

41ssm Page 1 Tuesday, October 28, 1997 4:48 PM
Chapter 1 XSYMBIOS/Symbol
Extended BIOS

Introduction
The Symbol Extended BIOS TSR (XSYMBIOS.EXE) is a DOS level TSR (Terminate and
Stay Resident) that provides BIOS type extensions for PPT 41XX terminals. It allows
applications to take advantage of particular features of the PPT 41XX hardware and of
extended services inherited from Series 3000 and earlier PPT 4100 platforms.

XSYMBIOS accesses the PPT 41XX gate array, controls power management for the
terminal, and performs cradle insertion and removal functions. It supports ROM BIOS
extensions, based on the Series 3000 BIOS, and provides an application program
interface (API) for controlling power management.

YSYMBIOS.EXE is a developer’s version of XSYMBIOS.EXE designed to work on a
standard PC. XSYMBIOS.EXE and YSYMBIOS.EXE provide the same functions as the
extended BIOS TSRs (XBIOS21T.EXE and XBIOS46T.EXE) for the PDT 2100 and the
PPT 4600, respectively. These functions are:

• External Activity Status Reports (INT 0x32)

• LCD Contrast Control (INT 0x32)

• Timer Services (INT 0xAC)

• Semaphore Services (INT 0xAC)

• Sound Services (INT 0xAD)

• CRC Services (INT 0xAE)

Theory of Operation
XSYMBIOS.EXE and YSYMBIOS.EXE are loaded (usually from the AUTOEXEC.BAT
file) as TSRs and provide a BIOS-like method for applications to call the supported
functions. This means that all functions are accessed by performing an interrupt with
parameters passed in registers. In most instances, register AH passes a function code
to the routine.
1-1

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 2 Tuesday, October 28, 1997 4:48 PM
On return from each function, registers (or buffers pointed to by registers) return
desired output and/or completion or error codes.

Load XSYMBIOS on the terminal before the PPT 41XX scanner and radio drivers, since
it contains functions that enable these drivers to interface with the terminal hardware
platform.

The Cradle Handler (CRADLE.COM) TSR provides cradle support. If an installation
has cradles, load Cradle Handler on the terminal before XSYMBIOS program is loaded
to take advantage of cradle features in the operation of the terminal. If an installation
does not have cradles, Cradle Handler is not required. For more information on the
Cradle Handler, refer to the Cradle Handler TSR in this manual and to the PPT 41XX
Product Reference Guide.

User Interface
When XSYMBIOS.EXE is successfully loaded, it displays the following banner to
identify the program and version and message indicating successful installation:

Symbol BIOS Extensions Version XX.XX-XX
Copyright (C) Symbol Technologies Inc., 1994-97

If the program fails to install, it displays the following error message:

BIOS Extensions already loaded

XSYMBIOS performs tasks for applications and has no other user interface than that
specified above. It is entirely passive except when asked to perform some task on
behalf of an application.

Application Programming Interfaces
XSYMBIOS consists of several groups of services. Each group has its own API accessed
through a different interrupt vector. Except for the power management services, the
API for each group is described in this chapter. The power management services are
described in Chapter 2, XSYMBIOS/ Power Management.

Table 1-1 contains the Series 3000 BIOS service groups supported by XSYMBIOS and
the associated interrupt for each group.
1-2

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 3 Tuesday, October 28, 1997 4:48 PM
In each group listed in Table 1-1, executing a real mode interrupt invokes services. For
interrupts 0x14, 0x32, 0xAC, 0xAD, and 0xAE, register AH contains a function code
identifying which service is to be performed.

XSYMBIOS range checks the supplied function code and dispatches to the appropriate
routine if the function code is in range. If the function code is out of range, XSYMBIOS
either returns an error condition to the caller (if the original interrupt vector was
undefined) or passes control on to the original interrupt vector (if that vector was
defined when XSYMBIOS was loaded). This allows XSYMBIOS to share interrupt
vectors with other users.

Table 1-1. XSYMBIOS Service Extension Groups

PC Interrupt
(Hex)

BIOS Service Group

0x14 Serial Communications

0x32 General System Services

0xAC Timer Services

0xAD Sound Services

0xAE CRC Services

0xB1 Power Management Services
1-3

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 4 Tuesday, October 28, 1997 4:48 PM
XSYMBIOS Serial Communications Services (INT
0x14) (List)
Table 1-2 is a list of the Serial Communications Services supported by XSYMBIOS. The
list is sorted by the hexadecimal numeral for the number (command code) the
application assigns to the AH register when it invokes the service via INT 0x14. These
services are described in the following section.

Table 1-2. Serial Communications Services (Interrupt 0x14)

Function
Number

Serial Communications
Service Name

0x00 Initialize Serial Port (IBM Standard)

0x01 Send One Character (IBM Standard)

0x02 Receive One Character (IBM Standard)

0x03 Get Serial Port Status (IBM Standard)

0x80 Extended Serial Port Initialization

0x81 Get Current Port Configuration

0x82 Open Serial Port

0x83 Close Serial Port

0x84 Send Block

0x85 Receive Block

0x86 Queue Status

0x87 Get System Status

0x88 Transmit Enable (Half-Duplex Line Turn Around)

0x89 Receive Enable (Half-Duplex Line Turn Around)

0x8A Transmit Done

0x8B Set UART Control Commands

0x8C Clear UART Control Commands

0x8D Allocate Communications Queues

0x8E Purge Communications Queue

0x8F Transmit Queue Empty Notification Control

0x91 Delete Queues

0x92 Get Queue Pointer

0x93 Version Number Check
1-4

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 5 Tuesday, October 28, 1997 4:48 PM
XSYMBIOS Serial Communications Services
(Descriptions)
The following descriptions of the functions in Table 1-2 are given in function code
order.
1-5

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 6 Tuesday, October 28, 1997 4:48 PM
Initialize Serial Port (IBM Standard)
Function: 0x00
Description
Sets the parameters for the specified serial channel and returns the same status as
Function 0x03, Get Serial Port Status (IBM Standard). For compatibility with IBM PC,
this service reports no error if you select an invalid parameter value for the specified
port.

Interrupt
0x14

Input Registers
AH = 0x00

AL = Port configuration, as follows:

Bits 7, 6, 5 = Baud, as follows:

000 = 110 baud
001 = 150 baud
010 = 300 baud
011 = 600 baud
100 = 1200 baud
101 = 2400 baud
110 = 4800 baud
111 = 9600 baud

Bits 4, 3 = Parity, as follows:

00 = None
01 = Odd
10 = None
11 = Even

Bit 2 = Stop bits, as follows:

0 = 1 bit
1 = 2 bits

Bits 1, 0 = Data size, as follows:
1-6

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 7 Tuesday, October 28, 1997 4:48 PM
00 = (Not used)
01 = (Not used)
10 = 7 bits
11 = 8 bits

DX = Serial port

Output Registers
AH = Line status, as follows:

Bit 7 = Timeout error
Bit 6 = Send shift register empty
Bit 5 = Send data register empty
Bit 4 = Break detected
Bit 3 = Framing error
Bit 2 = Parity error
Bit 1 = Overrun error
Bit 0 = Data ready

AL = Modem status, as follows:

Bit 7 = Carrier detect
Bit 6 = Ring indicator
Bit 5 = Data-Set-Ready (DSR)
Bit 4 = Clear-To-Send (CTS)
Bit 3 = Delta carrier detect
Bit 2 = Trailing-edge ring detect
Bit 1 = Delta data-set-ready
Bit 0 = Delta clear-to-send
1-7

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 8 Tuesday, October 28, 1997 4:48 PM
Send One Character (IBM Standard)
Function: 0x01
Description
Transmits a single character to the UART of the selected serial port or queues a single
character into the output FIFO queue, depending on whether or not the port has been
opened using the Open Serial Port service (Function 0x82). If invoked in polled mode,
this function waits until the UART transmit register is empty before writing the new
character. If used in interrupt mode, this function waits for space in the FIFO queue
before returning. In either case, the Status Byte returned is identical to that returned by
Get Serial Port Status (IBM Standard), Function 0x03.

In polled mode, this function raises RTS and DTR and waits for DSR and CTS before
sending the character. If either modem control line (DSR and CTS) does not go active
in the current timeout value, an error is reported.

Interrupt
0x14

Input Registers
AH = 0x01

AL = Character

DX = Port number

Output Registers
AL = Last character sent

AH = Line status, as follows:

Bit 7 = Timeout error
Bit 6 = Send shift register empty
Bit 5 = Send data register empty
Bit 4 = Break detected
Bit 3 = Framing error
Bit 2 = Parity error
Bit 1 = Overrun error
Bit 0 = Data ready
1-8

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 9 Tuesday, October 28, 1997 4:48 PM
Receive One Character (IBM Standard)
Function: 0x02
Description
Reads one character from the UART of the selected serial port or dequeues a character
from the input FIFO queue, depending on whether or not the port was opened using
the Open Serial Port service (Function 0x82). This function waits until a character is
received or timeout error occurs before returning. The Status Byte returned is identical
to that returned by Function 0x03, Get Serial Port Status (IBM Standard).

In polled mode, this function raises DTR, drops RTS, and waits for DSR to go active
before it reads the UART. If no character (or DSR) is received in the standard timeout
period, an error is reported.

Interrupt
0x14

Input Registers
AH = 0x02

DX = Port number

Output Registers
AL = Character received

AH = High byte of serial port status (see Function 0x03,Get Serial Port Status (IBM
Standard))
1-9

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 10 Tuesday, October 28, 1997 4:48 PM
Get Serial Port Status (IBM Standard)
Function: 0x03
Description
Returns the current status of the specified serial port.

Interrupt
0x14

Input Registers
AH = 0x03

DX = Port number

Output Registers
AH = Line status, as follows:

Bit 7 = Timeout error
Bit 6 = Send shift register empty
Bit 5 = Send data register empty
Bit 4 = Break detected
Bit 3 = Framing error
Bit 2 = Parity error
Bit 1 = Overrun error
Bit 0 = Data ready

AL = Modem status, as follows:

Bit 7 = Carrier detect
Bit 6 = Ring indicator
Bit 5 = Data-Set-Ready (DSR)
Bit 4 = Clear-To-Send (CTS)
Bit 3 = Delta carrier detect
Bit 2 = Trailing-edge ring detect
Bit 1 = Delta data-set-ready
Bit 0 = Delta clear-to-send
1-10

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 11 Tuesday, October 28, 1997 4:48 PM
Extended Serial Port Initialization
Function: 0x80
Description
Initializes the Channel Control Block (CCB) of the specified serial port to the values of
the passed parameters. If the serial port is not open, this service initializes the CCB for
the next open service call. If the serial port is already open, this service also modifies
the physical and logical configuration of the serial port to match the new values of any
changed parameters. It reports an error for any out-of-range parameters or illegal
combination specified.

The parameter block has the following format:

Physical Setup Parameters.

The following parameters control the physical configuration of the serial port. If any of
these parameters change while the serial port is open, the physical configuration is
changed to match the new parameters.

Byte 1 = Data rate, as follows:

0 = 150 bps
1 = 300 bps
2 = 600 bps
3 = 1200 bps
4 = 1350 bps
5 = 2400 bps
6 = 4800 bps
7 = 9600 bps
8 = 19200 bps
9 = 38400 bps

Byte 2 = Data size, as follows:

2 = 7 bits
3 = 8 bits

Byte 3 = Parity, as follows:

0 = Even
1 = Odd
2 = Mark
1-11

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 12 Tuesday, October 28, 1997 4:48 PM
3 = Space
4 = None (Indicates that no parity bit is added to the character.)

Byte 4 = Stop bits, as follows:

0 = 1 stop bit
1 = 2 stop bits

Duplex Control Parameter.

This parameter specifies whether the serial port works in full or half duplex or in multi-
access mode. If it is changed when the serial port is open, the serial port is reset to:

• half duplex receive if changed from full to half duplex

• full duplex send/receive if changed from half to full duplex

In either case, no data is lost from the queues.

Byte 5 = Modem duplex, as follows:

0 = Full duplex
1 = Half duplex

Half Duplex Mode Control Parameters.

The following parameters control features specific to half duplex line operations and
are ignored in full duplex mode.

Bytes 6, 7 = Modem delay (in milliseconds)

Used on physical block transmit enables to control the time between the raising
of RTS and the start of data transmission.

Bytes 8, 9 = Transmit carrier wait time (in milliseconds)

Used during transmit enable to control the time the terminal waits for the
carrier to drop before raising RTS. The wait time is ignored if this parameter is
set to zero.

Bit 15 controls error reporting if the carrier does not go active within the
specified time. If this bit is set, an error is posted if the timer expires. In either
case (set or reset), the line turnaround procedure continues.

Bytes 10, 11 = Receive carrier wait time (in milliseconds)
1-12

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 13 Tuesday, October 28, 1997 4:48 PM
Used during receive enable to control the time the terminal waits for the carrier
to go active before enabling receive. If set to zero, the wait time is ignored.

Bit 15 controls error reporting if the carrier does not go active within the
specified time. If this bit is set, an error is posted if the timer expires. In either
case (set or reset), the line turnaround procedure continues.

Full Duplex Mode Control Parameters.

These parameters control features specific to full duplex modems and are ignored in
half duplex mode.

Bytes 12, 13 = Carrier loss detect time (in milliseconds)

Specifies the length of time the carrier must be continuously inactive before a
loss of carrier error is posted.

Flow Control Parameters.

The following parameters control the pacing of data during a communications session.

Byte 14 = Control stop character

Used in software flow control mode. This character is sent when the receive
queue reaches 80% of its capacity. If it is received, transmit is disabled until a
control start character is received. If used, all control stop characters are filtered
from the received data.

Byte 15 = Control start character

Used in software low control mode. This character is sent, if a control stop
character was previously sent, when the receive queue drops to 60% of capacity.
If it is received after a previous control stop, transmit is re-enabled. If used, all
control start characters are filtered from the received data.

Byte 16 = Control start wait time (in seconds)

Used to specify the time the BIOS waits before reporting an error whenever a
control stop character is received and a control start character is not
subsequently received.

Byte 17 = CTS loss detection time (in seconds)
1-13

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 14 Tuesday, October 28, 1997 4:48 PM
The time in a transmit state that the BIOS waits for CTS to go active before it
reports a timeout error. If this parameter is set to zero, the BIOS waits forever.

Byte 18 = Receive character wait time (in seconds)

The time that the BIOS waits for a character on input before timing out. This is
the maximum allowable time between characters when waiting for receive data
(applies only to the receive block with wait set service). A timeout error occurs
if the time since the last character was received is greater than the time
specified.

Open Setup Parameters.

Byte 19 = DSR wait time (in seconds)

Sets the Date-Set-Ready wait time for OPEN. Reports an error if DSR is not
active in the time specified. If this value is zero, there is no DSR check.
1-14

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 15 Tuesday, October 28, 1997 4:48 PM
Byte 20 = CD wait time (in seconds)

Set Carrier-Detect wait time for OPEN. Reports an error if the carrier is not
active in the time specified. If this value is zero, no check for CD is made. When
using COM2, the CD wait time must be zero. This parameter is ignored in half
duplex mode.

Byte 21 = SPACE time (in seconds)

The time that BIOS generates SPACE on the transmit data line during the open
service. SPACE is generated after all other open activities (port configuration,
DSR check, CD check) occur.

Byte 22 = MARK time (in seconds)

The time that BIOS generates MARK on the transmit data line during the open
and close services. MARK is generated after the
SPACE on open and just before the line is shut down on close.

Logical Setup Parameters.

The following parameters select the operation mode and the flow control method, if
any, for the selected channel.

Byte 23 = Line conditioning flags, as follows:

Bit 2 = CTS conditioning

Bit 1 = CD conditioning

Bit 0 = DSR conditioning

If the CTS conditioning flag is set, transmission is disabled while CTS is inactive and
the CTS wait time is determined by Byte 17. Otherwise, CTS is ignored.

If the CD conditioning flag is set, reception is disabled if CD is inactive. This flag has
no effect on the CD open wait time, the CD loss detection time, or the transmit and
receive enable CD wait time. If using COM2, do not set the CD conditioning flag.

If the DSR conditioning flag is set, an error is reported if DSR is lost during the
communications session. The flag has no effect on the DSR open wait time. If using
COM2, do not set the DSR conditioning flag.

Byte 24 = Operation mode, as follows:
1-15

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 16 Tuesday, October 28, 1997 4:48 PM
Bit 2 = Hardware flow control

Bit 1 = Software flow control

Bit 0 = No flow control

Selects the flow control method, if any, for the specified serial port. If flow
control is selected, the remote transmitter is disabled when the input queue
reaches 80% of capacity, and enabled when the input queue is reduced to 60%
of capacity. Software flow control uses data characters (control start/stop) to
enable/disable transmission and reception of data. Hardware flow control
raises/lowers RTS to do this.

In hardware flow control, CTS line conditioning (see above) must be enabled so
the remote receiver can disable transmit by dropping CTS to the PPT 41XX.

Byte 25 = Line Status Error Mask, as follows:

Bit 4 = Break detect

Bit 3 = Framing

Bit 2 = Parity

Bit 1 = Overrun

Enables or disables the handling of line status errors from the UART. If a line
status error occurs and the error flag is reset, the error is ignored. See below for
the action taken if the error is enabled.

Byte 26 = Error Insertion Character

This character is inserted into the data stream if an enabled line status error
occurs. If this character is null, an error is reported.

Bytes 27, 28 = DTR Settling Time (in milliseconds)

The time the BIOS waits after raising DTR before checking DSR. When using
COM2, set DTR settling time to 50 milliseconds.

Byte 29 = Connect Time

The number of seconds the BIOS waits after establishing a link before
communications start.
1-16

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 17 Tuesday, October 28, 1997 4:48 PM
Input Registers
AH = 0x80

DX = Serial port

ES:SI = Far pointer to the parameter block

Output Registers
The Carry Flag is set if an error occurs: otherwise, reset.

AX = Error status (see Function 0x87,Get System Status)

CX = Configuration error, if any, as follows:

Bit 6 = Invalid control start/stop characters
Bit 5 = Invalid flow control mode
Bit 4 = Unknown duplex
Bit 3 = Parity not supported
Bit 2 = Stop bits not supported
Bit 1 = Data size not supported
Bit 0 = Data rate not supported
1-17

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 18 Tuesday, October 28, 1997 4:48 PM
Get Current Port Configuration
Function: 0x81
Description
Returns either the current configuration or the size of the BIOS parameter block of the
specified serial port. If only the size is requested, ES:DI need not be specified. If the
configuration is requested, it is copied to the buffer specified in the ES:DI register pair
using the same format as Function 0x80, Extended Serial Port Initialization.

Interrupt
0x14

Input Registers
AH = 0x81

AL = Subfunction, as follows:

0x00 = Return parameter block and size
0x01 = Return only the parameter block size

DX = Serial port

ES:DI = Address of the parameter block buffer

Output Registers
The Carry Flag is set if an error occurs; otherwise, reset.

AX = Error status (see Function 0x87, Get System Status)

CX = Parameter block size
1-18

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 19 Tuesday, October 28, 1997 4:48 PM
Open Serial Port
Function: 0x82
Description
Powers up and initializes the selected serial port to the configuration stored in the CCB.
See Function 0x80, Extended Serial Port Initialization for information on serial port
configuration.

Consecutive opens are allowed; each call performs all open tasks including purging the
queues, waiting for DSR and CD, and generating the SPACE and MARK tones. DSR is
not lost on subsequent opens. Initialize the queues before the first open (see Function
0x8D, Allocate Communications Queues).

Interrupt
0x14

Input Registers
AH = 0x82

DX = Serial port

Output Registers
The Carry Flag is set if any error occurs; otherwise, reset.

AX = Error status (see Function 0x87, Get System Status)
1-19

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 20 Tuesday, October 28, 1997 4:48 PM
Close Serial Port
Function: 0x83
Description
Closes a communications port.

This service generates MARK tone for the time specified in the last configuration call,
then terminates the communications session and powers down the selected serial port.

Interrupt
0x14

Input Registers
AH = 0x83

DX = Serial port

Output Registers
The Carry Flag is set if any error occurs; otherwise reset.

AX = Error status as follows:

Bit 15 = Invalid configuration/queue
Bit 14 = Receive queue is full
Bit 13 = Clear-To-Send (CTS) lost
Bit 12 = Control start not received
Bit 11 = Receive character timeout
Bit 10 = CD did not go inactive on transmit
Bit 9 = CD did not go active on receive
Bit 8 = CD lost during session
Bit 7 = User aborted
Bit 6 = Lost DSR while receiving
Bit 5 = Timeout waiting for DSR or CD
Bit 4 = BREAK detected
Bit 3 = Framing error
Bit 2 = Parity error
Bit 1 = Overrun error
Bit 0 = Channel not open
1-20

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 21 Tuesday, October 28, 1997 4:48 PM
Send Block
Function: 0x84
Description
Moves the specified data block into the transmit queue until the queue is full or the
entire data block is queued. Reports an error if the specified serial port is not open. If
wait mode (0) is specified in the AL register and if a communications error occurs, this
service may terminate before all data is queued. If in half-duplex receive, the line is
automatically enabled for transmit (see Function 0x88,Transmit Enable (Half-duplex
Line Turn Around)).

Interrupt
0x14

Input Registers
AH = 0x84

AL = Mode, as follows:

0x00 = Wait for all data to be queued
0x01 = Do not wait

CX = Length of data

DX = Serial port

ES:SI = Address of data block

Output Registers
The Carry Flag is set if an error occurs; otherwise, reset.

AX = Error status (see Function 0x87, Get System Status)

CX = Number of bytes not sent

DX = Number of bytes sent

ES:SI = Address of first byte not sent
1-21

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 22 Tuesday, October 28, 1997 4:48 PM
Receive Block
Function: 0x85
Description
Returns the number of queued characters and the available queue space for the
selected queue and serial port. If the serial port is not open, this function returns zero
for both the space available and the number of queued characters.

Interrupt
0x14

Input Registers
AH = 0x85

AL = Mode, as follows:

0x00 = Wait for entire block
0x01 = Do not wait
0x02 = Wait for at least one character

CX = Maximum buffer length

DX = Serial port

ES:DI = Address of buffer

Output Registers
The Carry Flag is set if an error occurs; otherwise, reset.

AX = Error status (see Function 0x87, Get System Status)

CX = Number of bytes left to get

DX = Number of bytes received

ES:DI = Address of the next buffer location
1-22

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 23 Tuesday, October 28, 1997 4:48 PM
Queue Status
Function: 0x86
Description
Returns the number of queued characters and the available queue space for the
selected queue and serial port. If the serial port is not open, this function returns zero
for both the space available and the number of queued characters.

Interrupt
0x14

Input Registers
AH = 0x86

AL = Queue selected, as follows:

 0x00 = Input
 0x01 = Output

DX = Serial port

Output Registers
The Carry Flag is set if an exception occurs; otherwise, reset.

AX = Error status (see Function 0x87, Get System Status)

CX = Queued characters

DX = Space left in queue
1-23

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 24 Tuesday, October 28, 1997 4:48 PM
Get System Status
Function: 0x87
Description
Returns the current status of the selected channel. The current error status is returned
in the AX register and the current state of the selected channel is returned in CX. This
service monitors the status of the communications line.

Interrupt
0x14

Input Registers
AH = 0x87

DX = Serial port

ES:DI = Address of the transfer buffer

Output Registers
The Carry Flag is set if an error occurs; otherwise, reset.

AX = Communications error status, as follows:

Bit 15 = Invalid configuration/queue
Bit 14 = Receive queue full
Bit 13 = Clear-To-Send (CTS) lost
Bit 12 = Control start not received
Bit 11 = Receive character timeout
Bit 10 = CD did not go inactive on transmit
Bit 9 = CD did not go active on receive
Bit 8 = CD lost during session
Bit 7 = User aborted
Bit 6 = Lost DSR while receiving
Bit 5 = Timeout waiting for DSR or CD
Bit 4 = BREAK detected
Bit 3 = Framing error
Bit 2 = Parity error
Bit 1 = Overrun error
Bit 0 = Channel not open
1-24

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 25 Tuesday, October 28, 1997 4:48 PM
CX = Current state, as follows:

Bit 6 = Full-duplex send/receive
Bit 5 = Half-duplex data submit
Bit 4 = Half-duplex modem delay
Bit 3 = Half-duplex transmit enable
Bit 2 = Half-duplex data receive
Bit 1 = Half-duplex receive enable
Bit 0 = Idle (closed)
1-25

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 26 Tuesday, October 28, 1997 4:48 PM
Transmit Enable (Half-duplex Line Turn Around)
Function 0x88
Description
Causes the BIOS to perform a physical line turn around when using half-duplex
modems. It is ignored when using a full-duplex modem.

This service causes the BIOS to:

1. disable Receive

2. wait a specified time for CD to drop

3. raise RTS

4. wait modem delay time

5. enable Transmit

All or most of these actions are performed by the BIOS after the call to this function
returns; that is, this function call starts the line turnaround procedure but usually does
not wait for the procedure to complete.

Note: If a Send Block (Function 0x84) or Send One Character
(Function 0x01) call is issued while in half-duplex
Receive, this function is performed automatically.

Interrupt
0x14

Input Registers
AH = 0x88

DX = Serial port

Output Registers
The Carry Flag is set if an error occurs; otherwise, reset.

AX = Error status (see Function 0x87, Get System Status)
1-26

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 27 Tuesday, October 28, 1997 4:48 PM
Receive Enable (Half-Duplex Line Turn Around)
Function: 0x89
Description
Causes the BIOS to perform a physical line turnaround when using half-duplex
modems. It is ignored when using a full-duplex modem.

This service causes the BIOS to:

1. wait until the transmit queue and the UART are empty

2. drop RTS

3. disable Transmit

4. wait a specified time for CD to go active

5. enable receive

All or most of these actions are performed by the BIOS after the call to this function
returns; that is, this function call starts the line turnaround procedure but usually does
not wait for the procedure to complete.

Note: If a Receive One Character (Function 0x02) or a Receive
Block (Function 0x85) service is called while in half-
duplex Transmit this function is performed
automatically.

Interrupt
0x14

Input Registers
AH = 0x89

DX = Serial port

Output Registers
The Carry Flag is set if an error occurs; otherwise, reset.

AX = Error status (see Function 0x87, Get System Status)
1-27

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 28 Tuesday, October 28, 1997 4:48 PM
Transmit Done
Function: 0x8A
Description
Waits until the transmit queue and the UART for the specified serial port are empty.

Interrupt
0x14

Input Registers
AH = 0x8A

DX = Serial port

Output Registers
The Carry Flag is set if any error occurs; otherwise, reset.

AX = Error status (see Function 0x87, Get System Status)
1-28

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 29 Tuesday, October 28, 1997 4:48 PM
Set UART Control Commands
Function: 0x8B
Description
Controls serial port services and control line.

Interrupt
0x14

Input Registers
AH = 0x8B

AL = Control mask, as follows:

Bit 0 = Enable DTR
Bit 1 = Enable RTS
Bit 6 = Enable BREAK

DX = Serial port

Output Registers
The Carry Flag is set if any error occurs; otherwise, reset.

AX = Error status (see Function 0x87,Get System Status)
1-29

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 30 Tuesday, October 28, 1997 4:48 PM
Clear UART Control Commands
Function: 0x8C
Description
Controls serial port services and control line.

Interrupt
0x14

Input Registers
AH = 0x8C

AL = Control mask as follows:

Bit 0 = Disable DTR
Bit 1 = Disable RTS
Bit 6 = Disable BREAK

DX = Serial port

Output Registers
The Carry Flag is set if any error occurs; otherwise reset.

AX = Error status as follows:

Bit 15 = Invalid configuration/queue
Bit 14 = Receive queue is full
Bit 13 = Clear-To-Send (CTS) lost
Bit 12 = Control start not received
Bit 11 = Receive character timeout
Bit 10 = CD did not go inactive on transmit
Bit 9 = CD did not go active on receive
Bit 8 = CD lost during session
Bit 7 = User aborted
Bit 6 = Lost DSR while receiving
Bit 5 = Timeout waiting for DSR or CD
Bit 4 = BREAK detected
Bit 3 = Framing error
Bit 2 = Parity error
1-30

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 31 Tuesday, October 28, 1997 4:48 PM
Bit 1 = Overrun error
Bit 0 = Channel not open
1-31

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 32 Tuesday, October 28, 1997 4:48 PM
Allocate Communications Queues
Function: 0x8D
Description
Sets up the FIFO transmit and receive queues for the selected serial port.

This service must be called before the initial open of the communications session or an
error occurs on the subsequent open.

Queues must be paragraph-aligned and the passed segment address must point to the
first location of the queue.

The actual queue size is the passed size minus 8 bytes of queue overhead. The
minimum passed size is 32 bytes (queue size = 24 bytes).

Interrupt
0x14

Input Registers
AH = 0x8D

DX = Serial port

ES:SI = Queue parameter block, where:

Word 1 = Size of the input queue
Word 2 = Segment address of the input queue
Word 3 = Size of the output queue
Word 4 = Segment address of the output queue

Output Registers
The Carry Flag is set if any error occurs; otherwise reset.

AX = Error status as follows:

Bit 15 = Invalid configuration/queue
Bit 14 = Receive queue is full
Bit 13 = Clear-To-Send (CTS) lost
Bit 12 = Control start not received
Bit 11 = Receive character timeout
Bit 10 = CD did not go inactive on transmit
1-32

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 33 Tuesday, October 28, 1997 4:48 PM
Bit 9 = CD did not go active on receive
Bit 8 = CD lost during session
Bit 7 = User aborted
Bit 6 = Lost DSR while receiving
Bit 5 = Timeout waiting for DSR or CD
Bit 4 = BREAK detected
Bit 3 = Framing error
Bit 2 = Parity error
Bit 1 = Overrun error
Bit 0 = Channel not open
1-33

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 34 Tuesday, October 28, 1997 4:48 PM
Purge Communications Queue
Function: 0x8E
Description
Re-initializes the specified queue(s), discarding any queued data.

Interrupt
0x14

Input Registers
AH = 0x8E

AL = Queue selected, bit encoded as follows:

Bit 1 = Receive queue
Bit 0 = Transmit queue

Note: Unlike Function 0x86 (Queue Status) this function can
purge either or both queues. The queue selection
parameter (AL) is bit encoded, resulting in values as
follows:

Value Meaning
 0x00 Clear neither queue
 0x01 Clear only Transmit queue
 0x02 Clear only Receive queue
 0x03 Clear both queues

Do not confuse these values with the value passed to
Function 0x86, which selects a single queue only.

DX = Serial port

Output Registers
The Carry Flag is set if any error occurs; otherwise, reset.

AX = Error status (see Function 0x87, Get System Status)
1-34

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 35 Tuesday, October 28, 1997 4:48 PM
Transmit Queue Empty
Function: 0x8F
Description
Dispatches an event (through a FAR call) when the transmit queue empties.

The dispatch routine must be a far procedure and must save all registers it uses. The
routine is not invoked immediately. Instead, a flag is set when the queue empties. The
channel background timer checks every 27.45 milliseconds to see if this flag is set and
that the dispatch routine is enabled. When these conditions are met, the routine is
dispatched.

Interrupt
0x14

Input Registers
AH = 0x8F

DX = Serial port

AL = Enable/Disable flag, as follows:

0x00 = Disable
0x01 = Enable

If AL = 0x01, then:

ES:BX = Address of the routine

Output Registers
The Carry Flag is set if any error occurs.

AX = Error code
1-35

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 36 Tuesday, October 28, 1997 4:48 PM
Delete Queues
Function: 0x91
Description
Deletes the current communications queues. Subsequent opens fail if new queues are
not allocated.

Interrupt
0x14

Input Registers
AH = 0x91

DX = Serial port

Output Registers
The Carry Flag is set if an error occurs.

AX = Error code
1-36

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 37 Tuesday, October 28, 1997 4:48 PM
Get Queue Pointer
Function: 0x92
Description
Returns the segment addresses and sizes of the FIFO communications queues.

Interrupt
0x14

Input Registers
AH = 0x92

DX = Serial port

ES:DI = Address of the transfer buffer

Output Registers
The Carry Flag is set and AX = 0x8000 if no queues are currently allocated for the
selected port. Otherwise, the Carry Flag is reset and AX = 0x00.

If the Carry Flag is reset, the value in the ES:DI register pair points to the block
containing the segment addresses and sizes of the queues as defined in Function 0x8D,
Allocate Communications Queues.
1-37

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 38 Tuesday, October 28, 1997 4:48 PM
Version Number Check
Function: 0x93
Description
Returns the major and minor version numbers for the current implementation of
XSYMBIOS.

There are no major and minor versions of 0. To check if XSYMBIOS is present, call this
function with BX = 0. If XSYMBIOS is present, BX is changed. If it is not present, then
BX is unchanged on return.

Applications that rely on XSYMBIOS should use this function to verify that the TSR is
loaded before calling any functions through the interrupt vectors that are not
supported in the standard BIOS.

Note: This function has been superseded by Interrupt 0x32,
Function 0x85, but has not been removed from
XSYMBIOS to maintain compatibility with existing
applications.

Interrupt
0x14

Input Registers
AH = 0x93

Output Registers
AX = 0x00 and the Carry Flag is cleared.

BH = Major version number for XSYMBIOS

BL = Minor version number for XSYMBIOS
1-38

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 39 Tuesday, October 28, 1997 4:48 PM
XSYMBIOS General System Services
(INT 0x32) (List)
These services provide a hardware-independent method for applications to control
standard features such as LCD contrast. No support is included for controlling the
scanner LED (controlled by the scanner driver). The scanner driver API is described in
detail elsewhere in this manual.

The Symbol Extended BIOS TSR supports an application programming interface to the
General System Services listed in Table 1-3. All functions in this API are called by
executing INT 0x32 with an appropriate function code in register AH and (in some
cases) an appropriate subfunction code in register AL. Table 1-3 lists the commands
that call these functions and their associated function codes. These services are
described in the following section.

Table 1-3. XBIOS21T General System Services (INT 0x32)

Function
Code

General System Service Name

0x80 Get/Set Scanner LED ON/OFF

0x81 Get/Set Buzzer Volume Control

0x82 Get/Set Backlight Brightness

0x83 Get Side Switch Status (Subfunction 0x00)

0x83 Get AC Adapter Status (Subfunction 0x01)

0x83 Get Battery Present Status (Subfunction 0x02)

0x83 Get Cradle Status (Subfunction 0x03)

0x84 Get/Set Resume Mask Register

0x85 Get XSYMBIOS Version Number

0x86 Get/Set Viewing Angle
1-39

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 40 Tuesday, October 28, 1997 4:48 PM
XSYMBIOS General System Services
(Descriptions)
The following descriptions of the functions in Table 1-3 are given in function code
order.
1-40

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 41 Tuesday, October 28, 1997 4:48 PM
Get/Set Scanner LED On/Off
Function: 0x80
Description
Turns the scanner LED on or off or returns the current state of the scanner LED.

Interrupt
0x32

Input Registers
AH = 0x80

AL = Subfunction code as follows:

0x00: Turn the scanner LED Off
0x01: Turn the scanner LED On
0x80: Get the current state of the scanner LED

Output Registers
AL = Current state of the scanner LED, as follows:

0x00 = Off
0x01 = On

Example
The following code sample illustrates Get/Set Scanner LED On/Off (Function 0x81).

This example is contained in the following file in the PPT 4100 Software Development
Kit (SDK):

c:\SDK4100\SAMPLES\MANUAL\CHAP1\SCANLED.C

where c:\SDK4100 is the default installation directory.
1-41

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 42 Tuesday, October 28, 1997 4:48 PM
/* Include Files ***/

#include <dos.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

/* Defines ***/

enum {OFF, /* Scanner LED state is OFF */
ON}; /* Scanner LED state is ON */

/* Define the Services by Interrupt Vector number */

#define XB_MISC_INT 0x32 /* General System Services */

#define XB_MSSTSCAN 0x8000 /* set scan state */
#define XB_MSGTSCAN 0x8080 /* get scan state */

/* Public Variables ***/

union REGS inregs; /* input regs to int86 */
union REGS outregs; /* output regs from int86 */

/***/

void sleep(clock_t wait)
{

clock_t goal;

goal = wait + clock();
while(goal > clock());

}

/********* Get Scanner LED On/Off State **********************/
1-42

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 43 Tuesday, October 28, 1997 4:48 PM
void xb_GetScannerLED(unsigned char _far *status)
{

inregs.x.ax = XB_MSGTSCAN;
int86(XB_MISC_INT, &inregs, &outregs);
*status = outregs.h.al;

}

/************* Set Scanner LED ON/OFF ****************************/

void xb_SetScannerLED(unsigned char status)
{

inregs.x.ax = XB_MSSTSCAN | (status & 1);
int86(XB_MISC_INT, &inregs, &outregs);

}

/***

void main ()
{

unsigned char status;

xb_GetScannerLED((char _far *) &status);
fprintf(stdout,"\nScanner status is %02x (hex)\n", status);

xb_SetScannerLED(ON);
fprintf(stdout,"\nScanner status is %02x (hex)\n", status);

sleep(5000);

xb_SetScannerLED(OFF);
fprintf(stdout,"\nScanner status is %02x (hex)\n", status);

}

1-43

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 44 Tuesday, October 28, 1997 4:48 PM
Get/Set Buzzer Volume Control
Function: 0x81
Description
This function supports the following services:

• Reads and returns the buzzer volume state to the application.

• Allows an application to set the buzzer volume control to LOW/HIGH.

Interrupt
0x32

Input Registers
AH = 0x81

AL = Subfunction code as follows:

0x80: Gets the current buzzer volume control setting
0x00: Sets the buzzer volume to LOW
0x01: Sets the buzzer volume to HIGH

Output Registers
AL = Current buzzer volume control setting as follows:

0x00: Current setting is LOW
0x01: Current setting is HIGH

Example
The following code sample illustrates the General System Service functions below:

Get/Set Buzzer Volume Control (Function 0x81)
Get External Activity (Trigger, Power Source, Battery-Connect,

or Terminal-in-Cradle) Status (Function 0x83)
Get XSYMBIOS Version Number (Function 0x85)

This example is contained in the following file in the PPT 4100 Software Development
Kit (SDK):

c:\SDK4100\SAMPLES\MANUAL\CHAP1\MISC1.C

where c:\SDK4100 is the default installation directory.
1-44

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 45 Tuesday, October 28, 1997 4:48 PM
/* Include Files **************************************/

#include <stdio.h>
#include <dos.h>

/* Defines **/

#ifndef FALSE
define FALSE 0
#endif
#ifndef TRUE
define TRUE !FALSE
#endif

#define XB_MISC_INT 0x32 /* interrupt vector -- general system services */

#define XB_MSBUZZER 0x81 /* buzzer volume control */
#define XB_MSGTSTAT 0x83 /* get miscellaneous status */
#define XB_TRIGST 0x00 /* trigger status subfunction */
#define XB_ADAPTST 0x01 /* adaptor status subfunction */
#define XB_BATTPST 0x02 /* battery present status subfunction */
#define XB_CRADLST 0x03 /* in cradle status subfunction */
#define XB_MSGTOVER 0x85 /* get xsymbios (old) version number */

/* Define volume levels */
#define VOL_LOW 0
#define VOL_HIGH 1

typedef unsigned char BYTE; /* 8 bit data type */
typedef unsigned short WORD; /* 16 bit data type */

/* Public Variables **********************************/

union REGS inregs; /* input regs to int86x */
union REGS outregs; /* output regs from int86x */
struct SREGS segregs; /* seg regs to/from int86x */
1-45

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 46 Tuesday, October 28, 1997 4:48 PM
/* Local Functions Prototypes *************************/

void xb_GetBuzzerVol(BYTE far *volume);
BYTE xb_SetBuzzerVol(BYTE volume);
void xb_GetTriggerStatus(BYTE far *left, BYTE far *right);
void xb_GetAdaptorPresent(BYTE far *present);
void xb_GetBatteryPresent(BYTE far *present);
void xb_GetInCradleStatus(BYTE far *status);
void xb_GetXSymBIOSVersion(BYTE far *major, /* major version number */

 BYTE far *minor); /* minor version number */
1-46

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 47 Tuesday, October 28, 1997 4:48 PM
void main (void)
{

BYTE volume; /* buzzer volume setting */
BYTE left; /* left trigger status */
BYTE right; /* right trigger status */
BYTE adaptor_present; /* adaptor presence status */
BYTE battery_present; /* battery presence status */
BYTE in_cradle; /* in/out of cradle status */
BYTE major; /* XSymBIOS (old) major version number */
BYTE minor; /* XSymBIOS (old) minor version number */

/* Set buzzer volume to low */
xb_SetBuzzerVol(VOL_LOW);

/* Obtain and report current buzzer volume setting */
xb_GetBuzzerVol(&volume);
printf("Current buzzer volume is %s\n\n", volume ? "high" : "low");

/* Set buzzer volume to high */
xb_SetBuzzerVol(VOL_HIGH);

/* Obtain and report current buzzer volume setting */
xb_GetBuzzerVol(&volume);
printf("Current buzzer volume is %s\n\n", volume ? "high" : "low");

/* Report trigger switch statuses */
xb_GetTriggerStatus(&left, &right);
printf("The left trigger switch is%s depressed\n", left? "":"not");
printf("The right trigger switch is%s depressed\n\n", right? "":"not");

/* Report adaptor, battery and cradle statuses */
xb_GetAdaptorPresent(&adaptor_present);
printf("The AC adaptor is%s present\n", adaptor_present? "":"not");

xb_GetBatteryPresent(&battery_present);
printf("The battery is%s present\n", battery_present ? "":"not");

xb_GetInCradleStatus(&in_cradle);
printf("The terminal is%s in the cradle\n\n", in_cradle ? "":"not");
1-47

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 48 Tuesday, October 28, 1997 4:48 PM
/* Obtain and report (old) XSymBIOS version numbers */
xb_GetXSymBIOSVersion(&major, &minor);
if ((major == 0) && (minor == 0))

printf("The (old) XSymBIOS is reported as not installed\n");
else

printf("The (old) XSymBIOS version number is:%u.%2.2u\n",major, minor);

return;
}

/************ Get Buzzer Volume ****************************/

void xb_GetBuzzerVol(BYTE far *volume) /* current volume setting */
{

inregs.h.ah = XB_MSBUZZER;
inregs.h.al = 0x80;

int86x(XB_MISC_INT, &inregs, &outregs, &segregs);

*volume = outregs.h.al;

return;

}

1-48

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 49 Tuesday, October 28, 1997 4:48 PM
/********** Set Buzzer Volume ************************/
BYTE xb_SetBuzzerVol(BYTE volume) /* volume setting */
{

BYTE retval; /* return code */

if ((volume == VOL_LOW) || (volume == VOL_HIGH))
{

inregs.h.ah = XB_MSBUZZER;
inregs.h.al = volume;

int86x(XB_MISC_INT, &inregs, &outregs, &segregs);
retval = FALSE;

}
else

retval = TRUE;

return retval;
}

/*********** Get Side Switch Status **/
void xb_GetTriggerStatus(BYTE far *left, /* current left trigger status */

BYTE far *right) /* current right trigger status */
{

inregs.h.ah = XB_MSGTSTAT;
inregs.h.al = XB_TRIGST;

int86x(XB_MISC_INT, &inregs, &outregs, &segregs);

*right = outregs.h.al & 0x01;
*left = outregs.h.al & 0x02;

return;

}

1-49

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 50 Tuesday, October 28, 1997 4:48 PM
/********** Get AC Adapter Status ***/
void xb_GetAdaptorPresent(BYTE far *present) /* current power source */
{

inregs.h.ah = XB_MSGTSTAT;
inregs.h.al = XB_ADAPTST;

int86x(XB_MISC_INT, &inregs, &outregs, &segregs);

*present = outregs.h.al;

return;

}

/************** Get Battery Present Status ***********************************/
void xb_GetBatteryPresent(BYTE far *present) /* battery presence */
{

 inregs.h.ah = XB_MSGTSTAT;
 inregs.h.al = XB_BATTPST;

int86x(XB_MISC_INT, &inregs, &outregs, &segregs);

 *present = outregs.h.al;

 return;

}

/************ Get Cradle Status **/
void xb_GetInCradleStatus(BYTE far *status) /* current cradle status */
{

inregs.h.ah = XB_MSGTSTAT;
inregs.h.al = XB_CRADLST;

int86x(XB_MISC_INT, &inregs, &outregs, &segregs);

*status = outregs.h.al;

return;

}

1-50

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 51 Tuesday, October 28, 1997 4:48 PM
/***************** Get XSYMBIOS Version *******************************/
void xb_GetXSymBIOSVersion(BYTE far *major, /* major version number */

BYTE far *minor) /* minor version number */
{

inregs.h.ah = XB_MSGTOVER;

inregs.x.bx = 0;

int86x(XB_MISC_INT, &inregs, &outregs, &segregs);

*major = outregs.h.bh;
*minor = outregs.h.bl;

return;

}

1-51

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 52 Tuesday, October 28, 1997 4:48 PM
Get/Set Backlight Brightness
Function: 0x82
Description
This function supports the following services:

• Reads and returns the setting of the backlight state control to the application.

• Allows an application to set the backlight state control to OFF/LOW/HIGH.

Interrupt
0x32

Input Registers
AH = 0x82

AL = Subfunction code as follows:

0x80: Gets the current backlight state control setting
0x00: Sets the backlight state control to OFF
0x01: Sets the backlight state control to LOW
0x02: Sets the backlight state control to HIGH

Output Registers
AL = Current backlight state control setting as follows:

0x00: Current setting is OFF
0x01: Current setting is LOW
0x02: Current setting is HIGH

Notes
This function has no effect if the terminal does not have a backlight.

If the backlight is set on (i.e., LOW or HIGH), it is turned on when the LCD is in the
active state and turned off when the LCD is in the sleep or suspend states.

The activities that force the LCD back to the active state are:

• keyboard input

• pen movement or touch

• trigger switch activity
1-52

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 53 Tuesday, October 28, 1997 4:48 PM
• explicit program commands

Example
The following code sample illustrates the General System Service functions below:

Get/Set Backlight Brightness (Function 0x82)
Get/Set Viewing Angle (Function 0x86)
Get XSYMBIOS Version Number (Function 0x85)

It also illustrates the use of the Delay service (INT 0xAC, Function 0x08), described in
XSYMBIOS Timer Services (INT 0xAC) (List).

This example is contained in the following file in the PPT 4100 Software Development
Kit (SDK):

c:\SDK4100\SAMPLES\MANUAL\CHAP1\BKLIGHT.C

where c:\SDK4100 is the default installation directory.
1-53

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 54 Tuesday, October 28, 1997 4:48 PM
/* Include Files ***/

#include <dos.h>
#include <stdio.h>
#include <stdlib.h>

/* Defines **/

/* Define the Services by Interrupt Vector number */

#define XB_MISC_INT 0x32 /* General System Services */
#define XB_TIME_INT 0xAC /* Timer Services */

#define XB_MSBAKLIT 0x82 /* backlight state control */
#define XB_MSVWANGL 0x86 /* viewing angle (contrast) ctrl*/

#define THREE_SECONDS 3000 /*3000 ms. = 3 sec. */
#define XB_MISC_INT 0x32 /* XSYMBIOS interrupt vector */
#define UNDEFINED 0xff

enum XB_BAKLIT {XB_BAKLIT_OFF, /* Backlight values: OFF */
XB_BAKLIT_LOW, /* LOW */
XB_BAKLIT_HIGH}; /* HIGH */

/* Public Variables ***/

union REGS inregs; /* input regs to int86 */
union REGS outregs; /* output regs from int86 */

/* Public Function Prototypes ***************************************/

void xb_SetBacklightState(char state)
{
 inregs.h.ah = XB_MSBAKLIT;
 inregs.h.al = state;
 int86(XB_MISC_INT, &inregs, &outregs);
}

1-54

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 55 Tuesday, October 28, 1997 4:48 PM
void xb_SetViewingAngle(char contrast)
{
 inregs.h.ah = XB_MSVWANGL;
 inregs.h.al = contrast;
 int86(XB_MISC_INT, &inregs, &outregs);
}
unsigned char xb_GetXBIOS46TVersion(unsigned char _far *major,

unsigned char _far *minor)
{
 inregs.h.ah = 0x89;
 inregs.x.bx = 0xffff;
 int86(XB_MISC_INT, &inregs, &outregs);
 *major = outregs.h.bh;
 *minor = outregs.h.bl;
 return(outregs.h.al);
}
void xb_Delay(long milliseconds)
{
 inregs.h.ah = 0x08;
 inregs.x.cx = *(unsigned int *)&milliseconds;
 inregs.h.dl = *((unsigned char *)&milliseconds+2);
 int86(XB_TIME_INT, &inregs, &outregs);
}

1-55

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 56 Tuesday, October 28, 1997 4:48 PM
void main ()
{
 char bin_state[] = {XB_BAKLIT_OFF,XB_BAKLIT_LOW,XB_BAKLIT_HIGH};
 char *txt_state[] = {"OFF","LOW","HIGH"};
 unsigned char major, minor;
 int i;

 long delay_in_ms = THREE_SECONDS;

 /* Check if XSYMBIOS is loaded before requesting services */

 if (_dos_getvect(XB_MISC_INT) == NULL)
 {
 fprintf (stderr,"XSYMBIOS not loaded.\nProgram aborted.");
 exit(0);
 }

 xb_GetXSYMBIOSVersion(&major, &minor);
 if (major == UNDEFINED)
 {
 fprintf (stderr,"XSYMBIOS not loaded.\nProgram aborted.");
 exit(0);
 }
 fprintf(stderr,"XSYMBIOS reported version number as %x. %02x\n",

 major, minor);

 for (i = 0;i < sizeof(bin_state);i++)
 {
 printf ("\rSetting Backlight state to %s", txt_state[i]);

 /* Set the backlight to the next state (e.g. OFF, LOW, HIGH */

 xb_SetBacklightState (bin_state[i]);

 /* Short delay between settings of the backlight */

 xb_Delay (delay_in_ms);
 }
}

1-56

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 57 Tuesday, October 28, 1997 4:48 PM
Get Side Switch Status
Function: 0x83; Subfunction 0x00
Description
Returns the current status of the side switches.

Interrupt
0x32

Input Registers
AH = 0x83
AL = 0x00

Output Registers
AL = current side switch status as follows:

Bit 0 = 1 indicates the right side switch is down
Bit 1 = 1 indicates the left side switch is down

Example
For a code sample that illustrates the Get Side Switch Status (0x83/0x00) function, see
the Example for Get/Set Buzzer Volume Control (0x81).

This code sample is also contained in the following file in the PPT 4100 Software
Development Kit (SDK):

c:\SDK4100\SAMPLES\MANUAL\CHAP1\MISC1.C

where c:\SDK4100 is the default installation directory.
1-57

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 58 Tuesday, October 28, 1997 4:48 PM
Get AC Adapter Status
Function: 0x83; Subfunction 0x01
Description
Returns the current status of the AC adapter.

Interrupt
0x32

Input Registers
AH = 0x83
AL = 0x01

Output Registers
AL = AC adapter status as follows:

0x00: the AC adapter is not connected
0x01: the AC adapter is connected

Example
For a code sample that illustrates the Get AC Adapter Status (0x83/0x01) function, see
the Example for Get/Set Buzzer Volume Control (0x81).

This code sample is also contained in the following file in the PPT 4100 Software
Development Kit (SDK):

c:\SDK4100\SAMPLES\MANUAL\CHAP1\MISC1.C

where c:\SDK4100 is the default installation directory.
1-58

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 59 Tuesday, October 28, 1997 4:48 PM
Get Battery Present Status
Function: 0x83; Subfunction 0x02
Description
Indicates whether or not the terminal main battery is present.

Interrupt
0x32

Input Registers
AH = 0x83

AL = 0x02

Output Registers
AL = Battery status as follows:

0x00: the battery is not present
0x01: the battery is present

Example
For a code sample that illustrates the Get Battery Present Status (0x83/0x02) function,
see the Example for Get/Set Buzzer Volume Control (0x81).

This code sample is also contained in the following file in the PPT 4100 Software
Development Kit (SDK):

c:\SDK4100\SAMPLES\MANUAL\CHAP1\MISC1.C

where c:\SDK4100 is the default installation directory.
1-59

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 60 Tuesday, October 28, 1997 4:48 PM
Get Cradle Status
Function: 0x83; Subfunction 0x03
Description
Indicates whether or not the terminal is in a cradle.

Interrupt
0x32

Input Registers
AH = 0x83

AL = 0x03

Output Registers
AL = In-cradle status as follows:

0x00: the terminal is not in a cradle
0x01: the terminal is in a cradle

Example
For a code sample that illustrates the Get Cradle Status (0x83/0x03) function, see the
Example for Get/Set Buzzer Volume Control (0x81).

This code sample is also contained in the following file in the PPT 4100 Software
Development Kit (SDK):

c:\SDK4100\SAMPLES\MANUAL\CHAP1\MISC1.C

where c:\SDK4100 is the default installation directory.
1-60

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 61 Tuesday, October 28, 1997 4:48 PM
Get/Set Resume Mask Register
Function: 0x84
Description
Writes a resume mask directly to the gate array or reads the current mask value.

Note: This service should not be called by applications. An
equivalent function (Set Wakeup Masks, Interrupt
0xB1, Function 0x01) is provided for application
programs. See Power Management API Commands
(Descriptions) in XSYMBIOS/ Power Management for a
description of this equivalent function.

Interrupt
0x32

Input Registers
AH = 0x84
AL = Mask value encoded as a series of bits. If any bit is set, the corresponding

resume source is masked. If a bit is cleared, the corresponding resume
source is enabled.

The mask bit assignments are as follows:

Bit 0 - Right side switch
Bit 1 - Left side switch
Bit 2 - Pen down
Bit 3 - RS232C ring

If Bit 7 is set when the function is called, the function returns the resume source instead
of writing it.

Output Registers
AL contains the resume source mask.

Example
No code sample is provided for this function. For a code sample illustrating the
equivalent XSYMBIOS power management service (Set Wakeup Masks, INT 0xB1,
Function 0x01), see Power Management API Commands (Descriptions) in XSYMBIOS/
Power Management.
1-61

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 62 Tuesday, October 28, 1997 4:48 PM
Get XSYMBIOS Version Number
Function: 0x85
Description
Returns the XSYMBIOS version number.

Interrupt
0x32

Input Registers
AH = 0x85
BX = 0x00

Output Registers
BH = Major version number for XSYMBIOS
BL = Minor version number for XSYMBIOS

Example
The following code sample illustrates the Get XSYMBIOS Version Number (0x85)
function.

This code sample is also contained in the following file in the PPT 4100 Software
Development Kit (SDK):

c:\SDK4100\SAMPLES\MANUAL\CHAP1\VERSION.C

where c:\SDK4100 is the default installation directory.
1-62

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 63 Tuesday, October 28, 1997 4:48 PM
/* Include Files *******************************/

#include <dos.h>
#include <stdio.h>

/* Defines **/

/* Define the Services by Interrupt Vector number */

#define XB_MISC_INT 0x32 /* General system services interrupt */

#define XB_MSGTVERS 0x85 /* get XSYMBIOS version # */

/* Public Variables ***/

union REGS inregs; /* input regs to int86 */
union REGS outregs; /* output regs from int86 */

/********** Get XSYMBIOS Version function **********************************

void xb_GetXSYMBIOSVersion(unsigned char _far *major,
unsigned char _far *minor)

{
inregs.h.ah = XB_MSGTVERS;
inregs.x.bx = 0xffff;
int86(XB_MISC_INT, &inregs, &outregs);
*major = outregs.h.bh;
*minor = outregs.h.bl;
1-63

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 64 Tuesday, October 28, 1997 4:48 PM
void main()
{

/* Local Variables ***************************************/

char major; /* major version number of XSYMBIOS*/
char minor; /* minor version number of XSYMBIOS*/

/* Extended BIOS call to get XSYMBIOS version number and machine type*/

xb_GetXSYMBIOSVersion((char _far *) &major,(char _far *) &minor);

printf("\nXSYMBIOS Version number %x.%02x\n", major, minor);

}

Note: See the code samples for other functions for illustrations of Get
XSYMBIOS Version Number (0x85).
1-64

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 65 Tuesday, October 28, 1997 4:48 PM
Get/Set Viewing Angle
Function: 0x86
Description
This function supports the following services:

• Reads and returns the current LCD viewing angle (contrast).

• Allows an application to set the LCD viewing angle.

Interrupt
0x32

Input Registers
AH = 0x86
AL = Subfunction code as follows:

0x80: Gets the current LCD viewing angle
0 through 31 (decimal): Sets the LCD viewing angle

Output Registers
AL = 0 through 31 (i.e., the current setting of the LCD viewing angle)

Example
The following code sample illustrates the following General System Service functions:

Get/Set Viewing Angle (Function 0x86), described above
Get XSYMBIOS Version Number (Function 0x85), described earlier

in this section

It also illustrates the Delay service (INT 0xAC, Function 0x08) described in
XSYMBIOS Timer Services (INT 0xAC) (List).

This example is contained in the following file in the PPT 4100 Software Development
Kit (SDK):

c:\SDK4100\SAMPLES\MANUAL\CHAP1\VIEWANGL.C

where c:\SDK4100 is the default installation directory.

/* Include Files ***/
1-65

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 66 Tuesday, October 28, 1997 4:48 PM
#include <dos.h>
#include <stdio.h>
#include <stdlib.h>

/* Defines **/

#define ONE_SECOND 1000 /* 1000 ms. = 1 sec. */
#define UNDEFINED 0xff

#define XB_TMRDELAY 0x08

#define XB_MSBAKLIT 0x82 /* backlight state control */
#define XB_MISC_INT 0x32 /* General System Services */
#define XB_MSVWANGL 0x86 /* viewing angle (contrast) control */
#define XB_MSGTVERS 0x85 /* XSYMBIOS version number */

#define XB_TIME_INT 0xAC /* Timer Services interrupt vector */

#define XB_MSSTSCAN 0x8000
#define XB_MSGTSCAN 0x8080
#define XB_MSMAPKEY 0x8800
#define XB_MSGETKEY 0x8801
#define XB_MSCANKEY 0x8802

/* Public Variables ***/

union REGS inregs; /* input regs to int86 */
union REGS outregs; /* output regs from int86 */
struct SREGS segregs; /* segment regs from/to int86x */
1-66

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 67 Tuesday, October 28, 1997 4:48 PM
/*********** Get XSYMBIOS Version Number Function *************/

unsigned char xb_GetXBIOSVersion(unsigned char __far *major,
 unsigned char __far *minor)

{
inregs.h.ah = XB_MSGTVERS;
inregs.x.bx = 0xffff;
int86(XB_MISC_INT, &inregs, &outregs);
*major = outregs.h.bh;
*minor = outregs.h.bl;
return(outregs.h.al);

}

/************* Timer Services Delay Function **************************/
void xb_Delay(long milliseconds)
{

inregs.h.ah = XB_TMRDELAY;
inregs.x.cx = *(unsigned int *)&milliseconds;
inregs.h.dl = *((unsigned char *)&milliseconds+2);
int86(XB_TIME_INT, &inregs, &outregs);

}

/**************Set Viewing Angle Function ***********************************/

void xb_SetViewingAngle(char contrast)
{

inregs.h.ah = XB_MSVWANGL;
inregs.h.al = contrast;
int86(XB_MISC_INT, &inregs, &outregs);

}

1-67

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 68 Tuesday, October 28, 1997 4:48 PM
/*********** main() checks loaded status of XSYMBIOS TSR ************
************ and sets viewing angle if it is loaded **********************/
void main ()
{

unsigned char contrast, major, minor;

long delay_in_ms = ONE_SECOND;

/* Check if XBIOS interrupt vector is defined */

if (_dos_getvect(XB_MISC_INT) == NULL)
{

fprintf (stderr,"XSYMBIOS not loaded.\nProgram aborted.");
exit(0);

}
xb_GetXSYMBIOSVersion(&major, &minor);
if (major == UNDEFINED)
{

fprintf (stderr,"XSYMBIOS not loaded.\nProgram aborted.");
exit(0);

}
fprintf(stderr,"XSYMBIOS reported version number as %x.%02x\n",

 major,minor);

for (contrast = 7;contrast < 21;contrast++)
{

printf ("\rSetting viewing angle (contrast) to %d", contrast);
xb_SetViewingAngle (contrast);
xb_Delay(delay_in_ms);

}
}

1-68

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 69 Tuesday, October 28, 1997 4:48 PM
XSYMBIOS Timer Services (INT 0xAC) (List)
The PPT 41XX Extended BIOS TSR (XSYMBIOS.EXE) supports the timer services listed
in Table 1-4. Timers are specified in milliseconds. The minimum duration of the timer
is 55 milliseconds (1 timer tick). The maximum duration of any timer is one hour.

XSYMBIOS.EXE supports an application programming interface to the Timer Services
listed in Table 1-4. All functions in this API are called by executing INT 0xAC with an
appropriate function code in register AH. Table 1-4 lists the commands that call these
functions and their associated function codes. These services are described in the
following section.

Table 1-4. XSYMBIOS Timer Services (INT 0xAC)

Function
Code

Timer Service Name

0x00 Allocate Timer

0x01 Deallocate Timer

0x02 Start System Timer

0x03 Start Event Timer

0x04 Reset Timer

0x05 Suspend Timer Operation

0x06 Resume Timer Operation

0x07 Check Timer

0x08 Delay

0x09 Restart Timer
1-69

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 70 Tuesday, October 28, 1997 4:48 PM
XSYMBIOS Timer Services (Descriptions)
The following descriptions of the functions in Table 1-4 are given in function code
order.
1-70

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 71 Tuesday, October 28, 1997 4:48 PM
Allocate Timer
Function: 0x00
Description
Allocates a timer from the timer pool and returns an 8-bit handle to the timer. If the
pool is exhausted, it returns an error.

Interrupt
0xAC

Input Registers
AH = 0x00

Output Registers
The Carry Flag is set if no timer is available.

The Carry Flag is reset if a timer has been allocated.

AL = Timer number, if the Carry Flag is reset.

Example
The following code sample illustrates the Timer Service functions below:

Allocate Timer (Function 0x00)
Deallocate Timer (Function 0x01)
Start System Timer (Function 0x02)
Check Timer (Function 0x07)

This example is also contained in the PPT 4100 Software Development Kit (SDK) in the
following file:

c:\SDK4100\SAMPLES\MANUAL\CHAP1\TIMER1.C

where c:\SDK4100 is the default installation directory.
1-71

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 72 Tuesday, October 28, 1997 4:48 PM
/* Include Files ***********************************/

#include <stdio.h>
#include <dos.h>

/* Defines ***************************************/

#ifndef FALSE
define FALSE 0
#endif

#define XB_TIME_INT 0xAC /* Timer services interrupt vector */
#define XB_TMRALLOC 0x00 /* allocate timer */
#define XB_TMRDALLO 0x01 /* deallocate timer */
#define XB_TMRSTSYS 0x02 /* start system timer */
#define XB_TMRCHECK 0x07 /* check timer */

typedef unsigned char BYTE; /* 8 bit data type */
typedef unsigned short WORD; /* 16 bit data type */

typedef enum {T_DEALLOC, T_ACTIVE, T_EXPIRED, T_ALLOC,
 T_PENDING, T_SUSP} TIMER_STATE;

typedef enum {TIMER, EVENT_TIMER} TIMER_TYPE;

typedef struct
{

TIMER_STATE state;
TIMER_TYPE type;
WORD ticks;
void (*routine)();

} TIMER_STATUS;

/* Public Variables **/

union REGS inregs; /* input regs to int86x */
union REGS outregs; /* output regs from int86x */
struct SREGS segregs; /* seg regs to/from int86x */
1-72

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 73 Tuesday, October 28, 1997 4:48 PM
/* Local Function Prototypes ******************************/

BYTE xb_AllocTimer(BYTE far *timer); /* allocated timer number */
BYTE xb_DeallocTimer(BYTE timer); /* timer number to deallocate */

BYTE xb_StartTimer(BYTE timer, /* timer number to set */
 unsigned long millisecs); /* timer count in milliseconds */

BYTE xb_CheckTimer(BYTE timer, /* timer number to check */
TIMER_STATUS *status_ptr); /* ptr to timer status struct */
1-73

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 74 Tuesday, October 28, 1997 4:48 PM
int main (void)
{

BYTE timer; /* timer number provided by system */
TIMER_STATUS status_blk; /* timer status reported by system */

/* First, request a timer from the system */
if (xb_AllocTimer(&timer) != FALSE)
{

printf("Fatal error: No free timer available\n");
return 1;

}

/* Start timer for 10 seconds */
xb_StartTimer(timer, 10000UL);

/* Perform application-specific operations here */
/* ... */
/* ... */

/* Get timer status */
xb_CheckTimer(timer, &status_blk);

/* If timer is still active, report time remaining */
if (status_blk.state == T_ACTIVE)

printf("Timer still has %u ticks remaining\n", status_blk.ticks);

/* Perform application-specific operations here */
/* ... */
/* ... */

/* When done, return the timer to the system */
xb_DeallocTimer(timer);

return 0;
}

/************ Allocate Timer Function ************************/
1-74

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 75 Tuesday, October 28, 1997 4:48 PM
BYTE xb_AllocTimer(BYTE far *timer) /* allocated timer number */
{

inregs.h.ah = XB_TMRALLOC;

int86x(XB_TIME_INT, &inregs, &outregs, &segregs);

*timer = outregs.h.al;

return outregs.x.cflag;
}

/************* Deallocate Timer Function **********************/

BYTE xb_DeallocTimer(BYTE timer) /* timer number to deallocate */
{

inregs.h.ah = XB_TMRDALLO;
inregs.h.al = timer;

int86x(XB_TIME_INT, &inregs, &outregs, &segregs);

return outregs.x.cflag;
}

/************** Start System Timer Function ***********************/

BYTE xb_StartTimer(BYTE timer, /* timer number to start */
 unsigned long millisecs) /* timer value in millisecs */

{
inregs.h.ah = XB_TMRSTSYS;
inregs.h.al = timer;
inregs.x.cx = *(WORD *)&millisecs;
inregs.h.dl = *((BYTE *)&millisecs+2);

int86x(XB_TIME_INT, &inregs, &outregs, &segregs);

return outregs.x.cflag;
}

/*************** Check Timer Function ************************/
1-75

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 76 Tuesday, October 28, 1997 4:48 PM
BYTE xb_CheckTimer(BYTE timer, /* timer number to check */
TIMER_STATUS *status_ptr) /* ptr to timer status struct */

{
WORD offset_temp;

outregs.x.cflag = 0;

/* Note: inline assembly required due to use of the BP register */
__asm
{

mov ah, XB_TMRCHECK
mov al, timer

int XB_TIME_INT

jnc ok
mov outregs.x.cflag, 1
ok: mov offset_temp, bp
mov outregs.x.ax, ax
mov outregs.x.cx, cx
mov segregs.es, es

}

status_ptr->state = outregs.h.al;
status_ptr->type = outregs.h.ah;
status_ptr->ticks = outregs.x.cx;
status_ptr->routine = MK_FP(segregs.es, offset_temp);

return outregs.x.cflag;

}
1-76

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 77 Tuesday, October 28, 1997 4:48 PM
Deallocate Timer
Function: 0x01
Description
Returns a previously allocated timer to the free timer pool. If the specified timer was
not previously allocated, it returns an error.

Interrupt
0xAC

Input Registers
AH = 0x01
AL = Timer number

Output Registers
The Carry Flag is set if the timer index is out of range; otherwise, it is reset.

Example
For a code sample that illustrates the Deallocate Timer (0x01) function, see the
Example for Allocate Timer (0x00).

This example is also contained in the PPT 4100 Software Development Kit (SDK) in the
following file:

c:\SDK4100\SAMPLES\MANUAL\CHAP1\TIMER1.C

where c:\SDK4100 is the default installation directory.
1-77

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 78 Tuesday, October 28, 1997 4:48 PM
Start System Timer
Function: 0x02
Description
Starts a previously allocated timer to time a specified number of milliseconds (or timer
ticks). When the timer expires, it sets a status bit indicating this. The Check Timer
(Function 0x07) returns the timer status so the user can determine when the timer has
expired.

Interrupt
0xAC

Input Registers
AH = 0x02
AL = Timer number
DL = MSB of time (in milliseconds)
CX = Time (in milliseconds)

Output Registers
The Carry Flag is set if the timer index is out of range; otherwise, it is reset.

Notes
If DL is set to 0xFF, then CX specifies the time in timer ticks (units of 55 milliseconds).
Otherwise, time is in milliseconds.

Example
For a code sample that illustrates the Start System Timer (0x02) function, see the
Example for Allocate Timer (0x00).

This example is also contained in the PPT 4100 Software Development Kit (SDK) in the
following file:

c:\SDK4100\SAMPLES\MANUAL\CHAP1\TIMER1.C

where c:\SDK4100 is the default installation directory.
1-78

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 79 Tuesday, October 28, 1997 4:48 PM
Start Event Timer
Function: 0x03
Description
Starts a previously allocated timer to time a specified number of milliseconds (or timer
ticks). When the timer expires, it sets the timer status to complete and calls a specified
routine in the application.

Interrupt
0xAC

Input Registers
AH = 0x03
AL = Timer number
DL = MSB of time (in milliseconds)
CX = Time (in milliseconds)
ES:BP = Address of the routine to execute

Output Registers
The Carry Flag is set if the timer index is out of range; otherwise, it is reset.

Notes
If DL is set to 0xFF, CX specifies the time in timer ticks (units of 55 milliseconds).

Since the call to the specified routine in the application is made from the interrupt
service routine, the application should follow the rule for an interrupt handler, since
registers are not stored/restored around the call to the event.

This service can be called from the background.

The event may occur before control returns to the calling application.

This routine is called via a FAR call and therefore must issue a FAR return.

Example
The following code sample illustrates the Timer Service functions below:

Allocate Timer (Function 0x00)
Deallocate Timer (Function 0x01)
1-79

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 80 Tuesday, October 28, 1997 4:48 PM
Start Event Timer (Function 0x03)
Reset Timer (Function 0x04)
Suspend Timer Operation (Function 0x05)
Resume Timer Operation (Function 0x06)
Restart Timer (Function 0x09)

This example is also contained in the PPT 4100 Software Development Kit (SDK) in the
following file:

c:\SDK4100\SAMPLES\MANUAL\CHAP1\TIMER2.C

where c:\SDK4100 is the default installation directory.
1-80

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 81 Tuesday, October 28, 1997 4:48 PM
/* Include Files ****************************/

#include <stdio.h>
#include <dos.h>

/* Defines ********************************/

#ifndef FALSE
define FALSE 0
#endif

#ifndef TRUE
define TRUE !FALSE
#endif

#define XB_TIME_INT 0xAC /* Timer services interrupt vector */
#define XB_TMRALLOC 0x00 /* allocate timer */
#define XB_TMRDALLO 0x01 /* deallocate timer */
#define XB_TMRSTEVT 0x03 /* start event timer */
#define XB_TMRRESET 0x04 /* reset timer */
#define XB_TMRSSPND 0x05 /* suspend timer */
#define XB_TMRRESUM 0x06 /* resume timer */

typedef unsigned char BYTE; /* 8 bit data type */
typedef unsigned short WORD; /* 16 bit data type */

/* Public Variables *************************************/

union REGS inregs; /* input regs to int86x */
union REGS outregs; /* output regs from int86x */
struct SREGS segregs; /* seg regs to/from int86x */

BYTE timeout = FALSE; /* true if timeout occurred */

/* Public Function Prototypes ******************************/

BYTE xb_AllocTimer(BYTE far *timer); /* allocated timer number */
BYTE xb_DeallocTimer(BYTE timer); /* timer number to deallocate */

BYTE xb_StartEventTimer(BYTE timer, /* timer number to start */
 unsigned long millisecs, /* timer count in milliseconds */
 void (far *routine)()); /* address of routine */
1-81

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 82 Tuesday, October 28, 1997 4:48 PM
BYTE xb_ResetTimer(BYTE timer); /* timer number to reset */
BYTE xb_SuspendTimer(BYTE timer); /* timer number to suspend */
BYTE xb_ResumeTimer(BYTE timer); /* timer number to resume */

BYTE xb_RestartTimer(BYTE timer, /* timer number to restart */
 unsigned long millisecs); /* timer count in milliseconds */

/* Local Function Prototypes ********************************/

void far __loadds watchdog(void);
1-82

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 83 Tuesday, October 28, 1997 4:48 PM
int main (void)
{

BYTE timer; /* timer number provided by system */

/* First, request a timer from the system */
if (xb_AllocTimer(&timer) != FALSE)
{

printf("Fatal error: No free timer available\n");
return 1;

}

/* Start event timer to activate watchdog in 10 seconds */
xb_StartEventTimer(timer, 10000UL, watchdog);

/* Perform watchdogged application-specific operations here */
/* ... */
/* ... */

/* Suspend the watchdog timer while we wait for the operator */
xb_SuspendTimer(timer);

/* Wait for operator action */
printf("Press any key to continue\n");
getchar();

/* Resume the watchdog timer */
xb_ResumeTimer(timer);

/* Perform watchdogged application-specific operations here */
/* ... */
/* ... */

/* Restart watchdog timer operation with 5 second timeout */
xb_RestartTimer(timer, 5000UL);

/* Perform watchdogged application-specific operations here */
/* ... */
/* ... */

1-83

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 84 Tuesday, October 28, 1997 4:48 PM
/* When done, return the timer to the system */
xb_DeallocTimer(timer);

return 0;
}

/************** Example Timer Activated (Callback Routine**************
* SYNOPSIS: void far __loadds watchdog(void)
* DESCRIPTION: Example timer activated (callback) routine
* PARAMETERS: None
* RETURN VALUE: None
* INPUTS: None
* OUTPUTS: None
*
* NOTES: Timer activated (callback) routines must:
*
* 1) Have stack checking turned off, and
* 2) Load the DS register on entry
*
* This example utilizes Microsoft C mechanisms to
* meet these two requirements.
*
***/

#pragma check_stack(off)
void far __loadds watchdog(void)
{

timeout = TRUE;

}
#pragma check_stack(on)
1-84

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 85 Tuesday, October 28, 1997 4:48 PM
/************ Allocate Timer Function *************************/

BYTE xb_AllocTimer(BYTE far *timer) /* allocated timer number */
{

inregs.h.ah = XB_TMRALLOC;

int86x(XB_TIME_INT, &inregs, &outregs, &segregs);

*timer = outregs.h.al;

return outregs.x.cflag;
}

/**************** Deallocate Timer Function ********************/

BYTE xb_DeallocTimer(BYTE timer) /* timer number to deallocate */
{

inregs.h.ah = XB_TMRDALLO;
inregs.h.al = timer;

 int86x(XB_TIME_INT, &inregs, &outregs, &segregs);

return outregs.x.cflag;
}

/*************** Start Event Timer Function *********************/

BYTE xb_StartEventTimer(BYTE timer, /* timer number to start */
unsigned long millisecs, /* timer value in milliseconds */
void (far *routine)()) /* address of routine */
1-85

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 86 Tuesday, October 28, 1997 4:48 PM
{
WORD routine_seg;
WORD routine_offset;
static WORD bp_save;

inregs.x.cx = *(WORD *)&millisecs;
inregs.h.dl = *((BYTE *)&millisecs+2);
routine_seg = FP_SEG(routine);
routine_offset = FP_OFF(routine);

outregs.x.cflag = 0;

/* Note: inline assembly required due to use of the BP register */
__asm
{

mov ah, XB_TMRSTEVT
mov al, timer
mov cx, inregs.x.cx
mov dl, inregs.h.dl
mov bx, routine_seg
mov es, bx
mov bp_save, bp
mov bp, routine_offset

int XB_TIME_INT

jnc ok
mov outregs.x.cflag, 1
ok: mov bp, bp_save

}

return outregs.x.cflag;
}

/************** Reset Timer Function ***************************/
1-86

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 87 Tuesday, October 28, 1997 4:48 PM
BYTE xb_ResetTimer(BYTE timer) /* timer number to reset */
{

inregs.h.ah = XB_TMRRESET;
inregs.h.al = timer;

int86x(XB_TIME_INT, &inregs, &outregs, &segregs);

return outregs.x.cflag;

}

1-87

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 88 Tuesday, October 28, 1997 4:48 PM
/**************** Suspend Timer Operation Function *************************/

BYTE xb_SuspendTimer(BYTE timer) /* timer number to suspend */
{

inregs.h.ah = XB_TMRSSPND;
inregs.h.al = timer;

int86x(XB_TIME_INT, &inregs, &outregs, &segregs);

return outregs.x.cflag;

}

/***************** Resume Timer Operation Function **************/

BYTE xb_ResumeTimer(BYTE timer) /* timer number to resume */
{

inregs.h.ah = XB_TMRRESUM;
inregs.h.al = timer;

int86x(XB_TIME_INT, &inregs, &outregs, &segregs);

return outregs.x.cflag;

}

/*************** Restart Timer Function *****************************/

BYTE xb_RestartTimer(BYTE timer, /* timer number to restart */
unsigned long millisecs)/* timer count in milliseconds */

{
inregs.h.ah = 0x09;
inregs.h.al = timer;
inregs.x.cx = *(WORD *)&millisecs;
inregs.h.dl = *((BYTE *)&millisecs+2);

int86x(XB_TIME_INT, &inregs, &outregs, &segregs);

return outregs.x.cflag;

}

1-88

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 89 Tuesday, October 28, 1997 4:48 PM
Reset Timer
Function: 0x04
Description
Disables a previously allocated System or Event Timer. It marks the timer inactive and
clears any current time and notification address.

Interrupt
0xAC

Input Registers
AH = 0x04
AL = Timer number

Output Registers
The Carry Flag is set if the timer index is out of range; otherwise, it is reset.

Notes
This service can be called from the background.

Example
For a code sample that illustrates the Reset Timer (0x04) function, see the Example for
Start Event Timer (0x03).

This example is also contained in the PPT 4100 Software Development Kit (SDK) in the
following file:

c:\SDK4100\SAMPLES\MANUAL\CHAP1\TIMER2.C

where c:\SDK4100 is the default installation directory.
1-89

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 90 Tuesday, October 28, 1997 4:48 PM
Suspend Timer Operation
Function: 0x05
Description
Temporarily stops an active timer and marks the timer status as suspended. Use
Resume Timer (Function 0x06) to resume the timer. Suspend Timer has no effect
when the timer is not active.

Interrupt
0xAC

Input Registers
AH = 0x05
AL = Timer number

Output Registers
The Carry Flag is set if the timer index is out of range; otherwise, it is reset.

Notes
This service sets the timer status to “Suspended”, but does not clear the timer count or
address. It simply stops decrementing the counter.

This function can be called from the background.

Example
For a code sample that illustrates the Suspend Timer Operation (0x05) function, see
the Example for Start Event Timer (0x03).

This example is also contained in the PPT 4100 Software Development Kit (SDK) in the
following file:

c:\SDK4100\SAMPLES\MANUAL\CHAP1\TIMER2.C

where c:\SDK4100 is the default installation directory.
1-90

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 91 Tuesday, October 28, 1997 4:48 PM
Resume Timer Operation
Function: 0x06
Description
Restarts a previously suspended timer to resume counting from the point at which it
was stopped. The function has no effect on a timer unless it was first suspended.

Interrupt
0xAC

Input Registers
AH = 0x06
AL = Timer number

Output Registers
The Carry Flag is set if the timer index is out of range; otherwise, it is reset.

Notes
This service restarts a timer stopped by Suspend Timer (Function 0x05).

This function can be called from the background.

Example
For a code sample that illustrates the Resume Timer Operation (0x06) function, see the
Example for Start Event Timer (0x03).

This example is also contained in the PPT 4100 Software Development Kit (SDK) in the
following file:

c:\SDK4100\SAMPLES\MANUAL\CHAP1\TIMER2.C

where c:\SDK4100 is the default installation directory.
1-91

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 92 Tuesday, October 28, 1997 4:48 PM
Check Timer
Function: 0x07
Description
Reads the current state of a timer and returns:

• Timer type (System, Event)

• Timer status (active, suspended, expired, idle)

• Ticks to completion

• Pointer to callback function (if Event Timer)

Interrupt
0xAC

Input Registers
AH = 0x07
AL = Timer number

Output Registers
The Carry Flag is set if the timer index is out of range; otherwise, it is reset.
The Zero Flag is set if the timer expires; otherwise, it is reset.
AL = Timer status, as follows:
 0x00: Deallocated
 0x01: Active
 0x02: Expired
 0x03: Allocated (inactive)
 0x04: Pending
 0x05: Suspended

AH = Timer type, as follows:
 0x00: Timer
 0x01: Event timer

CX = Current timer ticks
ES:BP = Dispatch address (if AH = 0x01)
1-92

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 93 Tuesday, October 28, 1997 4:48 PM
Notes
This function can be called from the background.

To convert Current Timer Ticks to milliseconds, multiply the value returned in CX by
55.

Example
For a code sample that illustrates the Check Timer (0x07) function, see the Example for
Allocate Timer (0x00).

This example is also contained in the PPT 4100 Software Development Kit (SDK) in the
following file:

c:\SDK4100\SAMPLES\MANUAL\CHAP1\TIMER1.C

where c:\SDK4100 is the default installation directory.
1-93

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 94 Tuesday, October 28, 1997 4:48 PM
Delay
Function: 0x08
Description
Enters power saving mode for a specified time. When the time expires, it restores the
power state and returns to the calling application.

Interrupt
0xAC

Input Registers
AH = 0x08
DL = MSB of delay (See Notes section below)
CX = Delay (in milliseconds)

Output Registers
None

Notes
If DL is set to 0xFF, CX specifies the time in timer ticks (units of 55 milliseconds).
Otherwise, time is in milliseconds. The maximum time in milliseconds is 1,800,000 (30
minutes).

Example
The following code sample illustrates the Delay function.

This example is also contained in the PPT 4100 Software Development Kit (SDK) in the
following file:

c:\SDK4100\SAMPLES\MANUAL\CHAP1\DELAY.C

where c:\SDK4100 is the default installation directory.
1-94

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 95 Tuesday, October 28, 1997 4:48 PM
/* Include Files **/

#include <dos.h>
#include <stdio.h>
#include <time.h>

/* Defines *************************************/

#define XB_DELAY 0x08 /* delay function */
#define XB_TIME_INT 0xAC /* Timer services interrupt vector */

/* Public Variables **********************************/

union REGS inregs; /* input regs to int86 */
union REGS outregs; /* output regs from int86 */
int int_function = 0; /* INT function number */

/************** Delay Function ********************************

void xb_Delay(long milliseconds)
{

inregs.h.ah = XB_DELAY;
int_function = XB_TIME_INT;
inregs.x.cx = *(unsigned int *)&milliseconds;
inregs.h.dl = *((unsigned char *)&milliseconds+2);
int86(int_function, &inregs, &outregs);

}

1-95

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 96 Tuesday, October 28, 1997 4:48 PM
void main()
{
/* Local Variables ***/

static struct _dostime_t DOSTIME;
char *tbuf={"##:##:##.#"};
unsigned long delay_in_ms;

/* The maximum delay is 0xffffff which is approximately */
/* 16777. seconds (approximately 4 hours and 39 minutes) */

delay_in_ms=5000; /* 5 sec delay */
_dos_gettime(&DOSTIME);
printf("\n%02d:%02d:%02d.%02d is time before %d sec. XB_Delay",

DOSTIME.hour, DOSTIME.minute, DOSTIME.second,
DOSTIME.hsecond, delay_in_ms/1000);

/* This service enters the power saving mode for a specified */
/* time, and restores the power state and returns to the */
/* caller when the time has expired. */

xb_Delay(delay_in_ms);

_dos_gettime(&DOSTIME);
printf("\n%02d:%02d:%02d.%02d is time AFTER XB_Delay",

DOSTIME.hour, DOSTIME.minute, DOSTIME.second,
DOSTIME.hsecond);

}

1-96

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 97 Tuesday, October 28, 1997 4:48 PM
Restart Timer
Function: 0x09
Description
Restarts a timer for a specified duration. This function can be used to restart a
background event timer without having to re-specify the callback address.

Interrupt
0xAC

Input Registers
AH = 0x09
AL = System Timer Number
DL = MSB of time (See Notes section below)
CX = Time (in milliseconds)

Output Registers
The Carry Flag is set if the timer index is out of range; otherwise, it is reset.

Notes
If DL is set to 0xFF, CX specifies the time in timer ticks (units of 55 milliseconds).
Otherwise, time is in milliseconds. The maximum time in milliseconds is 1,800,000 (30
minutes).

This function can be called from the background.

Example
For a code sample that illustrates the Restart Timer (0x09) function, see the Example
for Start Event Timer (0x03).

This example is also contained in the PPT 4100 Software Development Kit (SDK) in the
following file:

c:\SDK4100\SAMPLES\MANUAL\CHAP1\TIMER2.C

where c:\SDK4100 is the default installation directory.
1-97

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 98 Tuesday, October 28, 1997 4:48 PM
XSYMBIOS Sound Services (INT 0xAD) (List)
The PPT 41XX Extended BIOS TSR (XSYMBIOS.EXE) supports the sound services
listed in Table 1-5.

XSYMBIOS supports an application programming interface to the sound services
listed in Table 1-5. All functions in this API are called by executing INT 0xAD with an
appropriate function code in register AH. Table 1-5. lists the commands that call these
functions and their associated function codes. These services are described in the
following section.

Table 1-5. XSYMBIOS Sound Services (INT 0xAD)

Function
Code

Sound Service Name

0x00 Buzzer On

0x01 Buzzer Off

0x02 Beep for Duration

0x03 Get/Set Speaker Volume
1-98

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 99 Tuesday, October 28, 1997 4:48 PM
XSYMBIOS Sound Services (Descriptions)
The following descriptions of the functions in Table 1-5. are given in function code
order.
1-99

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 100 Tuesday, October 28, 1997 4:48 PM
Buzzer On
Function: 0x00
Description
Enables the buzzer and programs the buzzer frequency, causing the buzzer to emit a
continuous tone until it is switched off.

Interrupt
0xAD

Input Registers
AH = 0x00
BX = Buzzer frequency (in Hertz)

Note: If BX is set to zero, XSYMBIOS selects the default
frequency at which the buzzer is perceptibly louder.

Output Registers
None

Example
The following code sample illustrates the sound services below:

Buzzer On (Function 0x00)
Buzzer Off (Function 0x01)

This example is also contained in the PPT 4100 Software Development Kit (SDK) in the
following file:

c:\SDK4100\SAMPLES\MANUAL\CHAP1\SOUND2.C

where c:\SDK4100 is the default installation directory.
1-100

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 101 Tuesday, October 28, 1997 4:48 PM
/* Include Files **************************************/

#include <dos.h>

/* Defines **/

/* Define the Services by Interrupt Vector number */

#define XB_TIMER_INT 0xAC /* Timer services interrupt vector */
#define XB_DELAY 0x08 /* delay function */
#define XB_SOUND_INT 0xAD /* Sound services interrupt vector */

enum BUZZER_CMD {BUZZER_ON, BUZZER_OFF};

/* Public Variables ***********************************/

union REGS inregs; /* input regs to int86 */
union REGS outregs; /* output regs from int86 */
struct SREGS segregs; /* segment regs from/to int86x */

void xb_Delay(long milliseconds)
{

inregs.h.ah = XB_DELAY;
inregs.x.cx = *(unsigned int *)&milliseconds;
inregs.h.dl = *((unsigned char *)&milliseconds+2);
int86(XB_TIMER_INT, &inregs, &outregs);

}

/************** Buzzer On Function ************************/

void xb_BuzzerOn(int frequency)
{

inregs.h.ah = BUZZER_ON;
inregs.x.bx = frequency;
int86(XB_SOUND_INT, &inregs, &outregs);

}

1-101

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 102 Tuesday, October 28, 1997 4:48 PM
/****************** Buzzer Off Function **********************/

void xb_BuzzerOff()
{

inregs.h.ah = BUZZER_OFF;
int86(XB_SOUND_INT, &inregs, &outregs);

}

int main()
{
/* Local Variables ***************************************/

int frequency; /* Buzzer frequency in Hertz */
frequency = 440;
xb_BuzzerOn(frequency); /* Turn the Buzzer On */
xb_Delay (1000); /* Delay for 1 second */
xb_BuzzerOff(); /* Turn the Buzzer Off */

}

1-102

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 103 Tuesday, October 28, 1997 4:48 PM
Buzzer Off
Function: 0x01
Description
Switches off the buzzer.

Interrupt
0xAD

Input Registers
AH = 0x01

Output Registers
None

Example
For a code sample that illustrates the Buzzer Off function, see the Example for Buzzer
On (Function 0x00).

This example is also contained in the PPT 4100 Software Development Kit (SDK) in the
following file:

c:\SDK4100\SAMPLES\MANUAL\CHAP1\SOUND2.C

where c:\SDK4100 is the default installation directory.
1-103

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 104 Tuesday, October 28, 1997 4:48 PM
Beep for Duration
Function: 0x02
Description
Switches the buzzer on at a specified frequency for a specified time. When the time
expires, the buzzer is switched off.

Beeps may be issued in two modes:

• the foreground mode
The routine enters a power saving mode and does not return to the caller until
the time expires.

• the background mode
The routine starts the buzzer and returns immediately to the caller, switching the
beep off when the timer expires.

The service routine relies on XSYMBIOS timers. If no timer is available, then the
duration of the beep is 0 milliseconds.

Interrupt
0xAD

Input Registers
AH = 0x02
AL = Mode, as follows:

0x00: Foreground
0x01: Background

BX = Buzzer frequency (in Hertz)

DX = MSB of delay time (See Notes section below)

CX = Delay time (in milliseconds)

Output Registers
None

Notes
If DL is set to 0xFF, CX specifies the time in timer ticks (units of 55 milliseconds).
Otherwise, time is in milliseconds. The maximum time in milliseconds is 1,800,000 (30
minutes).
1-104

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 105 Tuesday, October 28, 1997 4:48 PM
Example
The following code sample illustrates the Beep for Duration (Function 0x02) service.

This example is also contained in the PPT 4100 Software Development Kit (SDK) in the
following file:

c:\SDK4100\SAMPLES\MANUAL\CHAP1\SOUND3.C

where c:\SDK4100 is the default installation directory.

/* Include Files ***/

#include <dos.h>
#include <stdio.h>

/* Defines **/

#define FOREGROUND 0
#define BACKGROUND 1

#define XB_SOUND_INT 0xAD /* Sound services interrupt vector */

/* Public Variables ***/

union REGS inregs; /* input regs to int86 */
union REGS outregs; /* output regs from int86 */
struct SREGS segregs; /* segment regs from/to int86x */
1-105

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 106 Tuesday, October 28, 1997 4:48 PM
/*************** Beep for Duration Function *********************************/

void xb_GenerateBeep(char fgmode, /* foreground/background mode */
unsigned int frequency,/* beep freq in Hertz */
unsigned long delay) /* delay in millisec */

{
inregs.h.ah = 0x02;
inregs.h.al = fgmode;
inregs.x.bx = frequency;
inregs.x.cx = *(unsigned int *)&delay;
inregs.x.dx = *((unsigned int *)&delay+1);

int86(XB_SOUND_INT, &inregs, &outregs);
}

void main()
{
/* Local Variables ***/

char fgmode; /* foreground / background mode */
unsigned int frequency; /* beep frequency in Hertz */
unsigned long delay; /* delay in milliseconds */

fgmode = BACKGROUND;
frequency = 440;
delay = 500;
xb_GenerateBeep(fgmode, frequency, delay);

}

1-106

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 107 Tuesday, October 28, 1997 4:48 PM
Get/Set Speaker Volume
Function: 0x03
Description
Returns the current speaker volume setting, or allows an application to select either
high or low speaker volume.

Interrupt
0xAD

Input Registers
AH = 0x03

AL = Subfunction, as follows:

0x00: Get speaker volume
0x01: Set speaker volume

If AL = 0x01, then:

BL = Desired volume, as follows:

0x00 = Low
0x01 = High

Output Registers
If AL = 0x00, then:

BL = Current speaker volume, as follows:

0x00 = Low
0x01 = High

Example
The following code sample illustrates the Get/Set Speaker Volume (Function 0x03)
service.

This example is also contained in the PPT 4100 Software Development Kit (SDK) in the
following file:

c:\SDK4100\SAMPLES\MANUAL\CHAP1\SOUND1.C
1-107

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 108 Tuesday, October 28, 1997 4:48 PM
where c:\SDK4100 is the default installation directory.

/* Include Files **************************************/

#include <stdio.h>
#include <dos.h>

/* Defines ***/

#ifndef FALSE
define FALSE 0
#endif
#ifndef TRUE
define TRUE !FALSE
#endif

#define XB_SOND_INT 0xAD /* Sound services interrupt vector */
#define XB_BEEP 0x02 /* generate beep */
#define XB_SPKRVOL 0x03 /* get/set speaker volume */

/* Define volume levels */
#define VOL_LOW 0
#define VOL_HIGH 1

/* Define tone modes */
#define MODE_FOREGND 0
#define MODE_BACKGND 1

typedef unsigned char BYTE; /* 8 bit data type */
typedef unsigned short WORD; /* 16 bit data type */
typedef unsigned long DWORD; /* 32 bit data type */

/* Public Variables *************************************/

union REGS inregs; /* input regs to int86x */
union REGS outregs; /* output regs from int86x */
struct SREGS segregs; /* seg regs to/from int86x */

/* Local Functions Prototypes **/

void xb_GetBuzzerVol2 (BYTE far *volume);
void xb_SetBuzzerVol2 (BYTE volume);
BYTE xb_Beep(BYTE mode, WORD freq, DWORD duration);
1-108

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 109 Tuesday, October 28, 1997 4:48 PM
void main (void)
{

BYTE volume; /* buzzer volume setting */

/* Set buzzer volume to low */
xb_SetBuzzerVol2(VOL_LOW);

/* Obtain and report current buzzer volume setting */
xb_GetBuzzerVol2(&volume);
printf("Current buzzer volume is %s\n\n", volume ? "high" : "low");

/* Generate a sample low beep (1000 Hz, 0.5 Sec) */
xb_Beep(MODE_FOREGND, 1000, 500);

/* Set buzzer volume to high */
xb_SetBuzzerVol2(VOL_HIGH);

/* Obtain and report current buzzer volume setting */
xb_GetBuzzerVol2(&volume);
printf("Current buzzer volume is %s\n\n", volume ? "high" : "low");

/* Generate a sample high beep (1000 Hz, 0.5 Sec) */
xb_Beep(MODE_FOREGND, 1000, 500);

return;
}

/************* Get Speaker (Buzzer) Volume Function *****************/

void xb_GetBuzzerVol2(BYTE far *volume) /* current volume setting */
{

inregs.h.ah = XB_SPKRVOL;
inregs.h.al = 0x00;

int86x(XB_SOND_INT, &inregs, &outregs, &segregs);

*volume = outregs.h.bl;

return;
}

1-109

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 110 Tuesday, October 28, 1997 4:48 PM
/*********** Set Speaker (Buzzer) Volume Function **********/

BYTE xb_SetBuzzerVol2(BYTE volume) /* volume setting */
{

BYTE retval; /* return code */

if ((volume == VOL_LOW) || (volume == VOL_HIGH))
{

inregs.h.ah = XB_SPKRVOL;
inregs.h.al = 0x01;

inregs.h.bl = volume;

int86x(XB_SOND_INT, &inregs, &outregs, &segregs);
retval = FALSE;

}
else

retval = TRUE;

return retval;

}

/*************** Beep for Duration Function ***************************/

BYTE xb_Beep(BYTE mode, /* operating mode */
 WORD freq, /* frequency in hertz */
 DWORD duration) /* duration in milliseconds */
1-110

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 111 Tuesday, October 28, 1997 4:48 PM
{
 BYTE retval; /* return code */

 if ((mode == MODE_FOREGND) || (mode == MODE_BACKGND))
 {

inregs.h.ah = XB_BEEP;
inregs.h.al = mode;

inregs.x.bx = freq;

inregs.x.dx = (WORD)(duration >> 16);
inregs.x.cx = (WORD)(duration);

int86x(XB_SOND_INT, &inregs, &outregs, &segregs);
retval = FALSE;

}
else

retval = TRUE;

return retval;
}

1-111

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 112 Tuesday, October 28, 1997 4:48 PM
XSYMBIOS CRC Services (INT 0xAE) (List)
The PPT 41XX Extended BIOS TSR (XSYMBIOS.EXE) supports the CRC services listed
in Table 1-6.

XSYMBIOS supports an application programming interface to the CRC services listed
in Table 1-6. All functions in this API are called by executing INT 0xAE with an
appropriate function code in register AH.
Table 1-6 lists the commands that call these functions along and their function codes.
These services are described in the following section.

Table 1-6. XSYMBIOS CRC Services (Interrupt 0xAE)

Function Code CRC Service Name

0x00 Compute Running CRC-16 on a Byte

0x01 Compute Running CRC-16 on a Buffer

0x02 Compute Running CRC-32 on a Buffer
1-112

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 113 Tuesday, October 28, 1997 4:48 PM
XSYMBIOS CRC Services (Descriptions)
The following descriptions of the functions in Table 1-6 are given in function code
order.
1-113

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 114 Tuesday, October 28, 1997 4:48 PM
Compute Running CRC-16 on a Byte
Function: 0x00
Description
Updates a supplied CRC-16 check-sum with the appropriate value for a supplied byte
and returns the modified check-sum.

Interrupt
0xAE

Input Registers
AH = 0x00

AL = Supplied byte

DX = Supplied CRC-16 check-sum

Output Registers
DX = Modified CRC-16 check-sum

Example
The following code sample illustrates the CRC services below:

Compute Running CRC-16 on a Byte (Function 0x00)
Compute Running CRC-16 on a Buffer (Function 0x01)

This example is also contained in the PPT 4100 Software Development Kit (SDK) in the
following file:

c:\SDK4100\SAMPLES\MANUAL\CHAP1\CRC16.C

where c:\SDK4100 is the default installation directory.
1-114

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 115 Tuesday, October 28, 1997 4:48 PM
/* Include Files *************************************/

#include <ctype.h>
#include <dos.h>
#include <stdio.h>

/* Defines ***/

#define XB_CRC_INT 0xAE /* CRC services interrupt vector */

enum CRC_CMD {
CRC_16_BYTE, /* CRC-16 a byte at a time */
CRC_16, /* CRC-16 buffer */
CRC_32}; /* CRC-32 buffer */

/* Public Variables ************************************/
union REGS inregs; /* input regs to int86 */
union REGS outregs; /* output regs from int86 */
struct SREGS segregs; /* segment regs from/to int86x */

/********** Compute Running CRC-16 on a Byte ****************/

void xb_CRC16Byte(char byte, unsigned int _far *runningcrc)
{

inregs.h.ah = CRC_16_BYTE;
inregs.h.al = byte;
inregs.x.dx = *runningcrc;
int86(XB_CRC_INT, &inregs, &outregs);
*runningcrc = outregs.x.dx;

}

/********** Compute Running CRC-16 on a Buffer ***************/
1-115

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 116 Tuesday, October 28, 1997 4:48 PM
void xb_CRC16Buffer(void _far *buffer, unsigned int buffsize,
unsigned int runningcrc, unsigned int _far *crc)

{
inregs.h.ah = CRC_16;
inregs.x.cx = buffsize;
inregs.x.dx = runningcrc;
segregs.es = FP_SEG(buffer);
inregs.x.si = FP_OFF(buffer);
int86x(XB_CRC_INT, &inregs, &outregs, &segregs);
*crc = outregs.x.dx;

}

1-116

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 117 Tuesday, October 28, 1997 4:48 PM
void main()
{

/* format of bi-sync msg is: <stx><msg len><text><etx> */
static char msg[] = {"\x02\x00\x05HELLO\x03"}; /* msg buffer */
char _far *crcbuf = &msg[0]; /* pointer to buffer */
unsigned short i; /* loop index */
unsigned short crc16; /* 16-bit crc */
unsigned short crcbufsize; /* buffer size */

/* Can't use strlen() since buffer contains "\x00" */

crcbufsize = sizeof(msg) - 1;

/* Do CRC calculation a byte at a time. */

crc16 = 0; /* Must be initialized */
for(i = 0;i < crcbufsize; i++)

xb_CRC16Byte(msg[i], (unsigned int _far *) &crc16);

printf("\nCalculated CRC-16 = %04X (HEX) a byte at a time", crc16);

/* Extended BIOS call to calculate the CRC */

xb_CRC16Buffer(crcbuf, crcbufsize, 0, (unsigned int _far *) &crc16);

printf("\nCalculated CRC-16 = %04X (HEX) for message ", crc16);

/* Display the buffer showing non-printable characters in hex. */
for(i = 0;i < crcbufsize; i++)

if (isprint(msg[i]))printf("%c", msg[i]);
else printf("\\x%02x", msg[i]);

}

1-117

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 118 Tuesday, October 28, 1997 4:48 PM
Compute Running CRC-16 on a Buffer
Function: 0x01
Description
Calculates a CRC-16 check-sum for a supplied buffer and returns the modified check-
sum. If a buffer size of zero (0) is specified, the function exits immediately.

Interrupt
0xAE

Input Registers
AH = 0x01

CX = Size of buffer

DX = Supplied CRC-16 check-sum

ES:SI = Address of the buffer to CRC

Output Registers
DX = Modified CRC-16 check-sum

Notes
This service is more efficient than using CRC-16 Byte (Function 00h) to update each
byte in the buffer individually.

Example
For sample code that illustrates the Compute Running CRC-16 on a Buffer service, see
the Example for Compute Running CRC-16 on a Byte (Function 0x00).

This example is also contained in the PPT 4100 Software Development Kit (SDK) in the
following file:

c:\SDK4100\SAMPLES\MANUAL\CHAP1\CRC16.C

where c:\SDK4100 is the default installation directory.
1-118

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 119 Tuesday, October 28, 1997 4:48 PM
Compute Running CRC-32 on a Buffer
Function: 0x02
Description
Calculates a CRC-32 check-sum for a supplied buffer and returns the modified check-
sum. If a buffer size of zero (0) is specified, the function exits immediately. See Notes
section below.

Interrupt
0xAE

Input Registers
AH = 0x02

CX = Size of buffer in bytes. (0 size is treated as 0 and not as 64K.)

ES:SI = Address of buffer to CRC (see Notes below)

Output Registers
DX:AX = 32 bit CRC (DX most significant)

Notes
Traditionally when transmitting, the CRC is appended to a message (in the order DH,
DL, BH, and BL) and the receiver performs a CRC on the transmitted data, including
the transmitted CRC. If the data is received correctly, the residual value (calculated by
performing a CRC on the entire message, including the transmitted CRC) is
0xDEBB20E3.

The CRC services normalize the supplied buffer pointer prior to processing the buffer
in order to minimize problems with segment wrap-arounds. Thus the maximum buffer
size is 64K - (SI & 0x0F).

Example
The following code sample illustrates the Compute Running CRC-32 on a Buffer
function.

This example is also contained in the PPT 4100 Software Development Kit (SDK) in the
following file:

c:\SDK4100\SAMPLES\MANUAL\CHAP1\CRC32.C
1-119

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 120 Tuesday, October 28, 1997 4:48 PM
where c:\SDK4100 is the default installation directory.

/* Include Files ***************************************/
#include <ctype.h>
#include <dos.h>
#include <stdio.h>

/* Defines **/

/* Define the Services by Interrupt Vector number */

#define XB_CRC_INT 0xAE /* CRC services interrupt vector */

enum CRC_CMD {CRC_NONE, CRC_16, CRC_32};

/* Public Variables ***********************************/

union REGS inregs; /* input regs to int86 */
union REGS outregs; /* output regs from int86 */
struct SREGS segregs; /* segment regs from/to int86x */

/********* Compute Running CRC-32 on a Buffer ***************/

void xb_CRC32Buffer(void _far *buffer,
 unsigned int buffsize,
 unsigned long _far *crc32)
{

inregs.h.ah = CRC_32;
inregs.x.bx = *(unsigned int *)crc32;
inregs.x.cx = buffsize;
inregs.x.dx = *((unsigned int *)crc32+1);
segregs.es = FP_SEG(buffer);
inregs.x.si = FP_OFF(buffer);
int86x(XB_CRC_INT, &inregs, &outregs, &segregs);
*(unsigned int *)crc32 = outregs.x.ax; /* crc lsb */
*((unsigned int *)crc32+1) = outregs.x.dx; /* crc msb */

}

1-120

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 121 Tuesday, October 28, 1997 4:48 PM
void main()
{

/* format of bi-sync msg is: <stx><msg len><text><etx> */
static char msg[] = {"\x02\x00\x05HELLO\x03"}; /* msg buffer */

char _far *crcbuf = &msg[0]; /* pointer to buffer */
unsigned short i; /* loop index */
long crc32; /* 32-bit crc */
unsigned short crcbufsize; /* buffer size */

/* Can't use strlen() since buffer contains "\x00" */

crcbufsize = sizeof(msg) - 1;

/* Extended BIOS call to calculate the CRC-32 */

xb_CRC32Buffer(crcbuf, crcbufsize, &crc32);

printf("\nCalculated CRC-32 = %08lX (HEX) for message ", crc32);

/* Display the buffer showing non-printable characters in hex. */

for(i = 0;i < crcbufsize; i++)
if (isprint(msg[i]))printf("%c", msg[i]);
else printf("\\x%02x", msg[i]);

}

1-121

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 122 Tuesday, October 28, 1997 4:48 PM
YSYMBIOS–PC-Loadable Version of XSYMBIOS

Overview
XSYMBIOS (Symbol Extensions to ROM BIOS services) TSR executes on the PPT 41XX
terminal. YSYMBIOS is a program that is executed on a PC and provides functionality
identical to that of XSYMBIOS except that it does not access the gate array, does not
support power management, and always reports that the PC is not in a PPT 41XX cradle.

Where necessary, YSYMBIOS contains code to support XSYMBIOS functionality
without causing problems with the normal operation of the PC on which it has been
loaded. This means that application programs for the PPT 41XX can generally be
executed on a PC with YSYMBIOS. However, any sections of an application that are not
supported by YSYMBIOS cannot be checked.

Differences between XSYMBIOS and YSYMBIOS
Table 1-7 lists by interrupt number and function code XSYMBIOS functions that either
do not exist or are disabled in YSYMBIOS, or act in YSYMBIOS differently than in
XSYMBIOS.

Table 1-8 provides the same information sorted by the name of the service (XSYMBIOS
API command).
1-122

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 123 Tuesday, October 28, 1997 4:48 PM
Table 1-7. YSYMBIOS Differences (by Interrupt Number)

Interrupt
Number

Function
Number

Differences in YSYMBIOS

0x32

0x80 Implemented as a NOP.

0x81 Implemented as a NOP.

0x82 Implemented as a NOP.

0x83 Implemented as a NOP.

0x84 Should not be called by an application. See Interrupt 0xB1,
Function 0x01, below, in this table.

0xAD 0x03 No effect since standard PC has no volume control.

0xB1

All functions All of the power management code is in place but has been
disabled in YSYMBIOS to prevent problems caused by accessing
a non-existent PPT 41XX Gate Array.

0x00 Dispatches any registered suspend or resume notifications and
returns to the caller as if the system had resumed.

0x01 Accepts calls to this function and performs validations on the
passed parameters, but does not enable the wakeup causes.

0x02 Always returns Bit 4 to indicate that the power switch caused the
system to power up and Bit8 or Bit 9 to identify the action taken.
(Bit 9 is set after Function 0x00 or Function 0x0D is used to
power down the system.)

0x0D Dispatches any registered suspend or resume notifications and
returns to the caller as if the system had resumed.
1-123

PPT 41xx SystemSoftware Manual: Chapter 1, XSYMBIOS/Symbol Extended BIOS

41ssm Page 124 Tuesday, October 28, 1997 4:48 PM
Table 1-8. YSYMBIOS Differences (by Service Name)

XSYMBIOS API
Command Name

Interrupt/
Function Code

Differences in YSYMBIOS

Get Side Switch Status 0x32/0x83 Implemented as a NOP.

Get Wakeup Cause 0xB1/0x02 Always returns Bit 4 to indicate that the power
switch caused the system to power up and Bit 8
or Bit 9 to identify the action taken. (Bit 9 is set
after Function 0x00 or Function 0x0D is used to
power down the system.)

Power Down Terminal 0xB1/0x00 Dispatches any registered suspend or resume
notifications and returns to the caller as if the
system had resumed.

Power Management
Services

INT 0xB1
All functions

All of the power management code is in place
but has been disabled in YSYMBIOS to prevent
problems caused by accessing a non-existent
PPT 41XX Gate Array.

Select Wakeup Causes 0xB1/0x01 Accepts calls to this function and performs
validation on the passed parameters, but does
not enable the wakeup causes.

Set Backlight Brightness 0x32/0x82 Implemented as a NOP.

Set Buzzer Volume 0x32/0x81 Implemented as a NOP.

Set Resume Mask
Register

0x32/0x84 Should not be called by application.

Set Scanner LED 0x32/0x80 Implemented as a NOP.

Set Speaker Volume 0xAD/0x03 No effect since standard PC has no volume
control.

Suspend SYSTEM 0XB1/0X0D Dispatches any registered suspend or resume
notifications and returns to the caller as if the
system had resumed.
1-124

	Chapter 1 XSYMBIOS/Symbol Extended BIOS
	Introduction
	Theory of Operation
	User Interface
	Application Programming Interfaces
	XSYMBIOS Serial Communications Services (INT 0x14) (List)
	XSYMBIOS Serial Communications Services (Descriptions)
	Initialize Serial Port (IBM Standard)
	Function: 0x00
	Description
	Interrupt
	Input Registers
	Output Registers

	Send One Character (IBM Standard)
	Function: 0x01
	Description
	Interrupt
	Input Registers
	Output Registers

	Receive One Character (IBM Standard)
	Function: 0x02
	Description
	Interrupt
	Input Registers
	Output Registers

	Get Serial Port Status (IBM Standard)
	Function: 0x03
	Description
	Interrupt
	Input Registers
	Output Registers

	Extended Serial Port Initialization
	Function: 0x80
	Description
	Input Registers
	Output Registers

	Get Current Port Configuration
	Function: 0x81
	Description
	Interrupt
	Input Registers
	Output Registers

	Open Serial Port
	Function: 0x82
	Description
	Interrupt
	Input Registers
	Output Registers

	Close Serial Port
	Function: 0x83
	Description
	Interrupt
	Input Registers
	Output Registers

	Send Block
	Function: 0x84
	Description
	Interrupt
	Input Registers
	Output Registers

	Receive Block
	Function: 0x85
	Description
	Interrupt
	Input Registers
	Output Registers

	Queue Status
	Function: 0x86
	Description
	Interrupt
	Input Registers
	Output Registers

	Get System Status
	Function: 0x87
	Description
	Interrupt
	Input Registers
	Output Registers

	Transmit Enable (Half-duplex Line Turn Around)
	Function 0x88 Description
	Interrupt
	Input Registers
	Output Registers

	Receive Enable (Half-Duplex Line Turn Around)
	Function: 0x89 Description
	Interrupt
	Input Registers
	Output Registers

	Transmit Done
	Function: 0x8A
	Description
	Interrupt
	Input Registers
	Output Registers

	Set UART Control Commands
	Function: 0x8B
	Description
	Interrupt
	Input Registers
	Output Registers

	Clear UART Control Commands
	Function: 0x8C
	Description
	Interrupt
	Input Registers
	Output Registers

	Allocate Communications Queues
	Function: 0x8D
	Description
	Interrupt
	Input Registers
	Output Registers

	Purge Communications Queue
	Function: 0x8E
	Description
	Interrupt
	Input Registers
	Output Registers

	Transmit Queue Empty
	Function: 0x8F
	Description
	Interrupt
	Input Registers
	Output Registers

	Delete Queues
	Function: 0x91
	Description
	Interrupt
	Input Registers
	Output Registers

	Get Queue Pointer
	Function: 0x92
	Description
	Interrupt
	Input Registers
	Output Registers

	Version Number Check
	Function: 0x93
	Description
	Interrupt
	Input Registers
	Output Registers

	XSYMBIOS General System Services (INT 0x32) (List)
	XSYMBIOS General System Services (Descriptions)
	Get/Set Scanner LED On/Off
	Function: 0x80
	Description
	Interrupt
	Input Registers
	Output Registers
	Example

	Get/Set Buzzer Volume Control
	Function: 0x81
	Description
	Interrupt
	Input Registers
	Output Registers
	Example

	Get/Set Backlight Brightness
	Function: 0x82
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	Get Side Switch Status
	Function: 0x83; Subfunction 0x00
	Description
	Interrupt
	Input Registers
	Output Registers
	Example

	Get AC Adapter Status
	Function: 0x83; Subfunction 0x01
	Description
	Interrupt
	Input Registers
	Output Registers
	Example

	Get Battery Present Status
	Function: 0x83; Subfunction 0x02
	Description
	Interrupt
	Input Registers
	Output Registers
	Example

	Get Cradle Status
	Function: 0x83; Subfunction 0x03
	Description
	Interrupt
	Input Registers
	Output Registers
	Example

	Get/Set Resume Mask Register
	Function: 0x84
	Description
	Interrupt
	Input Registers
	Output Registers
	Example

	Get XSYMBIOS Version Number
	Function: 0x85
	Description
	Interrupt
	Input Registers
	Output Registers
	Example

	Get/Set Viewing Angle
	Function: 0x86
	Description
	Interrupt
	Input Registers
	Output Registers
	Example

	XSYMBIOS Timer Services (INT 0xAC) (List)
	XSYMBIOS Timer Services (Descriptions)
	Allocate Timer
	Function: 0x00
	Description
	Interrupt
	Input Registers
	Output Registers
	Example

	Deallocate Timer
	Function: 0x01
	Description
	Interrupt
	Input Registers
	Output Registers
	Example

	Start System Timer
	Function: 0x02
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	Start Event Timer
	Function: 0x03
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	Reset Timer
	Function: 0x04
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	Suspend Timer Operation
	Function: 0x05
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	Resume Timer Operation
	Function: 0x06
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	Check Timer
	Function: 0x07
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	Delay
	Function: 0x08
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	Restart Timer
	Function: 0x09
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	XSYMBIOS Sound Services (INT 0xAD) (List)
	XSYMBIOS Sound Services (Descriptions)
	Buzzer On
	Function: 0x00
	Description
	Interrupt
	Input Registers
	Output Registers
	Example

	Buzzer Off
	Function: 0x01
	Description
	Interrupt
	Input Registers
	Output Registers
	Example

	Beep for Duration
	Function: 0x02
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	Get/Set Speaker Volume
	Function: 0x03
	Description
	Interrupt
	Input Registers
	Output Registers
	Example

	XSYMBIOS CRC Services (INT 0xAE) (List)
	XSYMBIOS CRC Services (Descriptions)
	Compute Running CRC-16 on a Byte
	Function: 0x00
	Description
	Interrupt
	Input Registers
	Output Registers
	Example

	Compute Running CRC-16 on a Buffer
	Function: 0x01
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	Compute Running CRC-32 on a Buffer
	Function: 0x02
	Description
	Interrupt
	Input Registers
	Output Registers
	Notes
	Example

	YSYMBIOS–PC-Loadable Version of XSYMBIOS
	Overview
	Differences between XSYMBIOS and YSYMBIOS

