

1 Check ambiguous characters.

2 Check all characters.

supp_2 0 0 Disabled.

1 Enabled.

supp_5 0 0 Disabled.

1 Enabled.

supp_autodiscriminate 0 0 Disabled.

1 Enabled.

supp_retry 5 2 to 10 Retry count before reporting.

linear_decode 0 0 Disabled.

1 Enabled.

Table 4-7. Trigger Mode Parameters

Section: [Trigger_Mode_Parameters]

Keyword Default Values Values

trigger_mode 2 0 Ignore external trigger.

1 Reserved.

2 Enable laser when trigger pressed.
4-17

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 18 Tuesday, October 28, 1997 4:48 PM

Table 4-8. Decoder Enable Parameters

Section: [Decoder_Enable_Parameters]
Keyword Default Values Value Definition

UPCE0 1 0 Disabled.

1 Enabled.

UPCE1# 0 0 Disabled.

1 Enabled.

UPCA 1 0 Disabled.

1 Enabled.

MSI 1 0 Disabled.

1 Enabled.

EAN8 1 0 Disabled.

1 Enabled.

EAN13 1 0 Disabled.

1 Enabled.

Codabar 1 0 Disabled.

1 Enabled.

Code39 1 0 Disabled.

1 Enabled.

D2of5# 0 0 Disabled.

1 Enabled.

I2of5 1 0 Disabled.

1 Enabled.

Code11# 0 0 Disabled.

1 Enabled.

Code93# 0 0 Disabled.

1 Enabled.

Code128 1 0 Disabled.

1 Enabled.
4-18

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 19 Tuesday, October 28, 1997 4:48 PM
Theory of Operation
Figure 4-1 shows the software layers of the SCAN41XX driver from the point of view
of its interface with an application.

* SCAN4100 only.

Figure 4-1. SCAN41XX Software Layers

 Application

 SCAN41XX Application Program Interface

 API Interrupt Handler

 API Command Interpreter

 Timer
 Handler

Queue Manager

Decoders*

 Trigger Handler* Acquisition Control*

 Physical Data Layer

 Hardware Interface
4-19

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 20 Tuesday, October 28, 1997 4:48 PM
The dashed line box encloses the program modules that carry out the driver's tasks.
The Physical Data Layer is the link layer between SCAN41XX and the SE-1000 scan
module.

Initialization of the scanner driver:

• sets up the interrupt routine

• acquires a timer for the timer handler routine

• initializes queue management and bar code variables to default values

• processes the user configuration file

The SCAN41XX Application Program Interface (API) module processes application
requests and passes them down to lower layers of the driver. The application
communicates with the SCAN41XX by way of Scanner Control Blocks (SCBs) and a
dedicated interrupt. The API Interrupt Handler expects the register pair ES:BX to point
to the SCB that the application wants it to process. See Supported API Commands for the
commands delivered in SCB structures and supported by SCAN41XX.

After a command is validated, the API Command Interpreter either submits the
command for immediate processing or places the SCB into the First In First Out (FIFO)
Command Queue. Refer to User Interface for a description of immediate and queued
commands.

The Timer Handler module dispatches non-immediate requests from the SCB
Command Queue. After completion of the driver request, the SCB is moved from the
Command Queue to the FIFO SCB Complete Queue. Post processing routines are
dispatched from the SCB Complete Queue one at a time and the next routine is not
dispatched until the current post processing routine has completed. This prevents re-
entrancy problems from occurring on the application side (for example, two Read
commands may use the same post processing routine). When the post processing
routine is complete, return status conditions are set, and the SCB is removed from the
SCB Complete Queue.

The Queue Manager keeps track of the head and tail of the SCB Command and
Complete queues. It places new requests at the head of the queue, and processes
commands from the tail of the queue. The queues are circular and can contain up to
65,536 SCB requests. The size of the queue is large enough to allow for future PDF 417
expansion capabilities. If a queue becomes full, queue full status is reported to the
application, and the driver rejects subsequent SCBs until space exists in the queue.
4-20

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 21 Tuesday, October 28, 1997 4:48 PM
Table 4-9 lists the decoder types supported by SCAN41XX.

* Not supported by SCAN4122.

For differences between the API for SCAN41XX (see Supported API Commands) and the
Series 3000 API, see Differences Between SCAN3000 and SCAN41XX.

Table 4-9. Decoder Types Supported by SCAN41XX

Decoder Type Number

UPC E0 0x30

UPC E1* 0x31

UPC A 0x32

MSI 0x33

EAN 8 0x34

EAN 13 0x35

Codabar 0x36

Code 39 0x37

D 2 of 5* 0x38

I 2 of 5 0x39

Code 11* 0x3A

Code 93* 0x3B

Code 128 0x3C

Iata 2 of 5* 0x3E

EAN 128* 0x3F
4-21

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 22 Tuesday, October 28, 1997 4:48 PM
User Interface
Introduction and Overview
Application programs running on PPT 41XX terminals make requests to SCAN41XX
through a dedicated software interrupt. A scanning application loads a pointer to the
start of a Scanner Control Block (SCB) into the register pair ES:BX and issues an INT
0x62.

There are two types of SCBs: Immediate and Queued. The queued type is subdivided into
Wait and No Wait. The differences between immediate commands and wait or no wait
commands are described as follows:

• An immediate command is processed immediately and is not placed in the SCB
command pending queue. Control returns to the application program after the
command is complete. Table 4-10 lists the immediate commands supported by
SCAN41XX and the hexadecimal numerals for the command codes applications
must use to invoke them. See Supported API Commands for a description of these
commands.

Table 4-10. SCAN41XX Supported Immediate Commands

Command Command Code

Get Version Information 0x00

Get Reader Parameters 0x01

Set Reader Parameters 0x02

Get Scan Parameters 0x03

Set Scan Parameters 0x04

Get Decoder Parameters 0x05

Set Decoder Parameters 0x06

Get UPC/EAN General Parameters 0x07

Set UPC/EAN General Parameters 0x08

Get Scan Status 0x0B

Get Trigger Mode 0x0C

Set Trigger Mode 0x0D

Set Soft Trigger 0x0F

Clear Soft Trigger 0x10

Get Supported Decoders 0x11
4-22

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 23 Tuesday, October 28, 1997 4:48 PM
• A no wait command is placed in the SCB command pending queue and is
handled on a timer tick basis by the timer handler routine.

• A wait command is placed in the SCB command queue and control is not released
until all previous no wait commands and this wait command are complete.

Table 4-11 lists the queued commands (wait and no wait) supported by
SCAN41XX. For descriptions for these commands see Supported API Commands.

Upon entry, the interrupt handler expects ES:BX register pair to point to the start of the
SCB which will be in the application's data space. This directly monitors and accesses
the contents of the SCB. For example, the application can monitor the status and
retcode fields and get data from the data buffer as needed.

Scanner Control Block (SCB)
The Scanner Control Block (SCB_type structure) is defined as follows:

Get Enabled Decoders 0x12

Set Enabled Decoders 0x13

Cancel SCB 0x14

Flush 0x15

Get Number of Pending SCBs 0x16

Table 4-11. SCAN41XX Supported Queued Commands

Command Command Code

Enable Scanning (Wait) 0x09

Disable Scanning (Wait) 0x0A

Read Label (Wait) 0x0E

Enable Scanning (No Wait) 0x89

Disable Scanning (No Wait) 0x8A

Read Label (No Wait) 0x8E

Table 4-10. SCAN41XX Supported Immediate Commands (Continued)

Command Command Code
4-23

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 24 Tuesday, October 28, 1997 4:48 PM
typedef struct SCB_struc
{

unsigned char command; // Command code.
unsigned char retcode; // Return code.
unsigned char status; // Command completion status.
unsigned short timeout; // Command timeout
void far *cmdparam; // Pointer to command parameters.
unsigned char user[4]; // Post processing user parameters.
void far* (*process) (); // Post processing dispatch address.
char reserved[21]; // Reserved space.

} SCB_type;

Following are definitions of the fields in this SCB structure:

command

Set by the application to the desired sub-command function. In general, control is
not returned to the application until the selected command is complete. However,
if the most significant bit of the command field is set (NO WAIT), the scanner
driver submits the command in the command queue and returns to the
application. The timer handler routine processes these queued commands in the
background. NO WAIT is ignored by commands that do not support this mode.

retcode

Set by the scanner driver after the command has completed processing. Zero
indicates successful completion; non-zero indicates an error condition. Set this
field prior to the dispatch of any post processing routine. See Table 4-18 for
completion and error codes.

status

While this field is 0xFF, the command is pending or processing and the application
must not modify any data within the SCB or associated data buffers. This field is
set to the same value as retcode after any post processing routine is complete.
Application programs should monitor status completion of an SCB. Refer to Table
4-18 for a list of possible return values and their meanings.

timeout

Set by the user to indicate, in milliseconds, the maximum time for the scanner
driver to wait for the command to complete before reporting an error. If set to zero,
4-24

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 25 Tuesday, October 28, 1997 4:48 PM
the timeout function is disabled. Queued commands do not begin their associated
timeout cycle until commands ahead of them have completed processing.

cmdparam

A far pointer to the parameter structure of the associated command. Not all
commands have command parameters. If a command has parameters, see
Supported API Commands for its parameter structure.

user

This space is reserved for use by the application as a parameter area for the post
processing routine. It is defined as 4 bytes to allow a far pointer to be placed in the
field if more than 4 bytes of data are required by the post processing routine. The
process routine extracts the user parameters from the SCB. The scanner driver
ignores all values placed here.

process

Set by the application, if desired, to the far address of a post processing routine. If
it is non-zero, the driver calls the routine after the SCB command is complete. The
AL register is set to the SCB retcode field, and the address of the calling SCB is
placed in the ES:BX register pair prior to the call to the post processing routine. If
a post processing routine is not required, the process field must be set to zero;
otherwise, an invalid pointer is called producing unpredictable results. Post
processing routines must be declared as an _interrupt and must return with an iret.

reserved

This area is reserved for future expansion of the scanner driver. It should not be
accessed or altered by any application program.

A Day in the Life of an SCB
Scanner control blocks (SCBs) are the only means of communication between
application programs and the PPT 41XX scanner driver. The entry point for this
exchange of information is SCANXX’s dedicated API interrupt, INT 0x62.

Immediate Command Processing
Refer to Figure 4-2 (for Steps 1-4)and Figure 4-3 (for Steps 5-6) as you read through the
following description of the life of an immediate SCB:
4-25

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 26 Tuesday, October 28, 1997 4:48 PM
1. The user application allocates a buffer for the SCB and associated command
parameters. The SCB command, timeout, cmdparam, user, and process fields are
set; any command parameters are also set.

2. The application initializes ES:BX to point to the SCB and issues the scanner
interrupt, 0x62. The API interrupt handler receives the interrupt in SCANXX.

3. The API command interpreter verifies the SCB and checks that the SCB is not
already in use.

4. After the command is processed, the retcode field of the SCB is set.

5. SCANXX then sets ES:BX to point to the SCB just processed and loads AL with the
contents of the return code. The flags register is pushed onto the stack and the
SCB’s post processing routine is called. If no post processing routine was specified
(i.e., SCB.process = NULL), skip to scanner driver processing in Step 6. The post
processing routine in the user application performs tasks specific to the completion
of the SCB.

Note: Post processing routines must not make any calls which
require DOS. Because this routine is being executed as
an interrupt, DOS may not be reentered.
4-26

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 27 Tuesday, October 28, 1997 4:48 PM
6. When post processing is complete, the user application issues an iret to return to
the scanner driver which sets the SCB status code (status) to the SCB return code
(retcode). The SCB is completed.

Figure 4-2. Immediate Command Processing (Steps 1-4)

Fill SCB fields:
 command
 timeout
 cmdparam
 user
 process

Step 1 Step 2

Step 3 Step 4

User Application User Application

SCB

cmd
params

Fill command
parameters

SCB
ES:BX

Interrupt 0x62

API Interrupt Handler

SCAN41XX

SCAN41XX

ES:BX

SCB

API Command
 Interpreter

SCAN41XX

Command Parameters
 Processed

 SCB.retcode set
4-27

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 28 Tuesday, October 28, 1997 4:48 PM
Figure 4-3. Immediate Command Processing (Steps 5-6)

Step 5 Step 6

SCB

ES:BX

SCAN41XX

AL SCB.retcode
PUSH AF

call far SCB.process

Post Processing
 Routine

User Application

User Application

Post Processing

Routine

SCB.status SCB.retcode

Complete

SCAN41XX

SCB

iret
4-28

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 29 Tuesday, October 28, 1997 4:48 PM
Queued Command Processing
Refer to Figure 4-4 (for Steps 1-4) and Figure 4-5 (for Steps 5-8) as you read through the
following description of the life of a queued SCB:

1. The user application allocates a buffer for an SCB and associated command
parameters. The SCB command, timeout, cmdparam, user, and process fields are
set; any command parameters are also set.

2. The application initializes ES:BX to point to the SCB and issues the scanner
interrupt, 0x62. The API interrupt handler receives the interrupt in SCAN41XX.

3. The API command interpreter verifies the SCB and checks that the SCB is not
already in use.

4. After command parameters are verified, the SCB is placed at the tail of the
command queue. If the command was specified as no wait, control returns to the
user application. If command was specified as wait, control returns to the user
application only after completion of the command.

Note: The SCB may not be submitted again until it has been
removed from the queue.

5. Every 55 milliseconds, XSYMBIOS calls the queued command processor module
of SCAN41XX. When the SCB submitted in Step 2 reaches the head of the
command queue, it is removed.

6. After the command is processed, the retcode field of the SCB is set.

7. SCAN41XX then sets ES:BX to point to the SCB just processed and loads AL with
the contents of the return code. The flags register is pushed onto the stack and the
SCB’s post processing routine is called. If no post processing routine was specified
(i.e., SCB.process = NULL), skip to SCAN41XX processing in Step 8. The post
processing routine in the user application performs tasks specific to the completion
of the SCB.

Note: Post processing routines must not make any calls which
require DOS. Because this routine is being executed as
an interrupt, DOS may not be reentered. The post
processing routine may not call the scanner driver.

8. When post processing is complete, the user application issues an iret to return to
the scanner driver which sets the SCB status code (status) to the SCB return code
(retcode). The SCB is now complete.
4-29

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 30 Tuesday, October 28, 1997 4:48 PM
Figure 4-4. Queued Command Processing (Steps 1-4)

Fill SCB fields:
 command
 timeout
 cmdparam
 user
 process

Step 1 Step 2

Step 3 Step 4

User Application User Application

SCB

 cmd
params

Fill command
parameters

SCB
ES:BX

Interrupt 0x62

API Interrupt Handler

SCAN41XX

SCAN41XX

ES:BX

SCB

API Command
 Interpreter

SCAN41XX

Command Parameters
 Processed

Null

SCB

Queue
Head

Queue
Tail
4-30

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 31 Tuesday, October 28, 1997 4:48 PM
Figure 4-5. Queued Command Processing (Steps 5-8)

Step 5 Step 6

Step 7 Step 8
SCAN41XX

ES:BX

SCB
Post Processing

 Routine

00:55

XSYMBIOS

Timer Interrupt

Null

SCB Queue
Head

Queue
Tail

SCAN41XX

SCAN41XX

Queued Command
 Processed

SCB.retcode set

AL SCB.retcode
 PUSH AF

call far SCB.process

User Application

Post Processing
 Routine

User Application

SCB.status SCB.retcode

SCB

SCAN41XX

Complete

iret
4-31

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 32 Tuesday, October 28, 1997 4:48 PM
Supported API Commands
This section consists of three main parts:

• SCB Commands (List) lists the API commands (immediate and wait/no wait)
supported by SCAN41XX

• SCB Commands (Descriptions) describes each API command supported by
SCAN41XX which are available for programmers to use in applications they
create for PPT 41XX terminals

• Completion and Error Codes lists the error and completion codes that may be
returned by SCAN41XX when SCB requests presented by an application are
complete

SCB Commands (List)
Table 4-12 is a list of SCB commands supported by SCAN41XX. The list is sorted by the
hexadecimal numeral for the function code (command code) the application assigns to
the command variable in the SCB structure when it invokes the associated scanning
service. Descriptions of supported commands and their parameter definitions are
provided in the SCB Commands (Descriptions) section that follows this table. Queued
commands have been specified in the table as “Wait” or “No Wait.”

Table 4-12. Scanner Driver SCB Commands (INT 0x62)

Command Type Command Code

Get Version Information Immediate 0x00

Get Reader Parameters Immediate 0x01

Set Reader Parameters Immediate 0x02

Get Scan Parameters Immediate 0x03

Set Scan Parameters Immediate 0x04

Get Decoder Parameters Immediate 0x05

Set Decoder Parameters Immediate 0x06

Get UPC/EAN General Parameters Immediate 0x07

Set UPC/EAN General Parameters Immediate 0x08

Enable Scanning Wait 0x09

Disable Scanning Wait 0x0A

Get Scan Status Immediate 0x0B
4-32

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 33 Tuesday, October 28, 1997 4:48 PM
Get Trigger Mode Immediate 0x0C

Set Trigger Mode Immediate 0x0D

Read Label Wait 0x0E

Set Soft Trigger Immediate 0x0F

Clear Soft Trigger Immediate 0x10

Get Supported Decoders Immediate 0x11

Get Enabled Decoders Immediate 0x12

Set Enabled Decoders Immediate 0x13

Cancel Pending SCB Immediate 0x14

Flush All Pending SCBs Immediate 0x15

Get Number of Pending SCBs Immediate 0x16

Enable Scanning No Wait 0x89

Disable Scanning No Wait 0x8A

Read Label No Wait 0x8E

Table 4-12. Scanner Driver SCB Commands (INT 0x62) (Continued)

Command Type Command Code
4-33

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 34 Tuesday, October 28, 1997 4:48 PM
SCB Commands (Descriptions)
The following descriptions of the SCB commands in Table 4-12 are given in function
code order.

Each description consists of:

• the command name

• the Command Code (hex numeral) specified in the SCB command field of the
associated SCB data structure.
See Scanner Control Block (SCB) for a definition of the SCB_type data structure
and descriptions of its fields.

Note: An application communicates with SCAN41XX via an
SCB (in which the value of the command field specifies
the API command to be processed) and a dedicated
software interrupt (INT 0x62). The interrupt handler
expects the ES:BX register pair to point to the SCB that
the application wants SCAN41XX to process.

• the Type (i.e., immediate, wait, or no wait) of SCB associated with the command

• the Action taken by the scanner driver when an application invokes the
command

• definitions of Parameters (if any) and definitions of associated data structures (if
any)

• an Example, i.e., a code sample to illustrate the use of the command
4-34

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 35 Tuesday, October 28, 1997 4:48 PM
Get Version Information
Command Code: 0x00
Type: Immediate

Action
 Returns SCAN41XX version information.

Parameters
Version information in a data structure defined as follows:

typedef struct VERSION_INFO_struc
{

void far *version_str; // Pointer to version string
unsigned short version; // Major and minor version numbers

} VERSION_INFO_type;

The fields in this data structure are defined below:

version_buf
Pointer to a null terminated version string. For SCAN41XX the default string is:

PPT 41XX Scanner Driver Version x.xx
Copyright (C) Symbol Technologies, Inc.
1993-1997. All rights reserved.

version
Major and minor revision numbers of the scanner driver as follows:

Upper Byte = Hex numeral for the major revision number
Lower Byte = Hex numeral for the minor revision number

Example
For a code sample illustrating the Get Version Information command, refer to the
sample scanning program (SCANSAMP.C) in Appendix 1 of this chapter.
4-35

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 36 Tuesday, October 28, 1997 4:48 PM
Get Reader Parameters
Command Code: 0x01
Type: Immediate

Action
Returns information about the reader parameters based on the current
parameter_index.

Parameters
Information on reader parameters specified in a data structure defined as follows:

struct READER_MODE
{

unsigned char parameter_index; //Index to the scanner
// parameters to use

// Common reader parameters
unsigned char scan_mode; // Scanner class type attached
unsigned short enable_settle_time; // Reader enable settling time
unsigned short power_settle_time; // Power settling time, used
 // if enable_settle_time > 0
unsigned char inverse_label_flag; // Inverse data label flag
unsigned char white_data_logic_lvl; // White data logic level
unsigned short dec_beep_time; // Decode beep time
unsigned short dec_beep_freq; // Decode beep frequency
unsigned char scans_per_label; // Number of successful

// decodes for a label
// before reporting

unsigned char clk_speed_toggle; // Clock speed toggle
unsigned char trans_resolution; // Transition resolution

// value
unsigned char subseq_scan_time; // Subsequent scan time
unsigned char no_data_time; // No data time value
unsigned char post_decode_action; // Post decode action
unsigned char dec_fail_action; // Decode fail action

// Laser specific parameters
unsigned char prod_trigger; // Produces trigger signal
unsigned char two_stage_trigger; // Two stage trigger flag
unsigned char multiple_scan; // Automatic multiple scan
unsigned char prod_direction; // Produces direction signal
4-36

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 37 Tuesday, October 28, 1997 4:48 PM
unsigned char dec_feedback_time: // Decode LED feedback
// time

unsigned char dec_feedback_lvl; // Decode LED feedback
// level

unsigned char scan_led_ctl; // Scanning LED control flag
unsigned char scan_led_lvl; // Scanning LED logic level
unsigned char KE_enable; // Enable Klasse Eins flag
unsigned short KE_time_used; // Klasse Eins time used
unsigned short KE_time_left; // Klasse Eins time left

// Contact specific parameters
unsigned char qz_ratio; // Quiet zone ratio X:1 to 1:X.
unsigned char init_scan_time; // Initial scan time.
unsigned short pulse_delay; // Pulse delay time.

} READER_MODE_type;

The fields in this data structure are defined below:

parameter_index
Index into reader parameter table to get/set. There may be up to ten reader
parameter settings. If this value is set to 0xFF, the driver autodiscriminates
between the contact settings in index 1 and the laser settings in index 2. These
indices are preset to the default values for a contact wand and a laser gun,
respectively. Index 3 has parameters set for SCAN4100. Index 4 has parameters set
for SCAN4122. Indices 1 and 2 are not supported in the first revision. If this value
is 0, the current active parameters are get/set. This field must be set for parameters
to be get or set. Following are the values for this field and their definitions:

 Value Definition
 0 Current Parameters
 1 Contact Parameters
 2 Laser Parameters
 3 SE-1000 Scan Module Card (SMC) Parameters
 4 SE-1022 Parameters
 5 to 10 User Definable Parameters
 255 Autodiscriminate between contact and laser

Common Reader Parameters

Note: Parameters followed by an asterisk (*) in the following
list are provided for future expansion and are not
4-37

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 38 Tuesday, October 28, 1997 4:48 PM
supported in the first version of SCAN41XX.

scan_mode
Describes the scanner type associated with the current parameter_index. Valid
values are:

1 = Contact wand (set common and contact parameters)

2 = Generic laser gun (set common and laser parameters)

3 = CCD gun (set all reader parameters)

4 = Scan Module Card (set common and laser parameters)

5 = SE-1022 (set common and laser parameters)

6 = Undefined scanner (set all reader parameters)
4-38

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 39 Tuesday, October 28, 1997 4:48 PM
enable_settle_time*
If the scanner has enable line, this is the time in microseconds after enable is
applied that the terminal waits before accessing the scanner.

If the time is set to zero, the scanner does not use enable line. If the time is set to
0xFFFF, the enable line is enabled immediately and remains on while scanning is
enabled.

power_settle_time*
If the scanner has enable line, this is the time in microseconds that the terminal
waits after power is applied to the scanner before asserting the enable line.

If time is set to zero, the scanner does not use enable line. If time is set to 0xFFFF,
the power line is enabled immediately and remains on while scanning is enabled.

inverse_label_flag*
This value indicates whether or not labels are being printed in normal or inverse
mode. Valid values are:

0 = Normal (black on white)
1 = Inverse (white on black)

white_data_logic_lvl*
This value indicates the logic level the data line is at when the scanner is detecting
white. Valid Values are:

0 = Low level
1 = High level

dec_beep_time
Zero specifies that no decode beep is used. A non-zero value specifies the duration,
in milliseconds, of the good decode beep.

dec_beep_freq
Beeper frequency in megahertz if dec_beep_time is non-zero.

scans_per_label*
Number of successful decodes for a label before it is reported to the application.

clk_speed_toggle*
Clock speed toggle. Valid values are:

0 = Do not toggle
4-39

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 40 Tuesday, October 28, 1997 4:48 PM
1 = Toggle

trans_resolution*
Specifies the clock rate divisor n to obtain data sampling rate. The formula for the
resulting sample rate is:

Sample Rate = System Clock / n, where n = 2, 4, 8, or 16

subseq_scan_time*
Maximum scan time in seconds that the reader remains powered up in the acquire
mode waiting for a bar code after a successful decode.

no_data_time
The amount of time to wait for a decode after the scanner is enabled (most
commonly known in other Symbol products as laser on time). After this time
interval, dec_fail_action is taken.

post_dec_action*
Reader state to switch to after a successful decode attempt. Valid values are:

0 = pulse/wait Contact wands pulse; laser guns wait for
a trigger (same as acquire)

1 = acquire Contact wands go to full illumination and
look for a bar code; laser guns attempt to scan.

2 = stop Contact wands are powered off; laser triggers
are ignored.

dec_fail_action*
Reader state to switch to after an unsuccessful decode attempt. Valid values are
those specified above in post_dec_action.
4-40

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 41 Tuesday, October 28, 1997 4:48 PM
Figure 4-5 shows a state diagram illustrating reader state transitions.

Figure 4-6. Reader State Transition Diagram

Laser Specific Parameters

Note: Parameters followed by an asterisk (*) in the following
list are provided for future expansion and are not
supported in the first version of SCAN41XX.

prod_trigger*
Indicates whether or not the scanner type defined for scan_mode produces a
trigger signal. Valid values are:

Pulse /
Wait

Acquire

Stop

Initial State /
Terminal Resume

En
ab

le
 S

ca
nn

in
g

/ T
er

m
in

al
 R

es
um

e

if
sc

an
ni

ng
 w

as
 e

na
bl

ed

D
is

ab
le

 S
ca

nn
in

g
/

Te
rm

in
al

 S
us

pe
nd

 /

Po
w

er
 F

au
lt

Trigger Pull / Soft Trigger /
On white (contact)

Trigger Release / No Data Time Expired /
Count overflow (contact)

Wait for Trigger /
Soft Trigger (laser)

Wait for On White
(contact)

Term
inal Suspend /

Pow
er Fault

Trigger Still Pressed /
No Decode /

No Time Out (laser)

No Counter Overflow
(contact)
4-41

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 42 Tuesday, October 28, 1997 4:48 PM
0 = Does not trigger
1 = Can trigger

two_stage_trigger*
Indicates whether or not the scanner has a two-stage trigger. Valid values are:

0 = Does not have a two-stage trigger
1 = Has a two-stage trigger

multiple_scan*
Indicates whether or not the scanner type defined for scan_mode allows automatic
multiple scanning. Valid values are:

0 = Does not multiple scan
1 = Does multiple scan

prod_direction*
Indicates whether or not the scanner type defined for scan_mode produces a
direction signal. Valid values are:

0 = Does not give direction
1 = Gives direction

dec_feedb_time
Decode feedback time in seconds to illuminate the good decode LED. If the value
is zero, the reader has no good decode LED.

dec_feedback_lvl
If dec_feedb_time is non-zero, this describes the line assertion value of the decode
LED. Valid values re:

0 = Low level
1 = High level

scan_led_ctl*
Scanning LED control value. This value determines whether or not the driver can
control the scanning LED. Valid values are:

0 = Cannot control scanning LED
1 = Can control scanning LED

scan_led_lvl*
If the value of scan_led_ctl is non-zero, this parameter indicates the line assertion
4-42

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 43 Tuesday, October 28, 1997 4:48 PM
level of the scanning LED. Valid values are:

0 = Low level
1 = High level

KE_enable*
Specifies whether Klasse Eins laser on time function is enabled. Valid values are:

0 = Klasse Eins disabled
1 = Klasse Eins enabled

KE_time_used*
Amount of scan time used in seconds of scanning for Klasse Eins mode. This is a
read-only value.

KE_time_left*
Amount of scan time left in seconds for scanning for Klasse Eins mode. This is a
read-only value.

Contact Specific Parameters

Note: Parameters that are followed by an asterisk (*) in the
following list are provided for future expansion and are
not supported in the first version of SCAN41XX.

qz_ratio*
Quiet zone ratio X:1 to 1:X. This parameter applies only to contact wand data.

init_scan_time*
Maximum scan time in seconds that the reader remains powered up in the acquire
mode waiting for a bar code. If this time expires, the dec_fail_action is taken.

Pulse_delay*
Pulse delay time in milliseconds to pause between pulses of a contact wand.

Example
For a code sample illustrating the Get Reader Parameters command, refer to the
sample scanning program (SCANSAMP.C) in Appendix 1 of this chapter.
4-43

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 44 Tuesday, October 28, 1997 4:48 PM
Set Reader Parameters
Command Code: 0x02
Type: Immediate

Action
Sets information about the reader parameters based on the value passed in
parameter_index.

Note: This command should not be issued if the command
queue is not empty.

Parameters
Information on reader parameters specified in a data structure. See Get Reader
Parameters (0x01) for a definitions of the data structure and each of its fields.

Example
For a code sample illustrating the Set Reader Parameters command, refer to the
sample scanning program (SCANSAMP.C) in Appendix 1 of this chapter.
4-44

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 45 Tuesday, October 28, 1997 4:48 PM
Get Scan Parameters
Command Code: 0x03
Type: Immediate

Action
Gets basic scanning parameters.

Parameters
Information on scanning parameters from a data structure defined as follows:

typedef struct SCAN_PARMS_struc
{

unsigned char bidir_redundancy; // Bi-directional redundancy.
unsigned char xmit_code_id; // Transmit code id character

// before decoded data.
} SCAN_PARMS_type;

The fields in this structure are defined below:

bidir_redundancy
Sets bidirectional redundancy status of decoders. For decoders that have simple
redundancy enabled, each decoded scan must come from opposite directions.
Valid values are:

0 = No bidirectional redundancy
1 = Bidirectional redundancy

xmit_code_id
Indicates whether or not to append the code identifier character or characters
before the decoded data prior to transmission. Valid values are:

0 = Do not transmit code identifier
1 = Transmit Symbol Technologies code identifier (see Table 4-13)
2 = Transmit AIM (Automatic Identification Manufacturers) identifier
 (see Table 4-14).

Note: AIM identifiers are not supported in the first version of
SCAN41XX.
4-45

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 46 Tuesday, October 28, 1997 4:48 PM
The Automatic Identification Manufacturers (AIM) have specified an industry-
wide standard for bar code identifiers. These code identifiers are a three-character
string preamble consisting of:

•a right bracket character (])

•an alpha character to specify the bar code symbology

•a numeric character to specify the decode option used to decode the bar code

The AIM code identifiers are shown in Table 4-14.

Table 4-13. Symbol Technologies Code Identifiers

Bar Code Symbology ID Character

UPC/EAN A

Code 39 B

Codabar C

Code 128 D

Code 93 E

Interleaved 2 of 5 F

Discrete 2 of 5, Iata 2 of 5 G

Code 11 H

MSI J

EAN 128 K

PDF 417 X
4-46

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 47 Tuesday, October 28, 1997 4:48 PM
.

Table 4-14. AIM Code Identifiers

Bar Code Symbology ID String Description

UPC/EAN]E0 Standard data packet in full EAN code format,
i.e., 13 digits for EAN 13, UPC-A, and UPC-E.
(Does not include supplemental data.)

]E1 Two-digit supplemental data only (transmitted
separately from 13-digit UPC/EAN data
packet).

]E2 Five-digit supplemental data only (transmitted
separately from 13-digit UPC/EAN data
packet).

]E3 Combined data packet comprising 13 digits
from EAN-13, UPC-A and UPC-E symbol and
two or five digits from supplementary data.

]E4 EAN-8 data packet.

]E8 UPC-D3 data packet.

Code 39]A0 No check character or full ASCII processing.

]A1 Modulo 43 check character has been validated.

]A2 Modulo 43 check character has been stripped.

]A3 Modulo 43 check character has been validated
and stripped.

]A4 Full ASCII character conversion was made.
4-47

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 48 Tuesday, October 28, 1997 4:48 PM
Code 39 (Continued)]A5 Full ASCII character conversion was made and
modulo 43 check character has been validated.

]A6 Full ASCII character conversion was made and
modulo 43 check character has been stripped.

]A7 Full ASCII character conversion was made and
modulo 43 check character has been validated
and stripped.

Codabar]F0 No options specified at this time.

Code 128]C0 Standard data packet. No Function Code 1 in
first or second character position after start
character.

]C1 EAN-128 symbol - Function code 1 in first
symbol character position after start character.

]C2 Function code 1 in second symbol character
position after start character.

]C4 ISBT 128 concatenation has been performed.

Code 93]G0 No options specified at this time.

Interleaved 2 of 5]I0 No check digit processing.

]I1 Modulo 10 check character has been validated.

]I2 Modulo 10 check character has been stripped.

]I3 Modulo 10 check character has been validated
and stripped.

Table 4-14. AIM Code Identifiers (Continued)

Bar Code Symbology ID String Description
4-48

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 49 Tuesday, October 28, 1997 4:48 PM
Discrete 2 of 5]R0 No check digit processing.

]R1 Modulo 7 check character has been validated.

]R2 Modulo 10 check character has been stripped.

]R3 Modulo 10 check character has been validated
and stripped.

Iata 2 of 5]S0 No options specified at this time

Code 11]H0 Single modulo 11 check character has been
validated.

]H1 Two modulo 11 check characters have been
validated.

]H2 All check character(s) have been stripped.

]H3 Two modulo 11 check characters have been
validated and stripped.

MSI]M0 Single modulo 10 check character has been
validated.

]M1 Two modulo 10 check characters have been
validated.

]M2 All check character(s) have been stripped.

]M3 Two modulo 10 check characters have been
validated and stripped.

Table 4-14. AIM Code Identifiers (Continued)

Bar Code Symbology ID String Description
4-49

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 50 Tuesday, October 28, 1997 4:48 PM
Example
For a code sample illustrating the Get Scan Parameters command, refer to the sample
scanning program (SCANSAMP.C) in Appendix 1 of this chapter.
4-50

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 51 Tuesday, October 28, 1997 4:48 PM
Set Scan Parameters
Command Code: 0x04
Type: Immediate

Action
Sets basic scanning parameters.

Note: Do not issue this command if the command queue is not
empty.

Parameters
Information on scanning parameters specified in a data structure. See Get Scan
Parameters (0x03) for definitions of the data structure and each of its fields.

Example
For a code sample illustrating the Set Scan Parameters command, refer to the sample
scanning program (SCANSAMP.C) listed in Appendix 1 of this chapter.
4-51

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 52 Tuesday, October 28, 1997 4:48 PM
Get Decoder Parameters
Command Code: 0x05
Type: Immediate

Action
Returns the information about the decoder settings of the selected bar code type
(symbology).

Parameters
The decoder parameters are those (see Note below) returned in a data structure
defined as follows:

typedef struct DECODER_PARMS_struc
{

unsigned char labeltype; // Bar code symbology
// type

unsigned short minlength; // Minimum length of
// barcode.

unsigned short maxlength; // Maximum length of
// barcode.

unsigned char alloc_specific; // Number of allocated
// parameters in
// decoder_specific

char decoder_specific[20]; // Symbology specific
// variables.

} DECODER_PARMS_type;

When getting decoder parameters, the application must specify only the desired
labeltype and alloc_specific; the remaining settings in this data structure are returned.
4-52

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 53 Tuesday, October 28, 1997 4:48 PM
The fields in this structure are defined below:

labeltype
The bar code symbology type value to get decoder information.Valid ASCII char
values for labeltype and symbology type numbers (as hexadecimal numerals) are
given in the following table:

Table 4-15. labeltype Values for DECODER_PARMS_struc

Note: Bar code types followed in this table by a # are not
supported by SCAN4122.

Bar Code
Type

ASCII char

 Value for labeltype
Hex

Value

UPC E0 0 0x30

UPC E1 # 1 0x31

UPC A 2 0x32

MSI 3 0x33

EAN 8 4 0x34

EAN 13 5 0x35

Codabar 6 0x36

Code 39 7 0x37

D 2 of 5 # 8 0x38

I 2 of 5 9 0x39

Code 11 # : 0x3A

Code 93 # ; 0x3B

Code 128 < 0x3C
4-53

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 54 Tuesday, October 28, 1997 4:48 PM
minlength, maxlength

Minimum and maximum allowable decode lengths. Length specification is:
Variable

minlength = maxlength = 0
Range (from a to b, including a and b)

minlength = a
maxlength = b

Dual (either a or b, given a <b)
minlength =a
maxlength = b

Single (only a)
minlength = maxlength = a

Special Cases:

For Code 128, the specified lengths are the
number of data characters encoded in the bar
code, not the number of human readable
characters.

For Codabar, the specified lengths include the
start and stop characters.

For UPC/EAN types, lengths specified are ignored.

 For Interleaved 2 of 5 and SCAN4122, the maximum length
that may be decoded is 30 characters and only dual length
mode is supported.

alloc_specific
The number of parameters in decoder_specific that are used. This value must be
supplied to Get and Set commands. The returned value is the number of
parameters that were Set or Get.

decoder_specific
Each symbology has its own specific variables to control functions within the
symbology's decoder. These parameters map directly to the _param structure used
by the 16-bit decoder package. These variables are described below:

UPC E0 byte 0 Return check digit. Valid values are:
4-54

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 55 Tuesday, October 28, 1997 4:48 PM
0 = do not return
1 = return

byte 1 UPC E0 preamble. Valid values are:

0 = no country code, no number system
1 = no country code, number system
2 = country code, number system

byte 2 Convert UPC E0 to UPC A. Valid values are:

0 = do not convert
1 = convert

UPC E1 # byte 0 Return check digit. Valid values are:

0 = do not return
1 = return

byte 1 UPC E1 preamble. Valid values are:

0 = no country code, no number system
1 = no country code, number system
2 = country code, number system

byte 2 Convert UPC E1 to UPC A. Valid values
are:

0 = do not convert
1 = convert

UPC A byte 0 Return check digit. Valid values are:

0 = do not return
1 = return

byte 1 UPC A preamble. Valid values are:

0 = no country code, no number system
1 = no country code, number system
2 = country code, number system

MSI byte 0 Redundancy. Valid values are:

0 = simple redundancy disabled
1 = simple redundancy enabled
4-55

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 56 Tuesday, October 28, 1997 4:48 PM
byte 1 Number of check digits. Valid values are:

1 = One check digit
2 = Two check digits

byte 2 Return check digit. Valid values are:

0 = do not return
1 = return

EAN 8 byte 0 Convert EAN 8 to EAN 13. Valid values are:

0 = do not convert
1 = convert

EAN 13 There are no associated decoder specific parameters.

Codabar byte 0 Redundancy. Valid values are:

0 = simple redundancy disabled
1 = simple redundancy enabled

byte 1 CLSI formatting. Valid values are:

0 = return with no CLSI formatting
1 = return with CLSI formatting

byte 2 NOTIS formatting. Valid values are:

0 = return with no NOTIS formatting
1 = return with NOTIS formatting

Code 39 byte 0 Code 39 check digit. Valid values are:

0 = disable Code 39 check digit
1 = enable Code 39 check digit

byte 1 Code 39 concatenation. Valid values are:

0 = disable Code 39 concatenation
1 = enable Code 39 concatenation

byte 2 Code 39 Full ASCII. Valid values are:

0 = disable Code 39 full ASCII
1 = enable Code 39 full ASCII
4-56

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 57 Tuesday, October 28, 1997 4:48 PM
byte 3 Redundancy. Valid values are:

0 = simple redundancy disabled
1 = simple redundancy enabled

D 2 of 5 # byte 0 Redundancy. Valid values are:

0 = simple redundancy disabled
1 = simple redundancy enabled

I 2 of 5 byte 0 Redundancy. Valid values are:

0 = simple redundancy disabled
1 = simple redundancy enabled

Code 11 # byte 0 Redundancy. Valid values are:

0 = simple redundancy disabled
1 = simple redundancy enabled

byte 1 Number of check digits. Valid values are:

0 = No check digits
1 = One check digit
2 = Two check digits

byte 2 Return check digit. Valid values are:

0 = do not return
1 = return

Code 93 # byte 0 Redundancy. Valid values are:

0 = simple redundancy disabled
1 = simple redundancy enabled

Code 128 byte 0 Redundancy. Valid values are:

0 = simple redundancy disabled
1 = simple redundancy enabled

Iata 2 of 5 # Uses Discrete 2 of 5’s minlength, maxlength, and
decoder_specific settings. It may not be enabled/disabled.

EAN 128 Uses Code 128’s minlength, maxlength, and
decoder_specific settings. It may not be enabled/disabled.
4-57

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 58 Tuesday, October 28, 1997 4:48 PM
Example
For a code sample illustrating the Get Decoder Parameters command, refer to the
sample scanning program (SCANSAMP.C) listed in Appendix 1 of this chapter.
4-58

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 59 Tuesday, October 28, 1997 4:48 PM
Set Decoder Parameters
Command Code: 0x06
Type: Immediate

Action
Sets information for the decoder settings of the selected bar code type.

Note: This command should not be issued if the command
queue is not empty.

Parameters
Information on decoder parameters specified in a data structure. See Get Decoder
Parameters (0x05) for a definition of the data structure and definitions of its fields.

Example
For a code sample illustrating the Set Decoder Parameters command, refer to the
sample scanning program (SCANSAMP.C) in Appendix 1 of this chapter.
4-59

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 60 Tuesday, October 28, 1997 4:48 PM
Get UPC/EAN General Parameters
Command Code: 0x07
Type: Immediate

Action
The UPC/EAN symbology family has several general parameters that affect all
functions and capabilities of UPC/EAN decoders. This command returns the current
setting for these parameters.

Parameters
The UPC/EAN general parameters contained in a data structure defined as follows:

typedef struct UPC_GEN_PARMS_struc
{

unsigned char security_level; // Security level value
unsigned char supp_2; // Two digit supplementals
unsigned char supp_5; // Five digit supplementals
unsigned char supp_auto_d; // Auto discriminate

// supplemental bar
// codes.

unsigned char supp_retry; // Retry count for auto
// discriminate
// supplementals.

unsigned char linear_decode; // Linear decode all UPC types.
} UPC_GEN_PARMS_type;

The fields in this structure are defined below:

security_level
Decoder security level value. This parameter tightens the decoder algorithms to
prevent misreads on poorly printed UPC/EAN labels. Valid values are:

0 = No security checking
1 = Check ambiguous characters
2 = Check all characters

supp_2
This parameter causes all UPC/EAN type bar codes either to read or not read 2-
digit supplementals. Valid values are:
4-60

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 61 Tuesday, October 28, 1997 4:48 PM
0 = Do not decode 2-digit supplementals
1 = Decode 2-digit supplementals

supp_5
This parameter causes all UPC/EAN type bar codes either to read or not read 5-
digit supplementals. Valid values are:

0 = Do not decode 5-digit supplementals
1 = Decode 5-digit supplementals

supp_auto_d
Autodiscriminate supplemental bar codes. Valid values are:

0 = Do not autodiscriminate supplementals
(i.e., ignore supplementals)

1 = autodiscriminate supplementals

supp_retry
If supp_auto_d is 1, retry count from 2 to 10 before reporting to ensure that no
supplemental bar code follows a UPC/EAN bar code.

linear_decode
Perform linear decode on all UPC/EAN types. This increases security in decoding
when multiple UPC/EAN labels are scanned at one time. Valid values are:

0 = Do not perform linear decode
1 = Perform linear decode

Example
For a code sample illustrating the Get UPC/EAN General Parameters command, refer
to the sample scanning program (SCANSAMP.C) in Appendix 1 of this chapter.
4-61

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 62 Tuesday, October 28, 1997 4:48 PM
Set UPC/EAN General Parameters
Command Code: 0x08
Type: Immediate

Action
This command sets the UPC/EAN general decoder parameters.

Note: This command should not be issued if the command
queue is not empty.

Parameters
Information on decoder parameters specified in a data structure. See Get UPC/EAN
General Parameters (0x07) for a definition of the data structure and definitions of its
fields.

Example
For a code sample illustrating the Set UPC/EAN General Parameters command, refer
to the sample scanning program (SCANSAMP.C) in Appendix 1 of this chapter.
4-62

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 63 Tuesday, October 28, 1997 4:48 PM
Enable Scanning with Wait
Command Code: 0x09
Type: Wait

Note: There is a No Wait version of this command (Command
Code: 0x89).

Action
Enables scanning in SCAN41XX. All physical and soft triggers are processed.

Parameters
There are no user parameters associated with this command.

Example
For a code sample illustrating the Enable Scanning with Wait command, refer to the
sample scanning program (SCANSAMP.C) in Appendix 1 of this chapter.
4-63

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 64 Tuesday, October 28, 1997 4:48 PM
Disable Scanning with Wait
Command Code: 0x0A
Type: Wait

Note: There is a No Wait version of this command (Command
Code: 0x8A).

Action
Disables scanning SCAN41XX. All physical and soft triggers are ignored and all read
command requests are rejected.

Parameters
There are no user parameters associated with this command.

Example
For a code sample illustrating the Disable Scanning with Wait command, refer to the
sample scanning program (SCANSAMP.C) in Appendix 1 of this chapter.
4-64

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 65 Tuesday, October 28, 1997 4:48 PM
Get Scan Status
Command Code: 0x0B
Type: Immediate

Action
Gets the current scanning status of SCAN41XX. See Figure 4-5 in Get Reader
Parameters (0x01) for a diagram of state transitions for the reader.

Parameters
Scanning status information stored in a data structure defined as follows:

typedef struct SCAN_STATUS_struc
{

unsigned char scan_state; // Scan state.
unsigned char status; // Current scan status.

} SCAN_STATUS_type;

The fields in this structure are defined as follows:

scan_state
The current scanning enable state of the SCAN41XX. Valid values are:

0 = Scanning disabled
1 = Scanning enabled

status
Current scan status. Valid values are:

1 = Acquiring (laser is on/contact is fully illuminated)
2 = Pulsing (if contact); Waiting (if laser)
3 = Stopped
4 = Timer expired (Klasse Eins only)

Example
For a code sample illustrating the Get Scan Status command, refer to the sample
scanning program (SCANSAMP.C) in Appendix 1 of this chapter.
4-65

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 66 Tuesday, October 28, 1997 4:48 PM
Get Trigger Mode
Command Code: 0x0C
Type: Immediate

Action
Gets the current trigger mode of SCAN41XX.

Parameter
Trigger mode information stored in a data structure defined as follows:

typedef struct TRIG_MODE_struc
{

unsigned char trigger_mode; //Current trigger mode
} TRIG_MODE_type;

The field in this structure is defined as follows:

trigger_mode
Triggering mode to process the physical trigger. Valid values are:

0 = Ignore external trigger (laser may be activated only by soft
trigger)

1 = Reserved

2 = Enable laser when triggered

Example
For a code sample illustrating the Get Trigger Mode command, refer to the sample
scanning program (SCANSAMP.C) in Appendix 1 of this chapter.
4-66

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 67 Tuesday, October 28, 1997 4:48 PM
Set Trigger Mode
Command Code: 0x0D
Type: Immediate

Action
Sets the current trigger mode of SCAN41XX.

Note: This command should not be issued if the command
queue is not empty.

Parameter
Information to be stored in a data structure that sets the trigger mode for processing
the physical trigger. See Get Trigger Mode (0x0C) for a definition of the data structure
and a definition of its field (trigger_mode).

Example
For a code sample illustrating the Set Trigger Mode command, refer to the sample
scanning program (SCANSAMP.C) in Appendix 1 of this chapter.
4-67

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 68 Tuesday, October 28, 1997 4:48 PM
Read Label with Wait
Command Code: 0x0E
Type: Wait

Note: There is a No Wait version of this command (Command
Code: 0x8E).

Action
This command causes a decode attempt when a triggering command is received. When
Read Label is specified as type Wait, SCAN41XX waits up to timeout milliseconds for
a label to be scanned. (timeout is a field in the structure SCB_type, defined in Scanner
Control Block (SCB).

Parameters
Read parameters that are contained in a data structure defined as follows:

typedef struct READ_struc
{

unsigned char labeltype; // Returned label type
void far *data_buf_ptr; // Pointer to data buffer
unsigned short data_buf_len; // Length of data buffer
unsigned short label_length; // Length of data placed

// in buffer
unsigned char scan_direction; // Decode direction
unsigned char read_status; // Scanning status for this

// read
} READ_type;

The fields in this structure are defined as follows:

labeltype
The symbology (bar code) type of the returned label. Valid ASCII char values for
labeltype and symbology type numbers (as hexadecimal numerals) are given in
the following table:
4-68

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 69 Tuesday, October 28, 1997 4:48 PM
Table 4-16. labeltype Values for READ_struc

data_buf_ptr
Pointer to a data buffer to store the decoded bar code.

Note: This must be a far pointer. Initialize this field before
submitting the Read command.

data_buf_len
Length of data buffer pointed to be data_buf_ptr.

Note: Initialize this field before submitting the Read

Bar Code
Type

ASCII char

 Value for labeltype
Hex

Value

UPC E0 0 0x30

UPC E1 1 0x31

UPC A 2 0x32

MSI 3 0x33

EAN 8 4 0x34

EAN 13 5 0x35

Codabar 6 0x36

Code 39 7 0x37

D 2 of 5 8 0x38

I 2 of 5 9 0x39

Code 11 : 0x3A

Code 93 ; 0x3B

Code 128 < 0x3C

Iata 2 of 5 > 0c3E

EAB 128 ? 0x3F
4-69

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 70 Tuesday, October 28, 1997 4:48 PM
command.

label_length
Length of decode data placed in the buffer pointed to by data_buf_ptr.

scan_direction
Decode direction of bar code. Valid values are:

1 = Forward
2 = Reverse

read_status
Current scan status for the current Read command. Valid values are:

1 = Acquiring
2 = Pulsing (if contact); Waiting (if laser)
3 = Stopped
4 = Timer expired (Klasse Eins only)

Example
For a code sample illustrating the Read Label with Wait command, refer to the sample
scanning program (SCANSAMP.C) in Appendix 1 of this chapter.
4-70

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 71 Tuesday, October 28, 1997 4:48 PM
Set Soft Trigger
Command Code: 0x0F
Type: Immediate

Action
Sets the soft trigger flag in the SCAN41XX. The next Read command processed issues
a trigger regardless of the status of the physical trigger buttons. The soft trigger flag is
cleared when either a bar code is decoded or the laser beam times out. The Set Soft
Trigger command may be issued after No Wait Read commands. However, if a Wait
Read command is issued, the Set Soft Trigger has no effect because control has not
been returned to the application program.

Parameters
There are no user parameters associated with this command.

Example
For a code sample illustrating the Set Soft Trigger command, refer to the sample
scanning program (SCANSAMP.C) in Appendix 1 of this chapter.
4-71

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 72 Tuesday, October 28, 1997 4:48 PM
Clear Soft Trigger
Command Code: 0x10
Type: Immediate

Action
Clears the soft trigger flag in the SCAN41XX.

Parameters
There are no user parameters associated with this command.

Example
For a code sample illustrating the Clear Soft Trigger command, refer to the sample
scanning program (SCANSAMP.C) in Appendix 1 of this chapter.
4-72

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 73 Tuesday, October 28, 1997 4:48 PM
Get Supported Decoders
Command Code: 0x11
Type: Immediate

Action
Returns null terminated string containing the decoder types that are in SCAN41XX
whether they are currently enabled or not.

Parameter
Information returned in the decoder_str field of a data structure defined as follows:

typedef struct DECODER_STRING_struc
{

char decoder_str[25]; // Null terminated decoder type
// string.

DECODER_STRING_type;

The field in this structure is defined as follows:
4-73

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 74 Tuesday, October 28, 1997 4:48 PM
decoder_str
Null terminated string of decoder types. Valid ASCII characters for use in
specifying decoders in decoder_str and the decoder type numbers as hexadecimal
numerals are given in Table 4-17

Table 4-17. decoder_str Values

Example
For a code sample illustrating the Get Supported Decoders command, refer to the
sample scanning program (SCANSAMP.C) in Appendix 1 of this chapter.

Bar Code
Type

ASCII char
 Value for

decoder_str

Hex
Value

UPC E0 0 0x30

UPC E1 1 0x31

UPC A 2 0x32

MSI 3 0x33

EAN 8 4 0x34

EAN 13 5 0x35

Codabar 6 0x36

Code 39 7 0x37

D 2 of 5 8 0x38

I 2 of 5 9 0x39

Code 11 : 0x3A

Code 93 ; 0x3B

Code 128 < 0x3C

Supp 2 Y 0x59

Supp 5 Z 0x5A
4-74

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 75 Tuesday, October 28, 1997 4:48 PM
Get Enabled Decoders
Command Code: 0x12
Type: Immediate

Action
Returns a null terminated string containing the decoder types that are enabled in
SCAN41XX.

Parameters
The parameter (decoder_str) for this command is the same as that for the Get
Supported Decoders (0x11) command. See Get Supported Decoders for the format of
the decoder string.

Example
For a code sample illustrating the Get Enabled Decoders command, refer to the
sample scanning program (SCANSAMP.C) in Appendix 1 of this chapter.
4-75

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 76 Tuesday, October 28, 1997 4:48 PM
Set Enabled Decoders
Command Code: 0x13
Type: Immediate

Action
A null terminated string containing the decoder types to be enabled is passed to
SCAN41XX. If the decoder is not currently supported, the enable command is ignored
for that decoder. If a decoder is not specified in decoder_str, it is disabled.

Note: This command should not be issued if the command
queue is not empty.

Parameters
The parameter (decoder_str) for this command is the same as that for the Get
Supported Decoders (0x11) command.

Example
For a code sample illustrating the Set Enabled Decoders command, refer to the sample
scanning program (SCANSAMP.C) in Appendix 1 of this chapter.
4-76

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 77 Tuesday, October 28, 1997 4:48 PM
Cancel Pending SCB
Command Code: 0x14
Type: Immediate

Action
Cancels a Scanner Control Block from the SCB command queue and sets the status and
retcode of the canceled SCB to 10 (Command Canceled).

Parameter
SCB_ptr, which is a field in a data structure that is defined as follows:

typedef struct CAN_SCB_struc
{

SCB_type far *SCB_ptr; // Pointer to SCB to be cancelled

} CAN_SCB_type;

The field in this structure is defined as follows:

SCB_ptr
Far pointer to the SCB to be canceled from the SCB command queue.

Example
For a code sample illustrating the Cancel Pending SCB command, refer to the sample
scanning program (SCANSAMP.C) in Appendix 1 of this chapter.
4-77

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 78 Tuesday, October 28, 1997 4:48 PM
Flush All Pending SCBs
Command Code: 0x15
Type: Immediate

Action
Cancels all queued entries from the SCB command queue. The retcode and status
fields of all canceled SCBs are set to 10 (Command Canceled).

Parameters
There are no user parameters associated with this command.

Example
For a code sample illustrating the Flush All Pending SCBs command, refer to the
sample scanning program (SCANSAMP.C) in Appendix 1 of this chapter.
4-78

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 79 Tuesday, October 28, 1997 4:48 PM
Get Number of Pending SCBs
Command Code: 0x16
Type: Immediate

Action
Returns the number of pending SCBs in the SCB command queue.

Parameter
The number of entries in the command queue is returned in the pending field of a data
structure defined as follows:

typedef struct NUM_PEND_struc
{

unsigned short pending; // Number of entries in
// the command queue

} NUM_PEND_type;

Example
For a code sample illustrating the Get Number of Pending SCBs command, refer to
the sample scanning program (SCANSAMP.C) in Appendix 1 of this chapter.
4-79

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 80 Tuesday, October 28, 1997 4:48 PM
Enable Scanning with No Wait
Command Code: 0x89
Type: No Wait

Note: There is a Wait version of this command (Command
Code: 0x09).

Action
Enables scanning in SCAN41XX. All physical and soft triggers are processed.

Parameters
There are no user parameters associated with this command.

Example
For a code sample illustrating the Enable Scanning with No Wait command, refer to
the sample scanning program (SCANSAMP.C) in Appendix 1 of this chapter.
4-80

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 81 Tuesday, October 28, 1997 4:48 PM
Disable Scanning with No Wait
Command Code: 0x8A
Type: No Wait

Note: There is a Wait version of this command
 (Command Code 0x0A).

Action
Disables scanning in SCAN41XX. All physical and soft triggers are ignored.

Parameters
There are no user parameters associated with this command.

Example
For a code sample illustrating the Disable Scanning with No Wait command, refer to
the sample scanning program (SCANSAMP.C) in Appendix 1 of this chapter.
4-81

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 82 Tuesday, October 28, 1997 4:48 PM
Read Label with No Wait
Command Code: 0x8E
Type: No Wait

Note: There is a Wait version of this command (Command
Code 0x0E).

Action
This command causes a decode attempt when a triggering command is received.

Parameters
Read parameters contained in a data structure defined in the description of the Read
Label with Wait command (Command Code 0x0E).

Example
For a code sample illustrating the Read Label with No Wait command, refer to the
sample scanning program (SCANSAMP.C) in Appendix 1 of this chapter.
4-82

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 83 Tuesday, October 28, 1997 4:48 PM
Completion and Error Codes
Table 4-18 lists the error and completion codes returned by SCAN41XX when an SCB
request presented by an application is complete.These values are returned in the
retcode and status fields of the SCB.

Table 4-18. SCAN41XX Completion and Error Codes

Code Explanation

0 Success. The associated command completed successfully.

1 Unknown Command. The command code passed in the command field of the
SCB is not valid.

2 Invalid SCB. Either the address of the command parameter buffer passed in the
SCB was not valid (zero), or the parameter buffer does not fit within a single
segment (i.e., buffer offset + length > 0xFFFF).

3 Invalid Command Parameter Pointer. Either the address of the command
parameter buffer passed in the SCB is invalid, or the parameter buffer does not fit
within a single segment (i.e., buffer offset + command length > 0xFFFF).

5 Invalid Parameter. An invalid value has been passed to the scanner driver in the
command parameter block of an SCB command.

9 Command Time-out. The command did not complete within the time specified in
the timeout field of the SCB.

10 Command Cancelled. The command was cancelled by either the Cancel SCB
(0x14) command or the Flush (0x15) command.

12 Command Already Completed. A command was completed before an attempt
was made to cancel it, or the SCB was not found.

13 Could Not Enable Scanning. An attempt to enable the attached scanner failed.

14 Scanning Not Enabled. An attempt to issue a Read (0x0E or 0x8E) command was
made before scanning was enabled.

15 Scanning Aborted. Scanning was disabled while a scan was in progress.

16 Physical Device Failure. The designated scanning device is either not present or
not responding to commands.
4-83

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 84 Tuesday, October 28, 1997 4:48 PM
17 Data Too Large. Decoded data were larger than the buffer size (data_buf_length)
passed in a Read (0x0E or 0x8E) command. Data is copied up to the buffer size, and
this error is reported in the SCB.

18 SCB Command Queue Full. The SCB command queue is full. All subsequent SCB
requests are ignored until there is space in the command queue.

19 Scanning Already Enabled. An attempt was made to enable scanning after a
successful Enable (0x09 or 0x89) command had completed.

20 Scanning Already Disabled. An attempt was made to disable scanning after a
successful Disable (0x0A or 0x8A) command had completed.

21 Invalid Data Buffer Pointer. Either the address (*data_buf_ptr) of the data buffer
passed in the Read (0x0E or 0x8E) command parameter block was not valid (zero),
or the data buffer does not fit within a single segment (i.e., buffer offset +
command length > 0xFFFF).

22 Invalid SCB Pointer to Cancel. Either the address of the SCB pointer to cancel was
not valid (zero), or the data buffer does not fit within a single segment (i.e., buffer
offset + command length > 0xFFFF).

23 No Data From Scanner. The attached scanning device was enabled and issued a
Start Scan command, but no transition data was received from the scanner.

24 SCB Currently In Use. The SCB submitted is currently in use by another
command.
Note: This is a serious error and should be corrected during the application
development phase.

25 Command Queue Not Empty. This scanner API command may not be issued
while a Read with No Wait command is pending. The scanner driver returns this
error code when any of the following commands is issued when the command
queue is not empty: Set Reader Parameters (0x02), Set Scan Parameters (0x04), Set
Decoder Parameters (0x06), Set UPC/EAN General Parameters (0x08), Set Trigger
Mode (0x0D), Set Enabled Decoders (0x13).

255 Command Pending. The command is currently being processed by the
SCAN41XX.

Table 4-18. SCAN41XX Completion and Error Codes (Continued)

Code Explanation
4-84

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 85 Tuesday, October 28, 1997 4:48 PM
The Scanner Type Identifier Program (SCANTYPE)
Because both older (SE-1022 based) and newer (SE-1000 based) PPT 4100/4110/4140
terminals may exist at the same site, a scanner type identification program has been
developed to identify the scanner type in a PPT 4100/4110/4140 terminal.

The identifier program (SCANTYPE) checks for the presence of the SE-1000 scanner
module. If the SE-1000 is not present, the program reports that the SE-1022 module is
installed. Because no other scanner types are supported for this revision of SCAN41XX,
these are the only scanner modules that are identified.

Type Identifier Program Implementation and Usage
SCANTYPE attempts to enable the SE-1000 scanner module. If the program is
successful, it reports a DOS ERRORLEVEL of 2. Otherwise, it reports an ERRORLEVEL
of 1 to indicate that the SE-1022 is installed.

The Scanner Type Identification Program may be run as part of the AUTOEXEC.BAT
file to determine which scanner driver to load. The following sample DOS batch file
illustrates the use of SCANTYPE.
4-85

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 86 Tuesday, October 28, 1997 4:48 PM

Rem Load Symbol BIOS Extensions
XSYMBIOS

Rem Determine which scanner type is present
SCANTYPE
Rem Branch to correct scan driver loading or error detection
if ERRORLEVEL 3 goto ERRSCAN
if ERRORLEVEL 2 goto LOAD4100
if ERRORLEVEL 1 goto LOAD4122
if ERRORLEVEL 0 goto ERRSCAN

:LOAD4100
Rem Load the SE-1000 version of the PPT 4100 scanner driver
SCAN4100
goto CONTINUEAUTO

:LOAD4122
Rem Load the SE-1022 version of the PPT 4100 scanner driver
SCAN4122
goto CONTINUEAUTO

:ERRSCAN
ECHO Error in scanner type identification. Scan driver not loaded.

Rem Continue AUTOEXEC.BAT
:CONTINUEAUTO
4-86

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 87 Tuesday, October 28, 1997 4:48 PM
Parameter Menu Scanning
Use the bar code menus in the appendix to enable and disable decoders and
parameters in place of API commands. For parameter value definitions and defaults
refer to Tables 4-3 through 4-8 in Execution and Configuration.

For best results, the application should parameterize the scanner driver as required.
Using parameter bar codes can cause the following situations:

1. Do not use parameter bar codes with SCAN4122. With SCAN4122, the parameter
bar codes can change the way the scanner driver and the scanner communicate,
which can prevent the scanner from operating properly.

2. Use parameter bar codes with SCAN4100 only when absolutely necessary and
only with great caution. With SCAN4100, the parameter bar codes can change the
settings of parameters set via the API. If a Get is performed after the parameter bar
code is scanned, it reflects the changes made by the parameter bar code. These
changes will not survive a reboot unless saved by the application and restored via
the API.

The following chart shows the beeper sequence, beeper pitch variation, and the
associated indication for bar code scans in this section.

BEEPER SEQUENCE PITCH VARIATION INDICATION

3 Beeps High-Low-High Correct entry scanned.

2 Beeps High-Low Value entered (additional
entries are expected).

6 Beeps High-Low-High-
Low-High-Low

Input error, or
“CANCEL” is scanned.
4-87

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 88 Tuesday, October 28, 1997 4:48 PM
Table 4-19 through Table 4-22 list the parameter defaults included in SCAN4100. The
bar code menus associated with these parameters are displayed with captions on the
pages that follow.

Table 4-19. SCAN4100 Parameter Defaults: Code Types

Code Type Length Default Value

UPC-A 0 Enabled

UPC-E0 0 Enabled

UPC-E1 0 Disabled

EAN-8 0 Enabled

EAN-13 0 Enabled

D 2 of 5 0-14 Enabled

I 2 of 5 14 and 10 Enabled

Code 39 0 Enabled

Codabar 0 Enabled

Code 128 0 Enabled

Code 93 0 Disabled

Code 11 4 to 55 Disabled

MSI Plessey 4 to 55 Disabled

Table 4-20. SCAN4100 Parameter Defaults: Decode Options

Decode Option Default Value

Transmit UPC-E0 Check Digit Disabled

Transmit UPC-E1 Check Digit Disabled

Transmit UPC-A Check Digit Enabled

Convert UPC-E0 to UPC-A Disabled

Convert UPC-E1 to UPC-A Disabled

EAN Zero Extend Disabled

Code 39 Full ASCII Disabled

CLSI Editing Disabled

NOTIS Editing Disabled

MSI Plessey Check Digit One

Transmit MSI Plessey Check Digit Disabled

Code 11 Check Digit One
4-88

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 89 Tuesday, October 28, 1997 4:48 PM
Table 4-21. SCAN4100 Parameter Defaults: Special Decode Options

Table 4-22. SCAN4100 Parameter Defaults: Miscellaneous

Transmit Code 11 Check Digit Disabled

Verify Code 39 Check Digit Disabled

Decode Redundancy for UPC/EAN without Supplementals 5

UPC/EAN Security level 0

Special Decode Option Default Value

Simple Redundancy:

 Code 39 Disabled

 D 2 of 5 Disabled

 I 2 of 5 Disabled

 Code 128 Disabled

 Codabar Enabled

 Code 11 Disabled

 MSI Plessey Disabled

 Code 93 Disabled

Bi-Directional Redundancy Disabled

Linear UPC/EAN Decode Enabled

Parameter Default Value

UPC-E0 Preamble None

UPC-E1 Preamble None

UPC-A Preamble System Character

Transmit Code ID Character Disabled

Table 4-20. SCAN4100 Parameter Defaults: Decode Options (Continued)

Decode Option Default Value
4-89

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 90 Tuesday, October 28, 1997 4:48 PM
Set Default Parameter
Defaults are those listed in Table 4-19 through Table 4-22

SET ALL DEFAULTS
4-90

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 91 Tuesday, October 28, 1997 4:48 PM
Code Type
Add or delete specific code types by scanning the appropriate bar code(s).

DELETE UPC-E0ADD UPC-E0

DELETE CODE 39ADD CODE 39

DELETE UPC-AADD UPC-A

DELETE ALL CODE TYPESENABLE ALL CODE TYPES

ENABLE COMMON CODE
TYPES ONLY
4-91

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 92 Tuesday, October 28, 1997 4:48 PM
DELETE I 2 OF 5ADD I 2 OF 5

DELETE EAN-8ADD EAN-8

DELETE EAN-13ADD EAN-13

DELETE CODABARADD CODABAR

ADD UPC-E1 DELETE UPC-E1
4-92

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 93 Tuesday, October 28, 1997 4:48 PM
DELETE CODE 128ADD CODE 128

DELETE MSI/PlesseyADD MSI/Plessey*

DELETE CODE 11ADD CODE 11**

DELETE CODE 93ADD CODE 93

*After adding MSI/Plessey you must select either one or two check digits from the
Decode Options.

**After adding Code 11, you must select none, one or two check digits from the
Decode Options.

ADD D 2 OF 5 DELETE D 2 OF 5
4-93

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 94 Tuesday, October 28, 1997 4:48 PM
Code Lengths
To select two lengths for each code type:

1. Scan the desired option.

2. Scan two bar codes for each desired length. For example, for a length of “12”, scan
“1” then “2”. For a length of “3”, scan “0”, then “3”. You must always scan two bar
codes for each length.

3. If you make an error, or wish to change your selection, scan CANCEL

CODE 39 LENGTH
WITHIN RANGE

CODE 39 ANY LENGTH

CODE 39 2 DISCRETE
LENGTHS

CODE 39 1 DISCRETE
LENGTH
4-94

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 95 Tuesday, October 28, 1997 4:48 PM
CODABAR 2 DISCRETE
LENGTHS

CODABAR 1 DISCRETE
LENGTH

CODABAR ANY LENGTH

CODABAR LENGTH
WITHIN RANGE
4-95

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 96 Tuesday, October 28, 1997 4:48 PM
CODE 128 LENGTH
 WITHIN RANGE

CODE 128
2 DISCRETE LENGTHS

CODE 128
1 DISCRETE LENGTH

CODE 128 ANY LENGTH
4-96

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 97 Tuesday, October 28, 1997 4:48 PM
D 2 OF 5 2 DISCRETE
LENGTHS

D 2 OF 5 1 DISCRETE
LENGTH

D 2 OF 5 LENGTH
WITHIN RANGE

D 2 OF 5 ANY LENGTH
4-97

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 98 Tuesday, October 28, 1997 4:48 PM
CODE 93
2 DISCRETE LENGTHS

CODE 93 LENGTH
 WITHIN RANGE

CODE 93
1 DISCRETE LENGTH

CODE 93 ANY LENGTH
4-98

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 99 Tuesday, October 28, 1997 4:48 PM
*Choosing I 2 of 5 ANY LENGTH may lead to misread codes.

I 2 OF 5 LENGTH
WITHIN RANGE

I 2 OF 5 2 DISCRETE
LENGTHS

I 2 OF 5 1 DISCRETE
LENGTH

I 2 OF 5 ANY LENGTH*
4-99

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 100 Tuesday, October 28, 1997 4:48 PM
MSI/Plessey
 LENGTH WITHIN RANGE

MSI/Plessey
ANY LENGTH

MSI/Plessey 2 DISCRETE
LENGTHS

MSI/Plessey 1 DISCRETE
 LENGTH
4-100

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 101 Tuesday, October 28, 1997 4:48 PM
CODE 11 LENGTH WITHIN
RANGE

CODE 11
ANY LENGTH

CODE 11 2 DISCRETE
LENGTHS

CODE 11 1 DISCRETE
 LENGTH
4-101

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 102 Tuesday, October 28, 1997 4:48 PM
1

2 3

4 5

6 7

8 9

0

CANCEL
4-102

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 103 Tuesday, October 28, 1997 4:48 PM
Decode Options

TRANSMIT UPC-A CHECK DIGIT DO NOT
TRANSMIT UPC-A CHECK DIGIT

TRANSMIT UPC-E0 CHECK DIGIT DO NOT
TRANSMIT UPC-E0 CHECK DIGIT

TRANSMIT UPC-E1 CHECK DIGIT DO NOT
TRANSMIT UPC-E1 CHECK DIGIT
4-103

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 104 Tuesday, October 28, 1997 4:48 PM
CONVERT UPC-E0 TO UPC-A DO NOT
CONVERT UPC-E0 TO UPC-A

CONVERT UPC-E1 TO UPC-A DO NOT
CONVERT UPC-E1 TO UPC-A

ENABLE EAN ZERO EXTEND DISABLE EAN ZERO EXTEND

ENABLE CODE 39
FULL ASCII

DISABLE CODE 39
FULL ASCII
4-104

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 105 Tuesday, October 28, 1997 4:48 PM
DECODE CODE 11 WITH
NO CHECK DIGITS

DECODE CODE 11 WITH
1 CHECK DIGIT

DECODE CODE 11 WITH
2 CHECK DIGITS

TRANSMIT CODE 11
 CHECK DIGIT(S)

DO NOT TRANSMIT CODE 11
 CHECK DIGIT(S)
4-105

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 106 Tuesday, October 28, 1997 4:48 PM
AUTODISCRIMINATE UPC/EAN
WITH SUPPLEMENTALS

DECODE MSI/Plessey WITH
1 CHECK DIGIT

DECODE MSI/Plessey WITH
2 CHECK DIGITS

TRANSMIT
MSI/Plessey CHECK DIGITS

DO NOT TRANSMIT
MSI/Plessey CHECK DIGITS

DECODEUPC/EAN
 SUPPLEMENTALS

IGNORE UPC/EAN
 SUPPLEMENTALS
4-106

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 107 Tuesday, October 28, 1997 4:48 PM
ENABLE CLSI EDITING DISABLE CLSI EDITING

ENABLE NOTIS EDITING DISABLE NOTIS EDITING

VERIFTY CODE 39
CHECK DIGIT

DO NOT VERIFY CODE 39
CHECK DIGIT

TRANSMIT CODE
ID CHARACTER

DO NOT TRANSMIT
CODE ID CHARACTER
4-107

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 108 Tuesday, October 28, 1997 4:48 PM
Decode Redundancy for UPC/EAN without Supplementals
To set a decode redundancy value:

1. Scan the DECODE REDUNDANCY bar code below.

2. Scan two bar codes on the next page that represent the desired number of times.
For single digit numbers, include a leading zero.

UPC/EAN SECURITY LEVEL 0

UPC/EAN SECURITY LEVEL 1

UPC/EAN SECURITY LEVEL 2

UPC/EAN SECURITY LEVEL 3
4-108

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 109 Tuesday, October 28, 1997 4:48 PM
3. If you make an error, or wish to change your selection, scan CANCEL.

DECODE REDUNDANCY
for UPC/EAN without

SUPPLEMENTALS
4-109

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 110 Tuesday, October 28, 1997 4:48 PM
Decode Redundancy for UPC/EAN without Supplementals

1

2 3

4 5

6 7

8 9

0

CANCEL
4-110

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 111 Tuesday, October 28, 1997 4:48 PM
UPC-A Preamble
Select one option for UPC-A preamble by scanning the appropriate bar code.

NONE

SYSTEM CHARACTER

SYSTEM CHARACTER &
COUNTRY CODE
4-111

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 112 Tuesday, October 28, 1997 4:48 PM
UPC-E0 Preamble
Select one option for UPC-E0 preamble by scanning the appropriate bar code.

NONE

SYSTEM CHARACTER

SYSTEM CHARACTER &
COUNTRY CODE
4-112

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 113 Tuesday, October 28, 1997 4:48 PM
UPC-E1 Preamble
Select one option for UPC-E1 preamble by scanning the appropriate bar code.

NONE

SYSTEM CHARACTER

SYSTEM CHARACTER &
COUNTRY CODE
4-113

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 114 Tuesday, October 28, 1997 4:48 PM
Special Decode Options
Simple Redundancy

ENABLE CODE 39
SIMPLE REDUNDANCY

DISABLE CODE 39
SIMPLE REDUNDANCY

ENABLE CODE 128
SIMPLE REDUNDANCY

DISABLE CODE 128
SIMPLE REDUNDANCY

ENABLE I 2 OF 5
SIMPLE REDUNDANCY

DISABLE I 2 OF 5
SIMPLE REDUNDANCY

ENABLE CODABAR
SIMPLE REDUNDANCY

DISABLE CODABAR
SIMPLE REDUNDANCY
4-114

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 115 Tuesday, October 28, 1997 4:48 PM
ENABLE MSI/ Plessey
SIMPLE REDUNDANCY

DISABLE MSI/Plessey
SIMPLE REDUNDANCY

ENABLE CODE 11
SIMPLE REDUNDANCY

DISABLE CODE 11
SIMPLE REDUNDANCY

ENABLE D 2 of 5
SIMPLE REDUNDANCY

DISABLE D 2 of 5
SIMPLE REDUNDANCY

ENABLE CODE 93
SIMPLE REDUNDANCY

DISABLE CODE 93
SIMPLE REDUNDANCY
4-115

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 116 Tuesday, October 28, 1997 4:48 PM
Bi-Directional Redundancy
Enable or disable bi-directional redundancy for codes with Simple Redundancy
enabled.

ENABLE BIDIRECTION-
AL REDUNDANCY

DISABLE BIDIRECTIONAL
REDUNDANCY
4-116

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 117 Tuesday, October 28, 1997 4:48 PM
Linear UPC/EAN Decode

ENABLE LINEAR
UPC DECODE

DISABLE LINEAR
UPC DECODE
4-117

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 118 Tuesday, October 28, 1997 4:48 PM
Differences Between SCAN3000 and SCAN41XX
This section describes differences between the Series 3000 Scanner Driver (SCAN3000)
and the PPT 4100/4110/4140 Scanner Driver (SCAN41XX). It is meant to aid the
transition to SCAN41XX for application programmers who already know how to
access scanning functions with SCAN3000. It consists of the following subsections:

• Overview of SCAN3000 Architecture

• Overview of SCAN41XX Architecture

• Series 3000 Scanning Driver Generation

• PPT 4100/4110/4140 Scanning Driver Generation

• Series 3000 Scanning Driver Configuration

• PPT 4100/4110/4140 Scanning Driver Configuration

• API Translations from SCAN41XX to SCAN3000
4-118

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 119 Tuesday, October 28, 1997 4:48 PM
Overview of SCAN3000 Architecture
Figure 4-7 shows the basic architecture of SCAN3000 and how application programs
interact with it.

Figure 4-7. SCAN3000 Driver/Application Interaction

SCAN3000 is loaded as a Terminate and Stay Resident (TSR) program from the
AUTOEXEC.BAT file or from an application program. Once loaded, the SCAN3000
TSR operates as follows:

• It contains the code necessary to interface with the BIOS to control laser guns and
contact wands to acquire bar code data.

• It decodes the bar code data.

• It places the decoded data into the console queue.

Application programs must retrieve the decoded data from the console queue and
copy it to a local area.

Trigger
Pull

BIOS Acquisition Routines

Console Driver

SCAN3000

Digital
Bar

Data

Decoded
Data

Get / Set
Parameters

(IOCTL)

User
Application

Get / Set
Parameters

(IOCTL)

Decoded
Data

(DOSREAD)

Keys
and

Labels
Queue

Decoder
Routines

Raw
Data

Buffer

Label Info Buffer

1 234 56 78901 2

Digital
Signal

Laser
Beam
4-119

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 120 Tuesday, October 28, 1997 4:48 PM
SCAN3000 may be invoked with two optional parameters. The first parameter controls
the size of the raw data buffer used to hold the acquired bar and space data; its default
is 2048 bytes. The second parameter controls the size of the label information buffer
passed on to the console driver.

To establish a logical connection to SCAN3000, application programs must first open
the driver via the DosOpen command. The handle that is returned must be used by all
commands that wish to communicate with SCAN3000. The IOCTL (i.e., Input/Output
Control) function calls DosIoCtrlRdData. DosIoCtrlWrData may then be used to
retrieve and modify scanning parameters. The DosRead command gets decoded data
from the console queue, allowing multiple decodes to be queued up in the console
queue. However, if the application program does not retrieve the decoded data from
the console queue, the queue eventually fills up and further scanned data is lost.
IOCTL commands issued to SCAN3000 are first processed by the console driver, which
passes on to SCAN3000 related commands to the driver.

Overview of SCAN41XX Architecture
The PPT 4100/4110/4140 Scanner Driver (SCAN41XX) is loaded as a TSR either from
the AUTOEXEC.BAT file or by an application program. The SCAN41XX TSR contains
the control code to interface with attached scanner devices and to manipulate scanner
driver parameters. The Extended Symbol BIOS TSR (XSYMBIOS) must be loaded prior
to loading SCAN41XX. XSYMBIOS contains functions which enable SCAN41XX to
interface with the PPT 4100/4110/4140 hardware platform. Refer to Execution and
Configuration for the procedures for loading SCAN41XX.

SCAN41XX may be invoked with an optional command line parameter which denotes
the name of an alternate configuration file. If used, this parameter must specify the
entire path name along with the drive. Refer to Execution and Configuration for further
information on the configuration file.

Applications communicate with SCAN41XX by loading a pointer to a Scanner Control
Block (SCB) in the register pair ES:BX and issuing a dedicated software interrupt (INT
0x62). SCAN41XX processes SCBs in two ways – immediately and queued. The Wait
option submits immediate commands, the Wait/No Wait option submits queued
commands. For a command submitted with the Wait option, SCAN41XX returns
control to the application only after the specified command is complete. It places No
Wait commands into a First-In-First-Out (FIFO) queue and returns control to the
application. Queued commands are processed in the background. The application
program must monitor return and status codes to check for command complete result.
After a queued command has completed execution, it is removed from the command
queue.
4-120

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 121 Tuesday, October 28, 1997 4:48 PM
To enable the scanner and scan a bar code, an application must at least submit the
following SCBs:

1. Enable Scanning Command Number 0x09 (Wait option) or
 0x89 (No Wait option)

2. Read Label Command Number 0x0E (Wait option) or
 0x8E (No Wait option)

3. Disable Scanning Command Number 0x0A (Wait option) or
 0x8A (No Wait option)

Resubmit the Read Label command for each bar code to be scanned. For the details of
SCB and command parameter structures, see the User Interface and Supported API
Commands sections.
4-121

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 122 Tuesday, October 28, 1997 4:48 PM
Figure 4-8 depicts the basic architecture of SCAN41XX. This release of SCAN41XX
supports the internal scanner module SE-1000. The driver performs the actual decode
process, allowing software updates to be sent to decoders as they become available. To
use the software decoders, upgrade existing hardware decoder modules to shared
memory acquisition cards. The acquisition card consists of a hardware interface that
assists SCAN4100 by performing the low level acquisition of bar and space data and
places them into a memory area shared by the hardware and SCAN4100. This bar/
space data is decoded by SCAN4100 and passed on to the application program.

Figure 4-8. SCAN41XX Driver/Application Interaction

Read
Command

Trigger
Handler

Enable
Scanning

Disable
Scanning

Raw
Data

Buffer

Decoder
Routines

Trigger
Detect

SCANXXXX

ASIC
Laser

Control

XSYMBIOS

Internal

View

Trigger
Pull

Trigger Signal

Trigger
Notification

Enable
Laser

Digital Bar Data

Decoded
Data

User
Application

Enable Scanning SCB

Read SCB

Disable Scanning SCB

1 2 3 4 56 78 9 0 1 2

Laser
Beam

Allow Activation
of Laser

Do Not Allow
Activation of LaserApplication Entry

Scan Data:
123456789012

Description:
3cm Widgets

Quantity On Hand:
4,719,456
4-122

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 123 Tuesday, October 28, 1997 4:48 PM
Series 3000 Scanning Driver Generation
SCAN3000 is shipped as a set of object files, which usually reside in the C:\3000\FILES
directory, and a program generator, which usually resides in the C:\3000 directory. The
Microsoft C (Version 6.0) compiler must also be installed to assist in the TSR generation
process. The program generator, BLDSCAN.EXE, is a text-based, menu-driven
program that customizes a scanning TSR for a user’s specific needs. Parameters such
as decoder types, desired lengths, check digits, and data formats are selected while
using BLDSCAN.

When the Execute program option is selected, two files are generated:

• a linker response file which contains the names of the object modules of the
selected decoders and control routines

Only the decoders enabled are actually placed in the resulting SCAN3000 TSR.
This allows for the smallest possible program size. Minimum program size is an
important factor because the TSR program must reside in the TPA (Transient
Program Area) memory space of the terminal.

• a C subroutine is generated which contains the parameter values selected during
BLDSCAN

This subroutine is compiled and linked along with the other object modules in
the linker response file. If PDF was enabled, another C subroutine is generated
with PDF-specific parameters and becomes part of SCAN3000.

The initial invocation of SCAN3000 calls the C parameterization subroutines and
causes registration with the console driver to allow scanning. SCAN3000 may only be
loaded once, further attempts to load SCAN3000 are ignored.
4-123

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 124 Tuesday, October 28, 1997 4:48 PM
PPT 4100/4110/4140 Scanning Driver Generation
The PPT 4100/4110/4140 Scanning Driver is shipped as an executable TSR program
SCAN41XX.EXE along with the default configuration file SCAN41XX.CFG. The
configuration file is a text file with the following format:

[Parameter_Section_Heading1]

parameter name1 = parameter value1

parameter name2 = parameter value2

 .

 .

 .

To customize the driver, edit the configuration file with any PC text editor. See
Execution and Configuration for a description of the content and structure of a scanner
configuration file.

Place the SCAN41XX and a configuration file in the terminal either on the flash disk or
on a PCMCIA card. If you are using the default configuration file, it must reside on the
same drive and directory as SCAN41XX.EXE. If you are using an alternate
configuration file, specify its name as a command line parameter to SCAN41XX,
including its entire path and drive letter. If SCAN41XX cannot locate a default
configuration file, it uses default values to parameterize the driver. Refer to Tables 4-3
through 4-8 in Execution and Configuration for lists of scanning parameters and the
default values used by SCAN41XX.

The initial invocation of SCAN41XX causes the configuration file to be read in and
verified. If any errors are found in the configuration file, the program load aborts and
an error message displays detailing the error. Refer to Table 4-2 in Execution and
Configuration for a list of load time messages, including those displayed to report
configuration file errors.

After SCAN41XX is parameterized, the program terminates, removing the
initialization and parameterization portion of code, and stays resident. Load
SCAN41XX once; further attempts to load SCAN41XX are ignored.
4-124

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 125 Tuesday, October 28, 1997 4:48 PM
Series 3000 Scanning Driver Configuration
After SCAN3000 is loaded, application programs may manipulate parameters at
runtime. However, decoders that were not enabled by BLDSCAN cannot be enabled
by application programs. These unselected decoders are not linked to the driver and
therefore do not exist.

An application program uses the DosOpen command to open the scanner driver. The
handle returned must be used by all commands that wish to communicate with
SCAN3000. The IOCTL (Input/Output Control) function calls DosIoCtrlRdData and
DosIoCtrlWrData may then be used to access and modify scanning parameters. The
parameters that are passed to these functions are the handle value that was established
by the DosOpen command, a pointer to an IOCTL block, and the length of the data to
be accessed.

Bar code input devices are configured through the Get/Set Reader Characteristics,
Get/Set Reader Parameters, Get/Set Scan Parameters subcommands. Part of each
decoder's parameters must be get/set individually through the Get/Set Decoder
Parameters subcommands. Use the full decoder symbolic name (e.g. CODE_39,
CODABAR, UPC_A, etc.) to reference a decoder. This command can configure the
following parameters: enable status, minimum and maximum length and one decoder
specific parameter. Other parameters are accessed by the Get/Set Redundancy, Get/
Set Check Digit Information, Get/Set UPC Parameters, Get/Set Data Formatting
subcommands. For specific command formats refer to the Series 3000 Application
Development Kit documentation.

PPT 4100/4110/4140 Scanning Driver Configuration
After SCAN41XX is loaded, application programs may manipulate scanning
parameters at runtime. All decoder types supported by the SE-1000 decode module are
accessible and controllable.

The following features of the PPT 4100/4110/4140 Scanning Driver highlight
significant differences from the Series 3000 Scanning Driver:

• Use the dedicated software interrupt 0x62 and scanner control blocks (SCB) to
access scanning parameters.

• Overall parameters are rearranged or modified to place them in more logical
groupings and orderings than they are in the Series 3000 driver.

• The Get/Set Reader Parameters command controls bar code input devices.

• Parameters are grouped together by categories:
4-125

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 126 Tuesday, October 28, 1997 4:48 PM
- common reader parameters

- laser specific parameters

- contact wand specific parameters

• Up to ten scanner configurations may be saved at one time and switched to by
setting only the parameter index field of the SCB.

• The Get/Set Scan Parameters commands control general decoder parameters.

• The Get/Set Decoder Parameters commands control parameters specific to a
decoder type. Decoders are referenced by their standard decoder values (e.g.
0x37 = Code 39, 0x36 = Codabar, 0x32 = UPC A, etc.).

• The Get/Set UPC/EAN General Parameters commands group and control
general parameters specific to the UPC/EAN code types.

For the format of scanner control blocks and command structures see User Interface and
Supported API Commands.
4-126

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 127 Tuesday, October 28, 1997 4:48 PM
API Translations from SCAN41XX to SCAN3000
SCAN41XX combines functions of the Series 3000 BIOS, console driver, and
SCAN3000. Series 3000 functions that control trigger handling, scanner acquisition,
and reporting decode data to applications are part of SCAN41XX. Although much of
the API to SCAN3000 has been retained, some parameters are rearranged or modified
for clarity. Table 4-23 shows the API translation from SCAN41XX to SCAN3000. Note
in this table that Get/Set commands are treated together and that the hexadecimal
values of command codes are given in parentheses after the associated commands. See
Supported API Commands for descriptions of the SCAN41XX commands listed in Table
4-23
4-127

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 128 Tuesday, October 28, 1997 4:48 PM
Table 4-23. API Translations from SCAN41XX to SCAN3000

SCAN41XX Command Series 3000 API Translation

GET VERSION INFORMATION (0x00)
*version_str
version

Not implemented in SCAN3000.

GET/SET READER PARAMETERS (0x01 &
0x02)

parameter_index

GET/SET SCAN MODE (0x01 & 0x01)

scan_mode scan_mode

GET/SET SCANNER PARAMETERS (0x05
& 0x05)

enable_settle_time enable_used & enable_settle_time

power_settle_time power_settle_time

inverse_label_flag inverse_label_flag

white_data_logic_lvl white-data_logic_lvl

GET/SET SCAN PARAMETERS (0x06 &
0x06)

dec_beep_time dec_beep & dec_beep_time

dec_beep_freq beep_freq

scans_per_label scans_per_label

clk_speed_toggle clk_speed_toggle

trans_resolution trans_resolution
4-128

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 129 Tuesday, October 28, 1997 4:48 PM
subseq_scan_time subseq_scan_time

no_data_time no_data_time

post_dec_action post_dec_action

dec_fail_action dec_fail_action

GET/SET SCANNER CHARACTERISTICS
(0x04 & 0x04)

prod_trigger prod_trigger

two_stage_trigger This is a BIOS function in Series 3000

multiple_scan multiple_scan

prod_direction prod_direction

GET/SET SCAN PARAMETERS (0x06 &
0x06)

dec_feedb_time decode_feedback & dec_feedb_time

GET/SET SCANNER CHARACTERISTICS
(0x04 & 0x04)

dec_feedback_lvl dec_feedback_lvl

scan_led_ctrl Not implemented in SCAN3000

scan_led_lvl Not implemented in SCAN3000

KE_enable Not implemented in SCAN3000

GET/SET SCAN PARAMETERS (0x06 &
0x06)

KE_time_used KE_time_used

KE_time_left KE_time_left

Table 4-23. API Translations from SCAN41XX to SCAN3000 (Continued)

SCAN41XX Command Series 3000 API Translation
4-129

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 130 Tuesday, October 28, 1997 4:48 PM
qz_ratio qz_ratio

init_scan_time init_scan_time

pulse_delay pulse_delay

GET/SET SCAN PARAMETERS (0x03 & 0x04) GET/SET REDUNDANCY (0x0C & 0x09)

bidir_redundancy bidir_redundancy

GET/SET RETURN FORMAT (0x0F & 0x0C)

xmit_code_id xmit_code_id

GET/SET DECODER PARAMETERS (0x05 &
ox06)

GET/SET DECODER PARAMETERS (0x07
& 0x07)

label_type = 0x30 label_type = UPC_E0

minlength minlength

maxlength maxlength

alloc_specific

GET/SET UPC PARAMETERS (0x0E & 0x0B)

decoder_specific[0] upc_e_chk_b

decoder_specific[1] upce_preamble

GET/SET DECODER PARAMETERS (0x07
& 0x07)

decoder_specific[2] decoder_specific[0](cvt_upce0_ to_upca)

Table 4-23. API Translations from SCAN41XX to SCAN3000 (Continued)

SCAN41XX Command Series 3000 API Translation
4-130

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 131 Tuesday, October 28, 1997 4:48 PM
GET/SET DECODER PARAMETERS (0x05 &
0x06)

GET/SET DECODER PARAMETERS (0x07
& 0x07)

labeltype = 0x31 labeltype = UPC_E1

minlength
maxlength

minlength
maxlength

alloc_specific

GET/SET UPC PARAMETERS (0x0E & 0x0B)

decoder-specific[0] upc_e1_chk_b

decoder_specific[1] upce1_preamble

GET/SET DECODER PARAMETERS (0x07
& 0x07)

decoder_specific[2] decoder_specific[0](cvt_upce1_to_upca)

GET/SET DECODER PARAMETERS (0x05 &
0x06)

GET/SET DECODER PARAMETERS (0x07
& 0x07)

labeltype = 0x32 labeltype = UPC_A

minlength minlength

maxlength maxlength

alloc_specific

GET/SET UPC PARAMETERS (0x0B & 0x0E)

decoder_specific[0] upc_a_chk_b

decoder_specific[1] upca_preamble

Table 4-23. API Translations from SCAN41XX to SCAN3000 (Continued)

SCAN41XX Command Series 3000 API Translation
4-131

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 132 Tuesday, October 28, 1997 4:48 PM
GET/SET DECODER PARAMETERS (0x05 &
0x06)
labeltype = 0x33

GET/SET DECODER PARAMETERS (0x07
& 0x07)
labeltype = MSI

minlength minlength

maxlength maxlength

alloc_specific

GET/SET REDUNDANCY (0x0C & 0x09)

decoder_specific[0] cmsi_red_enabled

GET/SET DECODER PARAMETERS (0x07
& 0x07)

decoder_specific[1] decoder_specific[0](msi_num_cd)

GET/SET CHECKS (0x0D & 0x0A)

decoder_specific[2] report_msi_chk

GET/SET DECODER PARAMETERS (0x05 &
0x06)

GET/SET DECODER PARAMETERS (0x07
& 0x07)

labeltype = 0x34 labeltype = EAN_8

minlength minlength

maxlength maxlength

alloc_specific

GET/SET UPC PARAMETERS (0x0E & 0x0B)

decoder_specific[0] conv_ean8to13_b

Table 4-23. API Translations from SCAN41XX to SCAN3000 (Continued)

SCAN41XX Command Series 3000 API Translation
4-132

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 133 Tuesday, October 28, 1997 4:48 PM
GET/SET DECODER PARAMETERS (0x05 &
0x06)

GET/SET DECODER PARAMETERS (0x07
& 0x07)

labeltype = 0x35 labeltype = EAN_13

minlength minlength

maxlength maxlength

alloc_specific

There are no associated decoder specific
parameters.

GET/SET DECODER PARAMETERS (0x05 &
0x06)

GET/SET DECODER PARAMETERS (0x07
& 0x07)

labeltype = 0x36 labeltype = CODABAR

minlength minlength

maxlength maxlength

alloc_specific

GET/SET REDUNDANCY (0x0C & 0x09)

decoder_specific[0] cbar_red_enabled

GET/SET RETURN FORMAT (0x0F & 0x0C)

decoder_specific[1] clsi_editing

decoder_specific[2] notis_editing

Table 4-23. API Translations from SCAN41XX to SCAN3000 (Continued)

SCAN41XX Command Series 3000 API Translation
4-133

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 134 Tuesday, October 28, 1997 4:48 PM
GET/SET DECODER PARAMETERS (0x05 &
0x06)

GET/SET DECODER PARAMETERS (0x07
& 0x07)

labeltype = 0x37 labeltype = CODE_39

minlength minlength

maxlength maxlength

alloc_specific

GET/SET CHECKS (0x0D & 0x0A)

decoder_specific[0] code39_chk_b

decoder_specific[1]
(code39_concatenation)

Not controllable in SCAN3000

GET/SET DECODER PARAMETERS (0x07
& 0x07)

decoder_specific[2] decoder_specific[0](code39_full_ascii)

GET/SET REDUNDANCY (0x0C & 0x09)

decoder_specific[3] c39_red_enabled

GET/SET DECODER PARAMETERS (0x05 &
0x06)

GET/SET DECODER PARAMETERS (0x07
& 0x07)

labeltype = 0x38 labeltype = CODE_D25

minlength minlength

maxlength maxlength

alloc_specific

Table 4-23. API Translations from SCAN41XX to SCAN3000 (Continued)

SCAN41XX Command Series 3000 API Translation
4-134

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 135 Tuesday, October 28, 1997 4:48 PM
GET/SET REDUNDANCY (0x0C & 0x09)

decoder_specific[0] cd25_red_enabled

GET/SET DECODER PARAMETERS (0x05 &
0x06)

GET/SET DECODER PARAMETERS (0x07
& 0x07)

labeltype = 0x39 labeltype = CODE_I25

minlength minlength

maxlength maxlength

alloc_specific

GET/SET REDUNDANCY (0x0C & 0x09)

decoder_specific[0] ci25_red_enabled

GET/SET DECODER PARAMETERS (0x05 &
0x06)

GET/SET DECODER PARAMETERS (0x07
& 0x07)

labeltype = 0x3A labeltype = CODE_11

minlength minlength

maxlength maxlength

alloc_specific

GET/SET REDUNDANCY (0x0C & 0x09)

Table 4-23. API Translations from SCAN41XX to SCAN3000 (Continued)

SCAN41XX Command Series 3000 API Translation
4-135

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 136 Tuesday, October 28, 1997 4:48 PM
decoder_specific[0] ci25_red_enabled

GET/SET DECODER PARAMETERS (0x07
& 0x07)

decoder_specific[1] decoder_specific[0](c11_chk_dgt)

GET/SET CHECKS (0x0D & 0x0A)

decoder_specific[2] c11_chk_dgt

GET/SET DECODER PARAMETERS (0x05 &
0x06)

GET/SET DECODER PARAMETERS (0x07
& 0x07)

labeltype = 0x3B labeltype = CODE_93

minlength minlength

maxlength maxlength

alloc_specific

GET/SET REDUNDANCY (0x0C & 0x09)

decoder_specific[0] c93_red_enabled

GET/SET DECODER PARAMETERS (0x05 &
0x06)

GET/SET DECODER PARAMETERS (0x07
& 0x07)

labeltype = 0x3C labeltype = CODE_128

minlength minlength

Table 4-23. API Translations from SCAN41XX to SCAN3000 (Continued)

SCAN41XX Command Series 3000 API Translation
4-136

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 137 Tuesday, October 28, 1997 4:48 PM
maxlength maxlength

alloc_specific

GET/SET REDUNDANCY (0x0C & 0x09)

decoder_specific[0] c128_red_enabled

GET/SET UPC/EAN GENERAL
PARAMETERS (0x07 & 0x08)

GET/SET UPC PARAMETERS (0x0E & 0x0B)

security_level8 security_level

supp_2 supp_2

supp_5 supp_5

supp_auto_d supp_auto_d

supp_retry supp_retry

linear_decode linear_decode

Enable Scanning (0x09 & 0x89) SET SCAN STATE (0x02)

DISABLE SCANNING (0x0A & 0x8A) SET SCAN STATE (0x02)

GET SCAN STATUS (0x0B) GET SCAN STATE (0x02)

scan_state scan_state

status status

Table 4-23. API Translations from SCAN41XX to SCAN3000 (Continued)

SCAN41XX Command Series 3000 API Translation
4-137

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 138 Tuesday, October 28, 1997 4:48 PM
GET/SET TRIGGER MODE (0x0C & 0x0D) No matching command in SCAN3000

trigger_mode

READ LABEL (0x0E) GET LAST CHAR READ STATUS (0x03)

labeltype labeltype

DOSREAD(IN CONSOLE DRIVER)

*data_buf_ptr *data_buf_ptr

data_buf-len N/A

GET LAST READ CHAR STATUS (0x03)

label_length label_length

scan_direction scan_direction

GET SCAN STATE (0x02)

read_status status

SET SOFT TRIGGER (0x0F) SET SOFT TRIGGER (0x03)

CLEAR SOFT TRIGGER (0x10) RESET SOFT TRIGGER (0x08)

Table 4-23. API Translations from SCAN41XX to SCAN3000 (Continued)

SCAN41XX Command Series 3000 API Translation
4-138

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 139 Tuesday, October 28, 1997 4:48 PM
GET SUPPORTED DECODERS (0x11)

decoder_str

GET NUMBER OF DECODERS (0x08) in
conjunction with GET NEXT DECODER
NAME (0x09)

GET/SET ENABLED DECODERS (0x12 &
0x13)

Not implemented in SCAN3000

decoder_str

CANCEL SCB (0x14) Not implemented in SCAN3000

FLUSH COMMAND QUEUE (0x15) Not implemented in SCAN3000

GET NUMBER OF PENDING SCBs (0x16) Not implemented in SCAN3000

Table 4-23. API Translations from SCAN41XX to SCAN3000 (Continued)

SCAN41XX Command Series 3000 API Translation
4-139

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 140 Tuesday, October 28, 1997 4:48 PM
Appendix 1. SCANSAMP.C
This appendix contains the sample application program referred to in Example
sections of SCB Commands (Descriptions). It is also contained in the SDK file

C:\SDK4100\SAMPLES\SCANNER\SCANSAMP.C

where C:\SDK4100 is the default installation directory.

The files scandef.h and scanprot.h can be found in Appendix 2 and Appendix 3,
respectively, of this chapter.

#include <ctype.h>
#include <conio.h>
#include <stdio.h>
#include <stdlib.h>
#include <dos.h>
#include "scandef.h" // Scan Driver Definition File (See Appendix 2)
#include "scanprot.h" // Scan Driver Prototypes File (See Appendix 3)

SCB_type SCB1, SCB2, SCB3; // SCB variables

union REGS inregs, outregs; // Used by int86x calls
struct SREGS segregs; // Used by int86x calls

VERSION_INFO_type driver_version; // Area for driver version
 // information

READ_type READDATA; // Area for read label information
#define DATA_LEN 30 // Length of data buffer

char data[DATA_LEN]; // Data buffer for decoded data

char ok_2_scan; // Scan flag
4-140

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 141 Tuesday, October 28, 1997 4:48 PM
//Submits an SCB to the scanner driver **********************************

void submit_SCB (SCB_type far *SCB)
{
 //
 // Set up ES:BX to point to the SCB
 //
 inregs.x.bx = FP_OFF (SCB);
 segregs.es = FP_SEG (SCB);

 //
 // Issue the interrupt to the scanner driver
 //
 int86x (SCAN_INT, &inregs, &outregs, &segregs);

 return;
}

// Checks to ensure that the scanner driver is loaded ****************

char scan_driver_check (SCB_type far *SCB)
{
 // Declare an area to place the scanner driver vector
 void (_interrupt _far *scanvect)(void);

 //
 // Get the scanner driver vector value
 //
 scanvect = _dos_getvect (SCAN_INT);

 //
 // If scan driver vector is zero then the driver is not loaded
 //
 if (scanvect == NULL)
 return (FALSE);

 //
 // Set up SCB - set invalid cmd number
 //
 SCB->command = CMD_INVALID;
4-141

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 142 Tuesday, October 28, 1997 4:48 PM
 SCB->process = NULL;

 //
 // Submit the SCB
 //
 submit_SCB (SCB);

 //
 // If the unknown command return code is in the SCB, then
 // the driver is loaded; return TRUE. Otherwise, return FALSE.
 //
 if (SCB->status == SRTN_UNKNOWN_CMD)
 return (TRUE);
 else
 return (FALSE);
}

// Get Version Information function *******************************

void get_version_info (SCB_type far *SCB,
VERSION_INFO_type far *ver_data)

{
 //
 // Set up SCB - get version information, set command parameter field
 // and no post process routine.
 //
 SCB->command = CMD_GET_VERSION_INFO;
 SCB->cmdparam = ver_data;
 SCB->process = NULL;

 //
 // Submit the SCB
 //
 submit_SCB (SCB);

 return;
}

4-142

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 143 Tuesday, October 28, 1997 4:48 PM
// Get Reader Parameters function **********************************

void get_reader_parms (SCB_type far *SCB, unsigned char index,
READER_MODE_type far *reader_data)

{
 //
 // Set parameter_index field to desired index.
 //
 reader_data->parameter_index = index;

 //
 // Set up SCB - get reader parameters, set command parameter field
 // and no post process routine.
 //
 SCB->command = CMD_GET_READER_PARMS;
 SCB->cmdparam = reader_data;
 SCB->process = NULL;

 //
 // Submit the SCB
 //
 submit_SCB (SCB);

 return;
}

// Set Reader Parameters function ********************************

void set_reader_parms (SCB_type far *SCB, unsigned char index,
READER_MODE_type far *reader_data)

{
 //
 // Set parameter_index field to desired index.
 //
 reader_data->parameter_index = index;

 //
 // Set up SCB - set reader parameters, set command parameter field
 // and no post process routine.
 //
 SCB->command = CMD_SET_READER_PARMS;
4-143

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 144 Tuesday, October 28, 1997 4:48 PM
 SCB->cmdparam = reader_data;
 SCB->process = NULL;

 //
 // Submit the SCB
 //
 submit_SCB (SCB);

 return;
}

// Get Scan Parameters function **

void get_scan_parms (SCB_type far *SCB,
SCAN_PARMS_type far *scan_data)

{
 //
 // Set up SCB - get scan parameters, set command parameter field
 // and no post process routine.
 //
 SCB->command = CMD_GET_SCAN_PARMS;
 SCB->cmdparam = scan_data;
 SCB->process = NULL;

 //
 // Submit the SCB
 //
 submit_SCB (SCB);

 return;
1}
4-144

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 145 Tuesday, October 28, 1997 4:48 PM
// Set Scan Parameters function **

void set_scan_parms (SCB_type far *SCB,
SCAN_PARMS_type far *scan_data)

{
 //
 // Set up SCB - set scan parameters, set command parameter field
 // and no post process routine.
 //
 SCB->command = CMD_SET_SCAN_PARMS;
 SCB->cmdparam = scan_data;
 SCB->process = NULL;

 //
 // Submit the SCB
 //
 submit_SCB (SCB);

 return;
}

// Get Decoder Parameters function *****************************

void get_decoder_parms (SCB_type far *SCB,
DECODER_PARMS_type far *decoder_data)

{
 //
 // Set up SCB - get decoder parameters, set command parameter field
 // and no post process routine.
 //
 SCB->command = CMD_GET_DECODER_PARMS;
 SCB->cmdparam = decoder_data;
 SCB->process = NULL;

 //
 // Submit the SCB
 //
 submit_SCB (SCB);

 return;
}

4-145

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 146 Tuesday, October 28, 1997 4:48 PM
// Set Decoder Parameters function ********************************

void set_decoder_parms (SCB_type far *SCB,
DECODER_PARMS_type far *decoder_data)

{
 //
 // Set up SCB - set decoder parameters, set command parameter field
 // and no post process routine.
 //
 SCB->command = CMD_SET_DECODER_PARMS;
 SCB->cmdparam = decoder_data;
 SCB->process = NULL;

 //
 // Submit the SCB
 //
 submit_SCB (SCB);

 return;
}

// Get UPC/EAN General Parameters function ************************

void get_upcean_parms (SCB_type far *SCB,
UPC_GEN_PARMS_type far *upcean_data)

{
 //
 // Set up SCB - get UPC/EAN parameters, set command parameter field
 // and no post process routine.
 //
 SCB->command = CMD_GET_UPCEAN_PARMS;
 SCB->cmdparam = upcean_data;
 SCB->process = NULL;

 //
 // Submit the SCB
 //
 submit_SCB (SCB);

 return;
}

4-146

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 147 Tuesday, October 28, 1997 4:48 PM
// Set UPC/EAN General Parameters function ******************

void set_upcean_parms (SCB_type far *SCB,
UPC_GEN_PARMS_type far *upcean_data)

{
 //
 // Set up SCB - set UPC/EAN parameters, set command parameter field
 // and no post process routine.
 //
 SCB->command = CMD_SET_UPCEAN_PARMS;
 SCB->cmdparam = upcean_data;
 SCB->process = NULL;

 //
 // Submit the SCB
 //
 submit_SCB (SCB);

 return;
}

// Enable Scanning with Wait function *****************************

void enable_scanning_wait (SCB_type far *SCB)
{
 //
 // Set up SCB - enable scanning with wait, 3 second timeout
 // and no post process routine.
 //
 SCB->command = CMD_ENABLE_SCANNING_WAIT;
 SCB->timeout = THREE_SECONDS;
 SCB->process = NULL;

 //
 // Submit the SCB
 //
 submit_SCB (SCB);

 return;
}

4-147

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 148 Tuesday, October 28, 1997 4:48 PM
// Disable Scanning with Wait function ***************************

void disable_scanning_wait (SCB_type far *SCB)
{
 //
 // Set up SCB - disable scanning with wait, 3 second timeout
 // and no post process routine.
 //
 SCB->command = CMD_DISABLE_SCANNING_WAIT;
 SCB->timeout = THREE_SECONDS;
 SCB->process = NULL;

 //
 // Submit the SCB
 //
 submit_SCB (SCB);

 return;
}

// Get Scan Status function **

void get_scan_status (SCB_type far *SCB,
SCAN_STATUS_type far *scanstat_data)

{
 //
 // Set up SCB - get scan status, set command parameter field
 // and no post process routine.
 //
 SCB->command = CMD_GET_SCAN_STATUS;
 SCB->cmdparam = scanstat_data;
 SCB->process = NULL;

 //
 // Submit the SCB
 //
 submit_SCB (SCB);

 return;
}

// Get Trigger Mode function ***************************************
4-148

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 149 Tuesday, October 28, 1997 4:48 PM
void get_trig_mode (SCB_type far *SCB, TRIG_MODE_type far *trig_data)
{
 //
 // Set up SCB - get trigger mode, set command parameter field
 // and no post process routine.
 //
 SCB->command = CMD_GET_TRIG_MODE;
 SCB->cmdparam = trig_data;
 SCB->process = NULL;

 //
 // Submit the SCB
 //
 submit_SCB (SCB);

 return;
}

// Set Trigger Mode function ***

void set_trig_mode (SCB_type far *SCB, TRIG_MODE_type far *trig_data)
{
 //
 // Set up SCB - get trigger mode, set command parameter field
 // and no post process routine.
 //
 SCB->command = CMD_SET_TRIG_MODE;
 SCB->cmdparam = trig_data;
 SCB->process = NULL;

 //
 // Submit the SCB
 //
 submit_SCB (SCB);

 return;
}

// Read Label with Wait function *************************************
4-149

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 150 Tuesday, October 28, 1997 4:48 PM
void read_label_wait (SCB_type far *SCB, READ_type far *read_data,
void far *buffer, unsigned short buffer_len)

{
 //
 // Set *data_buf_ptr and data_buf_len fields in *read_data
 //
 read_data->data_buf_ptr = buffer;
 read_data->data_buf_len = buffer_len;

 //
 // Set up SCB - set read with wait, set command parameter field, set
 // 3 second timeout and no post process routine.
 //
 SCB->command = CMD_READ_LABEL_WAIT;
 SCB->cmdparam = read_data;
 SCB->timeout = THREE_SECONDS;
 SCB->process = NULL;

 //
 // Submit the SCB
 //
 submit_SCB (SCB);

 return;
}

4-150

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 151 Tuesday, October 28, 1997 4:48 PM
// Set Soft Trigger function **

void set_softtrig (SCB_type far *SCB)
{
 //
 // Set up SCB - set software trigger and no post process routine.
 //
 SCB->command = CMD_SET_SOFTTRIG;
 SCB->process = NULL;

 //
 // Submit the SCB
 //
 submit_SCB (SCB);

 return;
}

// Clear Soft Trigger function ***

void clr_softtrig (SCB_type far *SCB)
{
 //
 // Set up SCB - clear software trigger and no post process routine.
 //
 SCB->command = CMD_CLR_SOFTTRIG;
 SCB->process = NULL;

 //
 // Submit the SCB
 //
 submit_SCB (SCB);

 return;
}

4-151

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 152 Tuesday, October 28, 1997 4:48 PM
// Get Supported Decoders function *************************************

void get_supported_decoders (SCB_type far *SCB,
DECODER_STRING_type far *support_data)

{
 //
 // Set up SCB - get supported decoders, set command parameter field
 // and no post process routine.
 //
 SCB->command = CMD_GET_SUPP_DEC;
 SCB->cmdparam = support_data;
 SCB->process = NULL;

 //
 // Submit the SCB
 //
 submit_SCB (SCB);

 return;
}

// Get Enabled Decoders function **********************************

void get_enabled_decoders (SCB_type far *SCB,
DECODER_STRING_type far *enable_data)

{
 //
 // Set up SCB - get enabled decoders, set command parameter field
 // and no post process routine.
 //
 SCB->command = CMD_GET_ENAB_DEC;
 SCB->cmdparam = enable_data;
 SCB->process = NULL;

 //
 // Submit the SCB
 //
 submit_SCB (SCB);

 return;
}

4-152

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 153 Tuesday, October 28, 1997 4:48 PM
// Set Enabled Decoders function ***************************************

void set_enabled_decoders (SCB_type far *SCB,
DECODER_STRING_type far *enable_data)

{
 //
 // Set up SCB - set enabled decoders, set command parameter field
 // and no post process routine.
 //
 SCB->command = CMD_SET_ENAB_DEC;
 SCB->cmdparam = enable_data;
 SCB->process = NULL;

 //
 // Submit the SCB
 //
 submit_SCB (SCB);

 return;
}

// Cancel Pending SCB function **

void cancel_scb (SCB_type far *SCB, CAN_SCB_type far *cancel_data,
SCB_type far *canSCB)

{
 //
 // Set SCB_ptr to SCB to be canceled
 //
 cancel_data->SCB_ptr = canSCB;

 //
 // Set up SCB - cancel SCB, set command parameter field
 // and no post process routine.
 //
 SCB->command = CMD_CANCEL_SCB;
 SCB->cmdparam = cancel_data;
 SCB->process = NULL;

 //
 // Submit the SCB
4-153

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 154 Tuesday, October 28, 1997 4:48 PM
 //
 submit_SCB (SCB);

 return;
}

// Flush All Pending SCBs function **********************************

void flush_queue (SCB_type far *SCB)
{
 //
 // Set up SCB - flush queue and no post process routine.
 //
 SCB->command = CMD_FLUSH;
 SCB->process = NULL;

 //
 // Submit the SCB
 //
 submit_SCB (SCB);

 return;
}

// Get Number of Pending SCBs function ******************************

void get_pending (SCB_type far *SCB, NUM_PEND_type far *pend_data)
{
 //
 // Set up SCB - get number of pending SCBs, set command parameter field
 // and no post process routine.
 //
 SCB->command = CMD_GET_PEND_SCB;
 SCB->cmdparam = pend_data;
 SCB->process = NULL;

 //
 // Submit the SCB
 //
 submit_SCB (SCB);
4-154

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 155 Tuesday, October 28, 1997 4:48 PM
 return;
}

// Enable Scanning with No Wait function ***************************

void enable_scanning_nowait (SCB_type far *SCB)
{
 //
 // Set up SCB - enable scanning with no wait and no post process routine
 //
 SCB->command = CMD_ENABLE_SCANNING_NOWAIT;
 SCB->process = NULL;

 //
 // Submit the SCB
 //
 submit_SCB (SCB);

 return;
}

// Disable Scanning with No Wait function ***************************

void disable_scanning_nowait (SCB_type far *SCB)
{
 //
 // Set up SCB - disable scanning with no wait and no post process routine.
 //
 SCB->command = CMD_DISABLE_SCANNING_NOWAIT;
 SCB->process = NULL;

 //
 // Submit the SCB
 //
 submit_SCB (SCB);

 return;
}

4-155

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 156 Tuesday, October 28, 1997 4:48 PM
// Read Label with No Wait function ************************************

void read_label_nowait (SCB_type far *SCB, READ_type far *read_data,
void far *buffer, unsigned short buffer_len)

{
 //
 // Set *data_buf_ptr and data_buf_len fields in *read_data
 //
 read_data->data_buf_ptr = buffer;
 read_data->data_buf_len = buffer_len;

 //
 // Set up SCB - set read with no wait, set command parameter field
 // and no post process routine.
 //
 SCB->command = CMD_READ_LABEL_NOWAIT;
 SCB->cmdparam = read_data;
 SCB->process = NULL;

 //
 // Submit the SCB
 //
 submit_SCB (SCB);

 return;
}

//
// The following function is called in the main program
// to display the barcode label type
//
4-156

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 157 Tuesday, October 28, 1997 4:48 PM
void show_labeltype (unsigned char ltype)
{
 printf ("Label type : ");
 switch(ltype)
 {
 case TYPE_UPCE0:
 printf("UPCE0");
 break;

 case TYPE_UPCE1:
 printf("UPCE1");
 break;

 case TYPE_UPCA:
 printf("UPCA");
 break;

 case TYPE_MSI:
 printf("MSI");
 break;

 case TYPE_EAN8:
 printf("EAN8");
 break;

 case TYPE_EAN13:
 printf("EAN13");
 break;

 case TYPE_CODABAR:
 printf("CODABAR");
 break;

 case TYPE_CODE39:
 printf("CODE 3 OF 9");
 break;

 case TYPE_D2OF5:
 printf("D 2 OF 5");
 break;
4-157

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 158 Tuesday, October 28, 1997 4:48 PM
 case TYPE_I2OF5:
 printf("I 2 OF 5");
 break;

 case TYPE_CODE11:
 printf("CODE 11");
 break;

 case TYPE_CODE93:
 printf("CODE 93");
 break;

 case TYPE_CODE128:
 printf("CODE 128");
 break;

 default:
 printf("Unknown %.2X",ltype);
 break;
 };
 printf ("\n");

 return;
}

//
// The following function is called in the main program.
// It submits a read and waits for either decode data or a
// keypress before exiting. It the ‘T’ key is pressed, a soft trigger
// command is issued.
//
4-158

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 159 Tuesday, October 28, 1997 4:48 PM
void get_label (void)
{

 unsigned char key; // Hold area for keypress

 printf ("=======================================\n");
 printf ("Scan a label or strike a key to quit...\n");

 //
 // Submit a read with no wait
 //
 read_label_nowait (&SCB2, &READDATA, &data, DATA_LEN);

 //
 // Wait for status to change or ok_2_scan flag goes false
 //
 while ((SCB2.status == SRTN_PENDING) && ok_2_scan)
 {
 //
 // If a key was pressed, then process it
 //
 if (kbhit())
 {
 key = getch(); // Get the key value

 if (toupper (key) == 'T') // If it was 'T'
 set_softtrig (&SCB3); // then set the soft trigger
 else
 ok_2_scan = FALSE; // Set flag to FALSE
 }
 }

 //
 // If the read status was good and no user abort
 //
 if ((SCB2.status == SRTN_SUCCESS) && ok_2_scan)
 {
 //
 // Display the decoded data information
4-159

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 160 Tuesday, October 28, 1997 4:48 PM
 //
 printf("Status : %3d\n",SCB2.status);

 printf ("Direction : ");
 if (READDATA.scan_direction == 1)
 printf("FWD\n");
 else

if (READDATA.scan_direction == 2)
 printf("RVS\n");

else
printf ("Error");

 printf("Decoded data : %s\n",data);

 printf("Length : %d\n",READDATA.label_length);

 show_labeltype (READDATA.labeltype);
 }

 return;
}

4-160

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 161 Tuesday, October 28, 1997 4:48 PM
//
// The following main program establishes a connection to
// the scanner and submits reads until a user abort is issued.
//

void main (void)
{

 //
 // Ensure that driver has been loaded
 //
 if (!scan_driver_check (&SCB1))
 {
 printf ("Scan driver is not loaded. Scan sample program terminating...\n");
 exit(1);
 }

 //
 // Get the scanner driver version and display on the screen
 //
 get_version_info (&SCB1, &driver_version);
 printf("%Fs",driver_version.version_str);
 printf("Version number : %4x\n", driver_version.version);

 //
 // Enable scanning with wait
 //
 enable_scanning_wait (&SCB1);

 //
 // If successful or scanning was already enabled then continue
 //
 if ((SCB1.retcode == SRTN_SUCCESS) ||
 (SCB1.retcode == SRTN_ALREADY_ENABLED))
 {
 ok_2_scan = TRUE; // Set flag to true

 //
 // While it is OK to scan, submit a read and wait for either a barcode
 // to be scanned or a key pressed to exit.
 //
4-161

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 162 Tuesday, October 28, 1997 4:48 PM
 while (ok_2_scan)
 get_label ();

 //
 // Clear the SCB command queue
 //
 flush_queue (&SCB1);

 //
 // Disable scanning with wait
 //
 disable_scanning_wait (&SCB1);
 }
 else
 printf ("Cannot connect with scanner card.\n");

 return;
}

4-162

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 163 Tuesday, October 28, 1997 4:48 PM
Appendix 2. SCANDEF.H
This appendix contains the header file with structure definitions and defines used in
the sample scanning program (scansamp.c) in Appendix 1 of this chapter.

 It is also contained in the SDK file

C:\SDK4100\SAMPLES\SCANNER\SCANDEF.H

where C:\SDK4100 is the default installation directory.

//
// Only include file if SCANDEF_H has not been defined yet
//
#ifndef SCANDEF_H
#define SCANDEF_H

//***
// Nested Include Files ***************************************
//
// None.

// Defines, Typedefs, etc. **************************************

//
// Data must be byte packed
//
#pragma pack (1)
4-163

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 164 Tuesday, October 28, 1997 4:48 PM
//
// Define structure for an SCB
//
typedef struct SCB_struc
{
 unsigned char command; // Command code
 unsigned char retcode; // Return code
 unsigned char status; // Command completion status
 unsigned short timeout; // Command timeout
 void far *cmdparam; // Pointer to command parameters
 unsigned char user[4]; // Post processing user parameters
 void far* (*process)(); // Post processing dispatch address
 char reserved[21]; // Reserved space
} SCB_type;

//
// Define structure used for Get Version Information subcommand
//
typedef struct VERSION_INFO_struc
{
 void far *version_str; // Pointer to version string
 unsigned short version; // Major and minor version numbers
} VERSION_INFO_type;

//
// Define structure used for Get/Set Reader Parameters subcommands
//
typedef struct READER_MODE_struc
{
 unsigned char parameter_index; // Index to scanner parameters

 // Common reader parameters
 unsigned char scan_mode; // Scanner class type attached
 unsigned short enable_settle_time; // Reader enable settling time
 unsigned short power_settle_time; // Power settling time. Used only if
 // enable_settle_time > 0
 unsigned char inverse_label_flag; // Inverse data label flag
 unsigned char white_data_logic_lvl; // White data logic level
 unsigned short dec_beep_time; // Decode beep time
 unsigned short dec_beep_freq; // Decode beep frequency
 unsigned char scans_per_label; // Number of successful decodes for
4-164

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 165 Tuesday, October 28, 1997 4:48 PM
 // a label before reporting
 unsigned char clk_speed_toggle; // Clock speed toggle
 unsigned char trans_resolution; // Transition resolution value
 unsigned char subseq_scan_time; // Subsequent scan time
 unsigned char no_data_time; // No data time value
 unsigned char post_dec_action; // Post decode action
 unsigned char dec_fail_action; // Decode failure action

 // Laser specific parameters
 unsigned char prod_trigger; // Produces trigger signal
 unsigned char two_stage_trigger; // Two stage trigger flag
 unsigned char multiple_scan; // Automatic multiple scan
 unsigned char prod_direction; // Produces direction signal
 unsigned char dec_feedb_time; // Decode LED feedback time
 unsigned char dec_feedback_lvl; // Decode LED feedback logic level
 unsigned char scan_led_ctl; // Scanning LED control flag
 unsigned char scan_led_lvl; // Scanning LED logic level
 unsigned char KE_enable; // Enable Klasse Eins
 unsigned short KE_time_used; // Klasse Eins time used
 unsigned short KE_time_left; // Klasse Eins time left

 // Contact specific parameters
 unsigned char qz_ratio; // Quiet zone ratio X:1 to 1:X
 unsigned char init_scan_time; // Initial scan time
 unsigned short pulse_delay; // Pulse delay time
} READER_MODE_type;

//
// Decoder specific parameters for Get/Set Decoder Parameters subcommands

//
typedef struct UPCE0_PARMS_struc
{
 unsigned char upc_e_chk_b; // Report UPC E0 check byte
 unsigned char upce_preamble; // UPC E0 preamble
 unsigned char conv_upce2a_b; // Convert UPC E0 to UPC A
} UPCE0_PARMS_type;
4-165

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 166 Tuesday, October 28, 1997 4:48 PM
//
// Decoder specific parameters for Get/Set Decoder Parameters subcommands
//
typedef struct UPCE1_PARMS_struc
{
 unsigned char upc_e1_chk_b; // Report UPC E1 check byte
 unsigned char upce1_preamble; // UPC E1 preamble
 unsigned char conv_upce1_2a_b; // Convert UPC E1 to UPC A
} UPCE1_PARMS_type;

//
// Decoder specific parameters for Get/Set Decoder Parameters subcommands
//
typedef struct UPCA_PARMS_struc
{
 unsigned char upc_a_chk_b; // Report UPC A check byte
 unsigned char upca_preamble; // UPC A preamble
} UPCA_PARMS_type;

//
// Decoder specific parameters for Get/Set Decoder Parameters subcommands
//
typedef struct MSI_PARMS_struc
{
 unsigned char cmsi_red_enabled; // MSI Redundancy enabled
 unsigned char msi_chk_dgt; // Number of MSI check digits
 unsigned char report_msi_chk; // Report MSI check digits
} MSI_PARMS_type;

//
// Decoder specific parameters for Get/Set Decoder Parameters subcommands
//
typedef struct EAN8_PARMS_struc
{
 unsigned char conv_ean8to13_b; // Convert EAN 8 to EAN 13
} EAN8_PARMS_type
4-166

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 167 Tuesday, October 28, 1997 4:48 PM
//
// Decoder specific parameters for Get/Set Decoder Parameters subcommands
//
typedef struct CBAR_PARMS_struc
{
 unsigned char cbar_red_enabled; // Codabar Redundancy enabled
 unsigned char clsi_editing; // Enable clsi editing
 unsigned char notis_editing; // Enable notis editing
} CBAR_PARMS_type;

//
// Decoder specific parameters for Get/Set Decoder Parameters subcommands
//
typedef struct C39_PARMS_struc
{
 unsigned char code39_chk_b; // Enable/Report Code 39 check digit
 unsigned char buffer_c39; // Enable Buffer Code 39
 unsigned char code39_full_ascii; // Enable Code 39 full ASCII
 unsigned char c39_red_enabled; // Code 39 Redundancy enabled
} C39_PARMS_type;

//
// Decoder specific parameters for Get/Set Decoder Parameters subcommands
//
typedef struct D25_PARMS_struc
{
 unsigned char cd25_red_enabled; // D 2 of 5 Redundancy enabled
} D25_PARMS_type;

//
// Decoder specific parameters for Get/Set Decoder Parameters subcommands
//
typedef struct I25_PARMS_struc
{
 unsigned char ci25_red_enabled; // I 2 of 5 Redundancy enabled
} I25_PARMS_type;
4-167

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 168 Tuesday, October 28, 1997 4:48 PM
//
// Decoder specific parameters for Get/Set Decoder Parameters subcommands
//
typedef struct C11_PARMS_struc
{
 unsigned char c11_red_enabled; // Code 11 Redundancy enabled
 unsigned char c11_chk_dgt; // Number of Code 11 check digits
 unsigned char report_c11_chk; // Report Code 11 check digits
} C11_PARMS_type;

//
// Decoder specific parameters for Get/Set Decoder Parameters subcommands
//
typedef struct C93_PARMS_struc
{
 unsigned char c93_red_enabled; // Code 93 Redundancy enabled
} C93_PARMS_type;

//
// Decoder specific parameters for Get/Set Decoder Parameters subcommands
//
typedef struct C128_PARMS_struc
{
 unsigned char c128_red_enabled; // Code 128 Redundancy enabled
} C128_PARMS_type;
4-168

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 169 Tuesday, October 28, 1997 4:48 PM
//
// Define structure used for Get/Set Decoder Parameters subcommands
//
typedef struct DECODER_PARMS_struc
{
 unsigned char labeltype; // Barcode Symbology Type
 unsigned short minlength; // Minimum Length of Barcode
 unsigned short maxlength; // Maximum Length of Barcode
 unsigned char alloc_specific; // Number of allocated parameters
 // in decoder_specific
 union
 {
 UPCE0_PARMS_type upce0_parms; // UPC E0 specific parameters
 UPCE1_PARMS_type upce1_parms; // UPC E1 specific parameters
 UPCA_PARMS_type upca_parms; // UPC A specific parameters
 MSI_PARMS_type msi_parms; // MSI specific parameters
 EAN8_PARMS_type ean8_parms; // EAN 8 specific parameters
 CBAR_PARMS_type cbar_parms; // Codabar specific parameters
 C39_PARMS_type c39_parms; // Code 39 specific parameters
 D25_PARMS_type d25_parms; // D 2 of 5 specific parameters
 I25_PARMS_type i25_parms; // I 2 of 5 specific parameters
 C11_PARMS_type c11_parms; // Code 11 specific parameters
 C93_PARMS_type c93_parms; // Code 93 specific parameters
 C128_PARMS_type c128_parms; // Code 128 specific parameters
 } decoder_specific;
} DECODER_PARMS_type;

//
// Define structure used for Get/Set UPC/EAN General Parameters
//subcommands
//
typedef struct UPC_GEN_PARMS_struc
{
 unsigned char security_level; // Security Level Value
 unsigned char supp_2; // Two Digit Supplementals
 unsigned char supp_5; // Five Digit Supplementals
 unsigned char supp_auto_d; // Auto-discriminate Supplementals
 unsigned char supp_retry; // Retry count for auto-discriminate

// supplementals
 unsigned char linear_decode; // Linear Decode all UPC types
} UPC_GEN_PARMS_type;
4-169

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 170 Tuesday, October 28, 1997 4:48 PM
//
// Define structure used for Get Scan Status subcommand
//
typedef struct SCAN_STATUS_struc
{
 unsigned char scan_state; // Scan State
 unsigned char status; // Current scan status
} SCAN_STATUS_type;

//
// Define structure used for Get/Set Trigger Mode subcommands
//
typedef struct TRIG_MODE_struc
{
 unsigned char trigger_mode; // Trigger mode
} TRIG_MODE_type;

//
// Define structure used for Read Label subcommand
//
typedef struct READ_struc
{
 unsigned char labeltype; // Returned Label Type
 void far *data_buf_ptr; // Pointer to Data Buffer
 unsigned short data_buf_len; // Length of Data Buffer
 unsigned short label_length; // Length of Data in Buffer
 unsigned char scan_direction; // Decode Direction
 unsigned char read_status; // Scanning status for this read
} READ_type;

//
// Define structure used for Get Supported Decoders, Get/Set Enabled
// Decoders subcommands
//
typedef struct DECODER_STRING_struc
{
 char decoder_str[25]; // Null terminated decoder type
 // string
} DECODER_STRING_type;
4-170

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 171 Tuesday, October 28, 1997 4:48 PM
//
// Define structure used for Cancel SCB subcommand
//
typedef struct CAN_SCB_struc
{
 SCB_type far *SCB_ptr; // Pointer to SCB to be canceled
} CAN_SCB_type;

//
// Define structure used for Get Number of Pending SCBs subcommand
//
typedef struct NUM_PEND_struc
{
 unsigned short pending; // Number of entries in command
 // queue
} NUM_PEND_type;

//
// Subcommand number definitions
//
#define CMD_GET_VERSION_INFO 0x00 // Get Version Information
#define CMD_GET_READER_PARMS 0x01 // Get Reader Parameters
#define CMD_SET_READER_PARMS 0x02 // Set Reader Parameters
#define CMD_GET_SCAN_PARMS 0x03 // Get Scanning Parameters
#define CMD_SET_SCAN_PARMS 0x04 // Set Scanning Parameters
#define CMD_GET_DECODER_PARMS 0x05 // Get Decoder Parameters
#define CMD_SET_DECODER_PARMS 0x06 // Set Decoder Parameters
#define CMD_GET_UPCEAN_PARMS 0x07 // Get UPC/EAN General

// Parameters
#define CMD_SET_UPCEAN_PARMS 0x08 // Set UPC/EAN General

// Parameters

#define CMD_ENABLE_SCANNING_WAIT 0x09 // Enable Scanning
// with wait

#define CMD_DISABLE_SCANNING_WAIT 0x0A // Disable Scanning
//with wait
4-171

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 172 Tuesday, October 28, 1997 4:48 PM
#define CMD_GET_SCAN_STATUS 0x0B // Get Scanning Status
#define CMD_GET_TRIG_MODE 0x0C // Get Triggering Mode
#define CMD_SET_TRIG_MODE 0x0D // Set Triggering Mode
#define CMD_READ_LABEL_WAIT 0x0E // Read Label with wait
#define CMD_SET_SOFTTRIG 0x0F // Set Soft Trigger
#define CMD_CLR_SOFTTRIG 0x10 // Clear Soft Trigger
#define CMD_GET_SUPP_DEC 0x11 // Get Supported Decoders
#define CMD_GET_ENAB_DEC 0x12 // Get Enabled Decoders
#define CMD_SET_ENAB_DEC 0x13 // Set Enabled Decoders
#define CMD_CANCEL_SCB 0x14 // Delete SCB
#define CMD_FLUSH 0x15 // Flush Command Queue
#define CMD_GET_PEND_SCB 0x16 // Get Number of Pending SCBs

#define CMD_ENABLE_SCANNING_NOWAIT 0x89 // Enable Scanning
//with no wait

#define CMD_DISABLE_SCANNING_NOWAIT 0x8A // Disable Scanning
// with no wait

#define CMD_READ_LABEL_NOWAIT 0x8E // Read Label with
//no wait

#define CMD_INVALID 0xFF // Invalid command
//number

//
// SCB return codes
//
#define SRTN_SUCCESS 0 // Successful completion
#define SRTN_UNKNOWN_CMD 1 // Unknown command
#define SRTN_INVALID_SCB 2 // Invalid SCB address or length
#define SRTN_INVALID_PARAM_PTR 3 // Invalid command parameter

// pointer
#define SRTN_INVALID_PARAM 5 // Invalid command parameter
#define SRTN_CMD_TIMEOUT 9 // Command timed-out
#define SRTN_CMD_CANCEL 10 // Command was canceled
#define SRTN_CMD_COMPLETE 12 // Command already complete
#define SRTN_NO_CONNECT 13 // No connection with scan card
#define SRTN_NOT_ENABLED 14 // Scanning not enabled
#define SRTN_CONN_ABORT 15 // Scanning aborted
#define SRTN_PHYS_FAIL 16 // Physical device failure
#define SRTN_DATA_OVERFLOW 17 // Data overflow from read buffer
#define SRTN_CMDQ_FULL 18 // SCB command queue full
4-172

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 173 Tuesday, October 28, 1997 4:48 PM
#define SRTN_ALREADY_ENABLED 19 // Scanning already enabled
#define SRTN_ALREADY_DISABLED 20 // Scanning already disabled
#define SRTN_INVALID_DBUFF_PTR 21 // Invalid data buffer pointer
#define SRTN_INVALID_DEL_PTR 22 // Invalid SCB pointer to delete
#define SRTN_NODATA 23 // No data from scanner
#define SRTN_SCBINUSE 24 // SCB already in use
#define SRTN_QNOTEMPTY 25 //Command queue is not empty
#define SRTN_PENDING 255 // SCB is pending

//
// Define structure used for Get/Set Scan Parameters subcommands
//
typedef struct SCAN_PARMS_struc
{
 unsigned char bidir_redundancy; // Bi Directional redundancy
 unsigned char xmit_code_id; // Transmit code id character before
 // decoded data
} SCAN_PARMS_type;

//
// Label type definitions
//
#define TYPE_UPCE0 0x30 // Label type for UPC E0
#define TYPE_UPCE1 0x31 // Label type for UPC E1
#define TYPE_UPCA 0x32 // Label type for UPC A
#define TYPE_MSI 0x33 // Label type for UPC E0
#define TYPE_EAN8 0x34 // Label type for EAN 8
#define TYPE_EAN13 0x35 // Label type for EAN 13
#define TYPE_CODABAR 0x36 // Label type for CODABAR
#define TYPE_CODE39 0x37 // Label type for Code 39
#define TYPE_D2OF5 0x38 // Label type for Discrete 2 of 5
#define TYPE_I2OF5 0x39 // Label type for Interleaved 2 of 5
#define TYPE_CODE11 0x3A // Label type for Code 11
#define TYPE_CODE93 0x3B // Label type for Code 93
#define TYPE_CODE128 0x3C // Label type for Code 128
4-173

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 174 Tuesday, October 28, 1997 4:48 PM
//
// Define scan driver interrupt number
//
#define SCAN_INT 0x62 // Scan driver interrupt value

#define THREE_SECONDS 3000 // Three second timeout value

//
// Define TRUE and FALSE
//
#ifndef TRUE
#define TRUE 1
#endif

#ifndef FALSE
#define FALSE 0
#endif

//
// Revert to default packing structures
//
#pragma pack ()

#endif // end ifndef SCANDEF_H
4-174

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 175 Tuesday, October 28, 1997 4:48 PM
Appendix 3. SCANPROT.H
This appendix contains the header file with prototype definitions for functions used in
the sample scanning program (scansamp.c) in Appendix 1 of this chapter. It is also
contained in the SDK file

C:\SDK4100\SAMPLES\SCANNER\SCANPROT.C

where C:\SDK4100 is the default installation directory.

//
// Only include file if SCANPROT_H has not been defined yet
//
ifndef SCANPROT_H
#define SCANPROT_H

//***
// Function Prototypes

void submit_SCB (struct SCB_struc _far *SCB);
char scan_driver_check (struct SCB_struc _far *SCB);
void get_version_info (struct SCB_struc _far *SCB,
 struct VERSION_INFO_struc _far *ver_data);
void get_reader_parms (struct SCB_struc _far *SCB,
 unsigned char index,
 struct READER_MODE_struc _far *reader_data);
void set_reader_parms (struct SCB_struc _far *SCB,
 unsigned char index,
 struct READER_MODE_struc _far *reader_data);
void get_scan_parms (struct SCB_struc _far *SCB,
 struct SCAN_PARMS_struc _far *scan_data);
void set_scan_parms (struct SCB_struc _far *SCB,
 struct SCAN_PARMS_struc _far *scan_data);
void get_decoder_parms (struct SCB_struc _far *SCB,
 struct DECODER_PARMS_struc _far *decoder_data);
void set_decoder_parms (struct SCB_struc _far *SCB,
 struct DECODER_PARMS_struc _far *decoder_data);
void get_upcean_parms (struct SCB_struc _far *SCB,
 struct UPC_GEN_PARMS_struc _far *upcean_data);
void set_upcean_parms (struct SCB_struc _far *SCB,
 struct UPC_GEN_PARMS_struc _far *upcean_data);
4-175

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 176 Tuesday, October 28, 1997 4:48 PM
void enable_scanning_wait (struct SCB_struc _far *SCB);
void disable_scanning_wait (struct SCB_struc _far *SCB);

void get_scan_status (struct SCB_struc _far *SCB,
 struct SCAN_STATUS_struc _far *scanstat_data);
void get_trig_mode (struct SCB_struc _far *SCB,
 struct TRIG_MODE_struc _far *trig_data);
void set_trig_mode (struct SCB_struc _far *SCB,
 struct TRIG_MODE_struc _far *trig_data);
void read_label_wait (struct SCB_struc _far *SCB,
 struct READ_struc _far *read_data,
 void _far *buffer,unsigned short buffer_len);

void set_softtrig (struct SCB_struc _far *SCB);
void clr_softtrig (struct SCB_struc _far *SCB);

void get_supported_decoders (struct SCB_struc _far *SCB,
 struct DECODER_STRING_struc _far *support_data);

void get_enabled_decoders (struct SCB_struc _far *SCB,
 struct DECODER_STRING_struc _far *enable_data);

void set_enabled_decoders (struct SCB_struc _far *SCB,
 struct DECODER_STRING_struc _far *enable_data);

void cancel_scb (struct SCB_struc _far *SCB,
 struct CAN_SCB_struc _far *cancel_data,
 struct SCB_struc _far *canSCB);

void flush_queue (struct SCB_struc _far *SCB);
void get_pending (struct SCB_struc _far *SCB,
 struct NUM_PEND_struc _far *pend_data);

void enable_scanning_nowait (struct SCB_struc _far *SCB);

void disable_scanning_nowait (struct SCB_struc _far *SCB);

void read_label_nowait (struct SCB_struc _far *SCB,
 struct READ_struc _far *read_data,
 void _far *buffer,
 unsigned short buffer_len);

void show_labeltype (unsigned char ltype);
4-176

PPT 41xx System Software Manual: Chapter 4: Scanning Operations

41ssm Page 177 Tuesday, October 28, 1997 4:48 PM
void get_label (void);

#endif // end ifndef SCANPROT_H
4-177

	Chapter 4 Scanning Operations
	Introduction
	Product Overview
	Scanner Driver Features
	Programming Guidelines
	Programming Pitfalls
	Programming Conventions

	Execution and Configuration
	Scanner Driver Execution
	Load Time Messages
	Scanner Configuration File

	Theory of Operation
	User Interface
	Introduction and Overview
	Scanner Control Block (SCB)
	A Day in the Life of an SCB
	Immediate Command Processing
	Queued Command Processing

	Supported API Commands
	SCB Commands (List)
	SCB Commands (Descriptions)
	Get Version Information
	Command Code: 0x00
	Type: Immediate
	Action
	Parameters
	Example

	Get Reader Parameters
	Command Code: 0x01
	Type: Immediate
	Action
	Parameters
	Example

	Set Reader Parameters
	Command Code: 0x02
	Type: Immediate
	Action
	Parameters
	Example

	Get Scan Parameters
	Command Code: 0x03
	Type: Immediate
	Action
	Parameters
	Example

	Set Scan Parameters
	Command Code: 0x04
	Type: Immediate
	Action
	Parameters
	Example

	Get Decoder Parameters
	Command Code: 0x05
	Type: Immediate
	Action
	Parameters
	Example

	Set Decoder Parameters
	Command Code: 0x06
	Type: Immediate
	Action
	Parameters
	Example

	Get UPC/EAN General Parameters
	Command Code: 0x07
	Type: Immediate
	Action
	Parameters
	Example

	Set UPC/EAN General Parameters
	Command Code: 0x08
	Type: Immediate
	Action
	Parameters
	Example

	Enable Scanning with Wait
	Command Code: 0x09
	Type: Wait
	Action
	Parameters
	Example

	Disable Scanning with Wait
	Command Code: 0x0A
	Type: Wait
	Action
	Parameters
	Example

	Get Scan Status
	Command Code: 0x0B
	Type: Immediate
	Action
	Parameters
	Example

	Get Trigger Mode
	Command Code: 0x0C
	Type: Immediate
	Action
	Parameter
	Example

	Set Trigger Mode
	Command Code: 0x0D
	Type: Immediate
	Action
	Parameter
	Example

	Read Label with Wait
	Command Code: 0x0E
	Type: Wait
	Action
	Parameters
	Example

	Set Soft Trigger
	Command Code: 0x0F
	Type: Immediate
	Action
	Parameters
	Example

	Clear Soft Trigger
	Command Code: 0x10
	Type: Immediate
	Action
	Parameters
	Example

	Get Supported Decoders
	Command Code: 0x11
	Type: Immediate
	Action
	Parameter
	Example

	Get Enabled Decoders
	Command Code: 0x12
	Type: Immediate
	Action
	Parameters
	Example

	Set Enabled Decoders
	Command Code: 0x13
	Type: Immediate
	Action
	Parameters
	Example

	Cancel Pending SCB
	Command Code: 0x14
	Action
	Parameter
	Example

	Flush All Pending SCBs
	Command Code: 0x15
	Type: Immediate
	Action
	Parameters
	Example

	Get Number of Pending SCBs
	Command Code: 0x16
	Type: Immediate
	Action
	Parameter
	Example

	Enable Scanning with No Wait
	Command Code: 0x89
	Type: No Wait
	Action
	Parameters
	Example

	Disable Scanning with No Wait
	Command Code: 0x8A
	Type: No Wait
	Action
	Parameters
	Example

	Read Label with No Wait
	Command Code: 0x8E
	Type: No Wait
	Action
	Parameters
	Example

	Completion and Error Codes

	The Scanner Type Identifier Program (SCANTYPE)
	Type Identifier Program Implementation and Usage

	Parameter Menu Scanning
	Set Default Parameter
	Code Type
	Code Lengths
	Decode Options
	Decode Redundancy for UPC/EAN without Supplementals
	Decode Redundancy for UPC/EAN without Supplementals

	UPC-A Preamble
	UPC-E0 Preamble
	UPC-E1 Preamble
	Special Decode Options
	Simple Redundancy
	Bi-Directional Redundancy
	Linear UPC/EAN Decode

	Differences Between SCAN3000 and SCAN41XX
	Overview of SCAN3000 Architecture
	Overview of SCAN41XX Architecture
	Series 3000 Scanning Driver Generation
	PPT 4100/4110/4140 Scanning Driver Generation
	Series 3000 Scanning Driver Configuration
	PPT 4100/4110/4140 Scanning Driver Configuration
	API Translations from SCAN41XX to SCAN3000

	Appendix 1. SCANSAMP.C
	Appendix 2. SCANDEF.H
	Appendix 3. SCANPROT.H

