
PDT 1100 Terminal

Programmer’s Guide

2

70-36099-01
Revision B — May 2001

Symbol Technologies, Inc. One Symbol Plaza, Holtsville N.Y. 11742-1300

PDT 1100 Terminal

Programmer’s Guide

70-36099-01

Revision B

May 2001

ii

© 2001 by Symbol Technologies, Inc. All rights reserved.

No part of this publication may be reproduced or used in any form, or by any electrical or
mechanical means, without permission in writing from Symbol. This includes electronic or
mechanical means, such as photocopying, recording, or information storage and retrieval
systems. The material in this manual is subject to change without notice.

The software is provided strictly on an “as is” basis. All software, including firmware,
furnished to the user is on a licensed basis. Symbol grants to the user a non-transferable and
non-exclusive license to use each software or firmware program delivered hereunder (licensed
program). Except as noted below, such license may not be assigned, sublicensed, or otherwise
transferred by the user without prior written consent of Symbol. No right to copy a licensed
program in whole or in part is granted, except as permitted under copyright law. The user
shall not modify, merge, or incorporate any form or portion of a licensed program with other
program material, create a derivative work from a licensed program, or use a licensed
program in a network without written permission from Symbol. The user agrees to maintain
Symbol’s copyright notice on the licensed programs delivered hereunder, and to include the
same on any authorized copies it makes, in whole or in part. The user agrees not to
decompile, disassemble, decode, or reverse engineer any licensed program delivered to the
user or any portion thereof.

Symbol reserves the right to make changes to any software or product to improve reliability,
function, or design.

Symbol does not assume any product liability arising out of, or in connection with, the
application or use of any product, circuit, or application described herein.

No license is granted, either expressly or by implication, estoppel, or otherwise under any
Symbol Technologies, Inc., intellectual property rights. An implied license only exists for
equipment, circuits, and subsystems contained in Symbol products.

Symbol, Spectrum One, and Spectrum24 are registered trademarks of Symbol Technologies,
Inc. Other product names mentioned in this manual may be trademarks or registered
trademarks of their respective companies and are hereby acknowledged.

Symbol Technologies, Inc.
One Symbol Plaza
Holtsville, New York 11742-1300
http://www.symbol.com

http://www.symbol.com

Contents

About This Guide
Notational Conventions .xiv
Service Information . xv

Symbol Support Centers . xv
Related Publications .xvi
Warranty .xvi

Warranty Coverage and Procedure .xvi
General . xvii

Chapter 1. Software Overview
Software Structure . 1-1

System Programs . 1-2
Application Programs . 1-3
Overview of BASIC 3.0 . 1-3

BASIC 3.0. 1-3
Features. 1-3

Compilation and Program Execution . 1-4
Compiler and Interpreter. 1-4
Compiling and Interpreting Example. 1-5

Chapter 2.
Development Environment and Procedures
Overview of Development Environment . 2-1

Required Hardware. 2-1
Required Software. 2-2

Overview of Developing Procedures . 2-2
Developing Procedures . 2-2
Functions of the Compiler. 2-3
Developing Procedure Flow. 2-3
iii

PDT 1100 Programmer’s Guide
Writing of a Source Program .2-4
Writing a Source Program Using Editor . 2-4
Rules for Writing a Source Program .2-4

Compiling in Windows . 2-6
Setting up the Compiler .2-6
Starting the Compiler .2-7
Reading in the Initialization File .2-7
Operating Procedure for the Compiler .2-8
Screen Shown During Execution of the Compiler . 2-10
Output from the Compiler . 2-10
Generating a User Program. 2-12
Error Messages .2-12
Compiling Options . 2-14
Designating the Work Drive and Directory. 2-15

Downloading. 2-16
Ir-Transfer Utility C & Ir-Transfer Utility E .2-16
Setting up the PDT 1100 . 2-16

Executing a User Program .2-17
Starting. 2-17
Execution .2-17
Termination . 2-17

Chapter 3. Program Structure
Statement Blocks . 3-1

Subroutines . 3-1
Error-/Event-Handling Routines .3-1
Block-Format User-Defined Functions .3-1
Block-Structured Statements .3-2
Jumping Into/Out of Statement Blocks .3-3

Handling User Programs . 3-4
User Programs in the Memory .3-4
Program Chaining . 3-4
Included Files .3-5

Chapter 4. Basic Program Elements
Structure of a Program Line. .4-1

Format of a Program Line . 4-1
Program Line Length and Maximum Number of Lines . 4-3

Usable Characters .4-3
Special Symbols and Control Codes .4-4

Labels . 4-6
Rules for naming labels .4-6
iv

Contents
Identifiers . 4-7
Rules for Naming Identifiers . 4-7

Reserved Words . 4-7

Chapter 5. Data Types
Constants . 5-1

String Constants . 5-1
Numeric Constants . 5-1

Variables . 5-3
Types of Variables According to Format . 5-3
Classification of Variables. 5-5

User-defined Functions . 5-6
Setting Character String Length of Character Functions . 5-6
Dummy Arguments and Real Arguments . 5-7

Type Conversion . 5-7
Type Conversion Examples . 5-8

Chapter 6. Expressions and Operators
Overview . 6-1
Operator Precedence. 6-1

Precedence. 6-1
Operators . 6-3

Arithmetic Operators . 6-3
Relational Operators . 6-4
Logical Operators . 6-4
Function Operators . 6-7
String Operators . 6-7

Chapter 7. I/O Facilities
Facilities for the LCD . 7-1

Input from the Keyboard . 7-3
Alphabet Input Function . 7-3
Function Keys . 7-8
Keystroke Trapping. 7-9

Timer and Beeper . 7-10
Timer Functions . 7-10
BEEP Statement . 7-10

Controlling and Monitoring the I/Os . 7-11
Controlling by the OUT Statement . 7-11
Monitoring by the INP Function . 7-12
Monitoring by the WAIT Statement . 7-13
v

PDT 1100 Programmer’s Guide
Chapter 8. Files
File Overview. 8-1

Data Files and Device I/O Files. .8-1
Access Methods .8-1

Data Files . 8-2
Overview . 8-2
Naming Files .8-2
Structure of Data Files .8-3
Data File Management by Directory Information. 8-3
Programming for Data Files .8-4

Bar Code Device . 8-6
Opening the Bar Code Device by OPEN “BAR:” Statement. 8-6
Programming for Bar Code Device . 8-7

Communications Device . 8-8
Hardware Required for Data Communications . 8-8
Programming for Data Communications . 8-9
Overview of Communications Protocols. 8-9
File Transfer Tools . 8-11

Chapter 9. Event Polling and Error/Event Trapping
Overview . 9-1

Event Polling .9-1
Error Trapping .9-1
Event (of Keystroke) Trapping .9-1

Event Polling . 9-1
Programming Sample .9-1

Error Trapping . 9-3
Programming for Trapping Errors . 9-3

Event (of Keystroke) Trapping. 9-4
Programming for Trapping Keystrokes. .9-4

Chapter 10. Statement Reference
Introduction. 10-1
APLOAD . 10-2
BEEP . 10-5
CALL. 10-9
CHAIN . 10-11
CLFILE . 10-13
CLOSE . 10-15
CLS . 10-17
COMMON .10-18
vi

Contents
CURSOR . 10-20
DATA . 10-22
DEFREG . 10-24
DEF FN (Single-line form) . 10-29
DEF FN...END DEF (Block form) . 10-33
DIM . 10-37
END. 10-40
ERASE . 10-41
FIELD . 10-43
FOR...NEXT . 10-45
GET . 10-48
GOSUB . 10-50
GOTO . 10-52
IF...THEN...ELSE...END IF . 10-53
INPUT . 10-55
INPUT #. 10-58
KEY . 10-61
KEY ON and KEY OFF . 10-66
KILL. 10-68
LET . 10-70
LINE INPUT . 10-72
LINE INPUT # . 10-74
LOCATE . 10-76
ON ERROR GOTO. 10-78
ON...GOSUB and ON...GOTO . 10-80
ON KEY...GOSUB . 10-82
OPEN. 10-84
OPEN “BAR:” . 10-87
OPEN “COM:” . 10-95
OUT. 10-99
POWER . 10-101
PRINT . 10-103
PRINT #. 10-106
PRINT USING . 10-108
PUT . 10-111
READ. 10-113
REM . 10-115
RESTORE . 10-117
RESUME . 10-118
RETURN . 10-120
SCREEN. 10-121
SELECT...CASE...END SELECT . 10-123
WAIT . 10-126
WHILE...WEND . 10-128
vii

PDT 1100 Programmer’s Guide
XFILE . 10-130
$INCLUDE .10-137

Chapter 11. Function Reference
Introduction. 11-1
ABS .11-2
ASC . 11-3
BCC$. 11-4
CHKDGT$. 11-6
CHR$. 11-9
COUNTRY$. 11-11
CSRLIN. 11-13
DATE$. 11-14
EOF. 11-16
ERL . 11-18
ERR. 11-19
ETX$. 11-20
FRE . 11-22
HEX$. 11-24
INKEY$. 11-25
INP .11-26
INPUT$. 11-28
INSTR . 11-30
INT .11-32
LEFT$. 11-33
LEN. 11-34
LOC . 11-35
LOF . 11-37
MARK$. 11-39
MID$. 11-41
POS . 11-43
RIGHT$. 11-44
SEARCH . 11-45
SOH$. 11-47
STR$. 11-49
STX$. 11-50
TIME$. 11-52
TIMEA/TIMEB/TIMEC. 11-54
VAL. 11-56

Appendix A.
Error Codes and Error Messages
viii

Contents
Introduction . A-1
Execution Errors. A-1
Fatal Errors . A-3
Syntax Errors . A-5

Appendix B. Reserved Words

Appendix C. Character Sets
Character Set . C-1
National Character Sets . C-3
Display Mode and Letter Size. C-4

Character Frame and Letter Size in Single-Byte ANK Mode . C-4
Generating Small Font Patterns . C-4

Appendix D. I/O Ports
Input Ports . D-1
Output Ports . D-4

Appendix E. Key Number Assignment
on the Keyboard
Key Number Assignment . E-1

Default Data Assignment. E-2

Appendix F. Memory Area
Memory Map . F-1

ROM (Flash ROM). F-2
RAM. F-2

Memory Management . F-2
Battery Backup of Memory. F-2
Memory Space Available for Variables . F-3

Appendix G. Handling Space
Characters in Downloading
Space Characters as Padding Characters. G-1
Space Characters as Data . G-2

Example 1 . G-3
Example 2 . G-3
Example 3 . G-4
ix

PDT 1100 Programmer’s Guide
Appendix H. Programming Notes
Sleep Timer . H-1
Resume Function . H-2
Low Battery Warning . H-2
Selecting a Communications Device File . H-3
Prohibited Simultaneous Operations . H-3
Controlling the LCD Backlight . H-3
Keyboard (Keypad) . H-3
Beeper . H-4
RS/CS Control . H-4
Supplemental Codes. H-4
Flash ROM . H-4

Storing Files . H-5
Deleting Files . H-5
Specifying Files . H-5
Memory Areas Required for User Programs . H-5
Retained Contents of Flash ROM. H-6

Wake-up Function . H-6
LED and Beeper Control . H-6

Controlling Reading Confirmation LED . H-6
Controlling the Beeper . H-7

APLINT.PD3 Program File . H-7
Modifying PW Key Depression . H-7
CODE128 Reading . H-8
Field Length Restriction. H-8

Appendix I. Backlight Function

Appendix J. Program Samples
Writing a Function. J-1
Testing the Written Function . J-3

Appendix K.
Quick Reference for Statements and Functions
Controlling Program Flow. .K-1
Handling Errors. .K-2
Defining and Allocating Variables .K-2
Controlling the LCD Screen. .K-3
Controlling the Keyboard Input. .K-4
Beeping .K-4
Manipulating System Date, Current Time, or Timers .K-5
x

Contents
Communicating with I/Os . K-5
Communicating with Bar Code Device. K-6
Manipulating Data Files and User Program Files . K-7
Communicating with Communications Devices . K-8
Commenting a Program . K-9
Manipulating Numeric Data. K-9
Manipulating String Data . K-9
Defining User-Created Functions . K-10
Specifying Included Files. K-10

Appendix L.
Unsupported Statements and Functions

Appendix M. Communications
Basic Communications Specifications .M-1

Synchronization .M-1
Optical Interface Communications Range .M-2
Transmission Code and Bit Order .M-2
Response Method .M-2
Vertical Parity .M-2
BCC for Horizontal Parity Checking .M-3
IR Protocol .M-4
Communications Parameters .M-5
In System Mode. .M-5

Communications Protocols. .M-6
Protocol .M-6

IR Protocol .M-21
Overview. .M-21
xi

PDT 1100 Programmer’s Guide
xii

About This Guide

The PDT 1100 Programmer’s Guide provides general instructions for programming the PDT
1100 terminal. The chapters are set up as follows:

! Chapter 1, Software Overview surveys the software structure of the PDT 1100,
introduces the programs integrated in the ROM and the language features of BASIC
3.0.

! Chapter 2, Development Environment and Procedures describes the hardware,
software, and procedures required for developing programs.

! Chapter 3, Program Structure summarizes the basic structure of programs.

! Chapter 4, Basic Program Elements describes the format of a program line, usable
characters, and labels.

! Chapter 5, Data Types covers data which the program can handle by classifying them
into data types – constants and variables.

! Chapter 6, Expressions and Operators surveys the expressions and operators to be
used for calculation and for handling character strings.

! Chapter 7, I/O Facilities defines I/O facilities and describes output from the LCD,
input from the keyboard, and control for the timer, beeper, and other I/O’s by the
statements and functions.

! Chapter 8, Files describes data files and device files.

! Chapter 9, Event Polling and Error/Event Trapping describes the event polling and
two types of traps: error traps and event (of keystroke) traps supported by BASIC
3.0.

! Chapter 10, Statement Reference describes the statements available in BASIC 3.0,
including the error codes and messages.

! Chapter 11, Function Reference describes the functions available in BASIC 3.0,
including error codes and messages.
xiii

PDT 1100 Terminal Programmer’s Guide
! Appendix A, Error Codes and Error Messages lists the error codes and messages.

! Appendix B, Reserved Words lists the reserved words for BASIC 3.0.

! Appendix C, Character Sets lists the character sets.

! Appendix D, I/O Ports lists the I/O ports.

! Appendix E, Key Number Assignment on the Keyboard shows the number
assignment for the keyboard.

! Appendix F, Memory Area describes the memory area allocations.

! Appendix G, Handling Space Characters in Downloading describes how to handle
different types of space characters during downloading.

! Appendix H, Programming Notes describes specific programming tips.

! Appendix I, Backlight Function describes how to use the backlight function.

! Appendix J, Program Samples shows sample programs to use on the PDT 1100.

! Appendix K, Quick Reference for Statements and Functions lists the statements and
functions by categories.

! Appendix L, Unsupported Statements and Functions lists what MS-BASIC supports
that BASIC 3.0 does not.

! Appendix M, Communications describes in detail the communications procedures
and parameters.

Notational Conventions

The following conventions are used in this document:

! Italics are used to highlight specific items in the general text, and to identify chapters
and sections in this and related documents.

! Bullets (♦) indicate:

" action items

" lists of alternatives

" lists of required steps that are not necessarily sequential

! Sequential lists (e.g., those that describe step-by-step procedures) appear as
numbered lists.

! Items in regular courier font indicate constant syntax, items in italic courier
font indicate variable syntax.
xiv

About This Guide
Service Information

If you have a problem with your equipment, contact the Symbol Support Centers. Before
calling, have the model number, serial number, and several of your bar code symbols at hand.

Call the Support Center from a phone near the scanning equipment so that the service person
can try to talk you through your problem. If the equipment is found to be working properly
and the problem is symbol readability, the Support Center will request samples of your bar
codes for analysis at our plant.

If your problem cannot be solved over the phone, you may need to return your equipment for
servicing. If that is necessary, you will be given specific directions.

Note: Symbol Technologies is not responsible for any damages incurred
during shipment if the approved shipping container is not used.
Shipping the units improperly can possibly void the warranty. If the
original shipping container was not kept, contact Symbol to have
another sent to you.

Symbol Support Centers
For service information, warranty information or technical assistance contact or call the
Symbol Support Center in:

United States
Symbol Technologies, Inc.
One Symbol Plaza
Holtsville, New York 11742-1300
1-800-653-5350

Canada
Symbol Technologies Canada, Inc.
2540 Matheson Boulevard East
Mississauga, Ontario, Canada L4W 422
(905) 629-7226

United Kingdom
Symbol Technologies
Symbol Place
Winnersh Triangle, Berkshire RG41 5TP
United Kingdom
0800 328 2424 (Inside UK)
+44 208 945 7529 (Outside UK)

Asia/Pacific
Symbol Technologies Asia, Inc.
230 Victoria Street #04-05
Bugis Junction Office Tower
Singapore 188024
337-6588 (Inside Singapore)
+65-337-6588 (Outside Singapore)
xv

PDT 1100 Terminal Programmer’s Guide
Australia
Symbol Technologies Pty. Ltd.
432 St. Kilda Road
Melbourne, Victoria 3004
1-800-672-906 (Inside Australia)
+61-3-9866-6044 (Outside Australia)

Austria/Österreich
Symbol Technologies Austria GmbH
Prinz-Eugen Strasse 70
Suite 3
2.Haus, 5.Stock
1040 Vienna, Austria
1-505-5794 (Inside Austria)
+43-1-505-5794 (Outside Austria)

Denmark/Danmark
Symbol Technologies AS
Gydevang 2,
DK-3450 Allerod, Denmark
7020-1718 (Inside Denmark)
+45-7020-1718 (Outside Denmark)

Europe/Mid-East Distributor Operations
Contact your local distributor or call
+44 208 945 7360

Finland/Suomi
Oy Symbol Technologies
Kaupintie 8 A 6
FIN-00440 Helsinki, Finland
9 5407 580 (Inside Finland)
+358 9 5407 580 (Outside Finland)

France
Symbol Technologies France
Centre d'Affaire d'Antony
3 Rue de la Renaissance
92184 Antony Cedex, France
01-40-96-52-21 (Inside France)
+33-1-40-96-52-50 (Outside France)

Germany/Deutchland
Symbol Technologies GmbH
Waldstrasse 68
D-63128 Dietzenbach, Germany
6074-49020 (Inside Germany)
+49-6074-49020 (Outside Germany)

Italy/Italia
Symbol Technologies Italia S.R.L.
Via Cristoforo Columbo, 49
20090 Trezzano S/N Navigilo
Milano, Italy
2-484441 (Inside Italy)
+39-02-484441 (Outside Italy)
xvi

About This Guide
If you purchased your Symbol product from a Symbol Business Partner, contact that Business
Partner for service.

Related Publications

! PDT 1100 Terminal Product Reference Guide p/n 70-35864-XX

! PDT 1100 Quick Reference Guide p/n 70-35861-XX

! PDT 1100 Terminal Transfer Utilities Guide p/n 70-36368-XX

! PDT 1100 Extension Library Programmer’s Guide p/n 70-36556-XX

Warranty

Symbol Technologies, Inc (“Symbol”) manufactures its hardware products in accordance with industry-
standard practices. Symbol warrants that for a period of twelve (12) months from date of shipment,
products will be free from defects in materials and workmanship.

Latin America Sales Support
7900 Glades Road
Suite 340
Boca Raton, Florida 33434 USA
1-800-347-0178 (Inside United States)
+1-561-483-1275 (Outside United States)

Mexico/México
Symbol Technologies Mexico Ltd.
Torre Picasso
Boulevard Manuel Avila Camacho No 88
Lomas de Chapultepec CP 11000
Mexico City, DF, Mexico
5-520-1835 (Inside Mexico)
+52-5-520-1835 (Outside Mexico)

Netherlands/Nederland

Symbol Technologies
Kerkplein 2, 7051 CX
Postbus 24 7050 AA
Varsseveld, Netherlands
315-271700 (Inside Netherlands)
+31-315-271700 (Outside Netherlands)

Norway/Norge
Symbol Technologies
Trollasveien 36
Postboks 72
1414 Trollasen, Norway
66810600 (Inside Norway)
+47-66810600 (Outside Norway)
xvii

PDT 1100 Terminal Programmer’s Guide
This warranty is provided to the original owner only and is not transferable to any third party. It shall
not apply to any product (i) which has been repaired or altered unless done or approved by Symbol, (ii)
which has not been maintained in accordance with any operating or handling instructions supplied by
Symbol, (iii) which has been subjected to unusual physical or electrical stress, misuse, abuse, power
shortage, negligence or accident or (iv) which has been used other than in accordance with the product
operating and handling instructions. Preventive maintenance is the responsibility of customer and is not
covered under this warranty.
Wear items and accessories having a Symbol serial number, will carry a 90-day limited warranty. Non-
serialized items will carry a 30-day limited warranty.

Warranty Coverage and Procedure
During the warranty period, Symbol will repair or replace defective products returned to Symbol’s
manufacturing plant in the US. For warranty service in North America, call the Symbol Support Center
at 1-800-653-5350. International customers should contact the local Symbol office or support center.
If warranty service is required, Symbol will issue a Return Material Authorization Number. Products
must be shipped in the original or comparable packaging, shipping and insurance charges prepaid.
Symbol will ship the repaired or replacement product freight and insurance prepaid in North America.
Shipments from the US or other locations will be made F.O.B. Symbol’s manufacturing plant.
Symbol will use new or refurbished parts at its discretion and will own all parts removed from repaired
products. Customer will pay for the replacement product in case it does not return the replaced product
to Symbol within 3 days of receipt of the replacement product. The process for return and customer’s
charges will be in accordance with Symbol’s Exchange Policy in effect at the time of the exchange.
Customer accepts full responsibility for its software and data including the appropriate backup thereof.
Repair or replacement of a product during warranty will not extend the original warranty term.
Symbol’s Customer Service organization offers an array of service plans, such as on-site, depot, or phone
support, that can be implemented to meet customer’s special operational requirements and are available
at a substantial discount during warranty period.

General
Except for the warranties stated above, Symbol disclaims all warranties, express or implied, on products
furnished hereunder, including without limitation implied warranties of merchantability and fitness for
a particular purpose. The stated express warranties are in lieu of all obligations or liabilities on part of
Symbol for damages, including without limitation, special, indirect, or consequential damages arising
out of or in connection with the use or performance of the product.
Seller’s liability for damages to buyer or others resulting from the use of any product, shall in no way
exceed the purchase price of said product, except in instances of injury to persons or property.
Some states (or jurisdictions) do not allow the exclusion or limitation of incidental or consequential
damages, so the preceding exclusion or limitation may not apply to you.
xviii

Chapter 1 Software Overview

Software Structure

The structure of software for the PDT 1100 is shown in Figure 1-1.

Figure 1-1. PDT 1100 Software Structure

The PDT 1100 has flash ROM and RAM. In flash ROM reside the drivers, BASIC 3.0
Interpreter, System Mode, and font files. Extension programs and user programs are stored
in the user area of RAM (or in the flash ROM) when downloaded.

User programs RAM or flash ROM

Extension programs

Flash ROM

System Mode

BASIC 3.0 Interpreter

System
programs

Application
programs

Font files Drivers

Hardware

36099001.eps
1-1

PDT 1100 Terminal Programmer’s Guide
Note: Unlike RAM, the flash ROM requires no power for retaining stored
files. Therefore, leaving the PDT 1100 with no battery cartridge or
dry batteries loaded do not damage files stored in the flash ROM
while it may damage files in the RAM.

Unlike RAM, the flash ROM is limited in the following ways:

! The quantity of rewriting operations is limited to approximately 10,000.

! In application programs, you cannot write data onto the flash ROM.

! The user area is 568 kilobytes or 64 kilobytes (depending upon the ROM size). (For
details, refer to Appendix F, Memory Area.)

System Programs

Drivers
The BASIC 3.0 Interpreter or System Mode calls a set of programs which controls the
hardware. The drivers include the Decoder Software used for bar code reading.

BASIC 3.0 Interpreter
Interprets and executes user programs or Easy Pack.

System Mode
Sets up the execution environment for user programs or Easy Pack.

Extension Programs
Enable the following functions of the BASIC 3.0:

! Displays ruled lines on the LCD

! Transmits/receives files using the X-MODEM and Y-MODEM protocols.

These extension programs are stored in files having an FN3 extension, in each file per
function. Download a xxxx.FN3 file containing the necessary function from the BASIC 3.0
Extension Library to the user area.
1-2

Software Overview
Application Programs

User Programs
User-written object programs which are ready to be executed.

Easy Pack
Application program used for bar code data collection.

Overview of BASIC 3.0
With BASIC 3.0, you can customize application programs to meet specific needs:

! Retrieve products names, price information, etc. in a master file.

! Include check digits in bar code reading to make a checking procedure more reliable.

! Improve the checking procedure by checking the number of digits entered from the
keyboard.

! Calculate (e.g., subtotals and totals).

! Support file transmission protocols (or transmission procedures) suitable for host
computers and connected modems.

! Download master files.

! Support a program to transfer control to several job programs depending upon
conditions.

BASIC 3.0

Features
BASIC 3.0 is an optimal programming language to make application programs for the PDT
1100 and to enable efficient program development, with the following features:

Syntax Similar to Microsoft® BASIC
BASIC 3.0 is based on the BASIC language which is the most widely used high-level language.
The syntax of BASIC 3.0 is very similar to that used in Microsoft BASIC (MS-BASIC), the
practical standard of the BASICs running on personal computers over the world.
1-3

PDT 1100 Terminal Programmer’s Guide
No Line Numbers Required
Like Microsoft Quick BASIC, BASIC 3.0 requires no line number notation. You can write a
branch statement with a label instead of a line number so cut and paste functions can be used
with an editor in developing source programs, facilitating the use of program modules for
development of other programs.

MS-DOS Programming Environment
Any MS-DOS personal computer can be used to develop programs with BASIC 3.0.

Advantages of the Dedicated Compiler
The dedicated compiler (referred to as the Compiler hereafter) checks the syntax of the edited
source program on an MS-DOS personal computer, enabling efficient debugging in program
development. It also outputs debugging information including cross reference lists of
variables and labels.

The Compiler assigns variables to fixed addresses so the Interpreter does not have to allocate
or release memories when executing user programs, shortening execution time.

Program Compression by the Dedicated Compiler
The Compiler compresses a source program into the intermediate language to produce an
object program (a user program).

Note: When the compiled user program is downloaded to the PDT 1100, it
packs the two-byte data in the intermediate language into a single-
byte hexadecimal format for more efficient use of the memory area in
the PDT 1100.

Compilation and Program Execution

Compiler and Interpreter
BASIC 3.0 consists of the Compiler and the Interpreter.

Compiler
The Compiler development tool compiles a source program written on an MS-DOS personal
computer to generate a “user program” in the intermediate language. The Compiler is
optionally provided in an MS-DOS format floppy disk which contains the following three
1-4

Software Overview
files: BHTC3.EXE (MS-DOS–based Compiler), BHTC3W.EXE (Windows-based Compiler),
and BHTC3.MSG (Message file).

The Compiler checks the syntax of a source program during compilation and outputs syntax
errors, if any, to the MS-DOS standard output device. When the Compiler finds no syntax
error in the source program, it translates the program into the intermediate language.

Interpreter
The Interpreter, which resides in the memory of the PDT 1100, interprets and executes the
user program downloaded to the PDT 1100, statement by statement.

Compiling and Interpreting Example
For example, how will a short program consisting of only two statements, CLS and END, be
compiled, downloaded, and executed?

Source Program Example:

CLS

END

1. The Compiler compiles each of the CLS and END statements into a two-byte character
string in the intermediate language in an MS-DOS disk file. In this example, the total
four-byte string is composed of 83 and 87 whose program is:
“8387”
The compiled program should consist of ASCII characters (text) : 0-9 and A-F.

2. The user downloads the four-byte string 8387, using Transfer Utility C. Upon receipt
of the string, the PDT 1100 packs each two bytes into a single-byte hexadecimal
format: 83h and 87h.

3. The Interpreter interprets the first 83h as a CLS statement and 87h as an END
statement.
1-5

PDT 1100 Terminal Programmer’s Guide
1-6

Chapter 2
Development Environment and Procedures

Overview of Development Environment

The following hardware and software are required for developing user programs:

Required Hardware
! A Windows personal computer with an RS-232C interface and at least 640-kilobyte

RAM area is required. When the Compiler is running, at least 400 kilobytes should
be reserved in RAM as a work area.

! PDT 1100 terminal

! CRD 1100 (Optical communications unit/cradle) (not required if the PDT 1100 is
directly connected with the personal computer via the direct-connect interface)

! RS-232C interface cable connects the CRD 1100 to the personal computer.

Note: The RS-232C interface cable must have the connector and pin
assignment required by the personal computer. See the PDT 1100
Product Reference Guide for connector configuration and pin
assignments of the CRD 1100.
2-1

PDT 1100 Terminal Programmer’s Guide
Required Software

Ir-Transfer Utility C and IR Transfer Utility E download user programs to the PDT 1100. The
BASIC 3.0 Compiler, Ir-Transfer Utility C and Ir-Transfer Utility E are optionally provided in
a floppy disk.

Note: Prepare Windows and editor versions operable with the personal
computer on which user programs are to be developed.
For the manufacturers and models of Windows computers which
support Ir-Transfer Utility C and E, refer to the PDT 1100 Terminal
Transfer Utility Guide.

Overview of Developing Procedures

Developing Procedures
The program developing procedures using BASIC 3.0 are outlined below.

Creating a Source Program
Create a source program using an editor according to the syntax of BASIC 3.0.

Compiling
Compile the source program by the Compiler to generate a user program (an object
program).

Downloading the User Program
Download the user program to the PDT 1100 by using Ir-Transfer Utility C.

• MS Windows(OS) Windows 95/NT 3.51.40

• Editor

• BASIC 3.0 Compiler BHTC3W.EXE (Windows-based)
BHTC3.MSG (Error message file)

• Ir-Transfer Utility C (option) TU3W.EXE (Windows-based)
TU3C2W.EXE (Windows based)

• Ir-Transfer Utility E (option) ITEW32.EXE (Windows- based)
2-2

Development Environment and Procedures
Executing the User Program
Execute the user program on the PDT 1100.

Functions of the Compiler
The Compiler has the following functions:

Developing Procedure Flow
The steps below shows the developing procedure.

On an Windows Personal Computer
1. Write a source program.

C>EDIT userprog.SRC

CLS

PRINT “BASIC 3.0”

END

(Tool: Editor)

2. Compile the source program.
C>BHTC3 userprog.SRC

(Tool: BASIC 3.0 Compiler)

If a compilation error occurs, go back to step 1 and correct the program. If no
compilation error occurs and the user program is generated, proceed to step 3.

3. Download the user program.
C>TU3 userprog.PD3 (Tool: Transfer Utility C)

Functions of the Compiler Description

Syntax check Detects syntax errors in source programs.

Output of a user program Translates a source program into a user program in intermediate
language. (When downloaded to the PDT 1100 by Ir-Transfer
Utility C, the user program is packed to be executed by the
Interpreter.)

Output of debug information Outputs list files and debug information files.
2-3

PDT 1100 Terminal Programmer’s Guide
C>IT3C userprog.PD3 (Tool: Ir-Transfer Utility C)

On the PDT 1100
Execute the user program in System Mode.

EXECUTE PROGRAM

A:USERPROG.PD3

If an execution error occurs, execute the program again.

Writing of a Source Program

Writing a Source Program Using Editor
To write a source program, use an editor designed for an Windows personal computer (use
of a commercially available editor is recommended). See the instruction manual for the editor
for information on its use.

C>EDIT prog1.SRC

If you place an extension .SRC in a source program file, you may omit the filename extension
in compilation.

C>BHTC3 prog1

Rules for Writing a Source Program
When writing a source program according to the syntax of BASIC 3.0, observe the following
rules:

! A label name should begin in the first column.
ABC

2000
2-4

Development Environment and Procedures
! A statement should begin in the second or the following columns.
PRINT

FOR I=1 TO 100 : NEXT I

! One program line should be limited to 512 characters (excluding a CR code) and end
with a CR code (the return key). If an underline (_) precedes a CR code, however,
one program line can be extended up to 8192 characters. For statements other than
the PRINT, PRINT#, and PRINT USING statements, you may use a comma (,) preceding
a CR code. A program can contain a maximum of 9,999 program lines.

! Comment lines starting with a single quotation mark (') and those with a REM have
the following description rules. A single quotation mark can be put in from the first
or the following columns, or immediately following any other statement. A REM
should be put in the second or following columns. To put a REM following any other
statement, a colon (:) should precede the REM.

Comment

CLS ' ‘ Comment

REM Comment

CLS :: REM Comment

! End the IF statement with an END IF or ENDIF, since the IF statement is treated as a
block-structured statement.

IF a$ = “Y” OR a$ = “y” then

GOTO sub12

END IF

! The default number of characters for a non-array string variable is 40 and for an
array string variable is 20. Specifying the DIM or DEFREG statement allows a string
variable to treat 1 through 255 characters.

DIM b$[255]

DIM c$(2,3)[255]

DEFREG d$[255]

DEFREG e$(2,3)[255]

Note: BASIC 3.0 does not support some of the statements and functions
used in Microsoft BASIC or QuickBASIC. For details, refer to
Appendix L, Unsupported Statements and Functions.
2-5

PDT 1100 Terminal Programmer’s Guide
Compiling in Windows

Setting up the Compiler
Set up the BASIC 3.0 Compiler on your computer to run with Windows according to the
procedure given below.

1. Start Windows.

2. Insert the BASIC 3.0 diskette in the disk drive.

3. Copy all files in the directory WIN on the diskette to the appropriate directory of the
hard disk.

4. Create an appropriate group (BHT_TOOL, for example) in Program Manager, and
then specify the program-item icon BHTC3W that represents the BASIC 3.0
Compiler.

Figure 2-1. BHT-TOOL group
36099002.eps
2-6

Development Environment and Procedures
Starting the Compiler
In Program Manager, double-click the program-item icon BHTC3W in the BHT_TOOL
group. The main window (BASIC Compiler for Win) appears.

Reading in the Initialization File
At start-up, Windows-based Compiler reads in the initialization file named BHTC3W.INI from
the directory where the file to be executed is located, for setting the options and window sizes.

At the end of execution, the Compiler writes the data into the initialization file.

The BHTC3W.INI file contains the following:

[Settings] .. Compiler setting section
List=0

:

Editor=c:¥winapl¥edit.exe

:

36099003.eps

From the Help menu, display the version of
the BASIC 3.0 Compiler.

From the Editor menu,
choose the Set Editor or
Edit command to select the
editor you want to run or
start the selected editor.

 Immediately executes the Compiler if a filename is specified. (If no filename is
specified, you cannot choose this button.)

Starts the editor selected by the Set Editor command in the Editor menu.

Opens the Select File dialog box.

From the File menu,
choose the Select File
command to select a file
to be compiled or
execute the selected file.

From the Compile
menu, choose the
Compiling Options or
Run command to set the
options or execute the
Compiler.

The tool bar contains
the tool buttons which
enable you to quickly
carry out the functions
by clicking them.

Menu bar

Tool bar
2-7

PDT 1100 Terminal Programmer’s Guide
[Windows] .. Windows' location & size section
AppPosX=100

:

Caution

Never modify the contents of the initialization file BHTC3W.INI.

Operating Procedure for the Compiler

Selecting the File to be Compiled
Select a file to compile using one of the following methods:

! From the File menu, choose the Select File command.

! While holding down the Ctrl key, press the S key.

! Click the file selection button in the tool bar.

Figure 2-2. Select File Dialog Box

36099007.eps
2-8

Development Environment and Procedures
Specifying the Compiling Options
1. From the Compile menu, choose the Compiling Options command. The Compiling

Options dialog box appears.

Figure 2-3. Compiling Options Dialog Box

2. Select the check boxes of the options you want to specify.
For details about the compiling options, refer to Compiling Options on page 2-14
and Generating a User Program on page 2-12.

36099008.eps
2-9

PDT 1100 Terminal Programmer’s Guide
Executing the Compiler
Execute the Compiler using one of the following methods:

! In the Select File dialog box, click the Run button.

! From the Compile menu, choose the Run command.

! While holding down the Ctrl key, press the G key.

! In the Compiling Options dialog box, click the Run button.

! Click the compile start button in the tool bar.

Note: If the compiling options have been set, you can easily start the
Compiler by the Windows' drag-and-drop method, that is, dragging a
file to be compiled in File Manager onto the Compiler icon.

Screen Shown During Execution of the Compiler
When compiling starts, the mouse pointer turns into an hourglass shape until the process is
complete.

Figure 2-4. Compiler Dialog Box

Output from the Compiler
The Compiler outputs the following information as well as user programs (object programs)
to the destination depending upon the conditions. Enclosed by bold lines are descriptions
exclusively applied to the Windows-based Compiler.

36099010.eps

Compiling the test TEST.SRC
2-10

Development Environment and Procedures
Table 2-1. Output from the Windows Compiler

Output Destination Conditions

User program (object program) File XXX.PD3 (in the directory
where the source program is
located)

When the specified source
program has been normally
compiled without a syntax
error or fatal error.

Error message (Syntax error) File XXX.ERR (in the directory
where the source program is
located)

A syntax error is detected.

Error message (Fatal error) Main Window A fatal error is detected.

Debug information Source line–
Address
information

File XXX.ADR (in the directory
where the source program is
located)

The Debug information file
check box is selected in the
Compiling Options dialog
box.

Label–
Address
information

File XXX.LBL (in the directory
where the source program is
located)

Variable–
Intermediate
language
information

File XXX.SYM (in the directory
where the source program is
located)

Address–Source list File XXX.LST (in the directory
where the source program is
located)

The Address-source List
check box is selected in the
Compiling Options dialog
box.

Symbol table The Symbol table check box is
selected in the Compiling
Options dialog box.

Cross reference The X (Cross) reference check
box is selected in the
Compiling Options dialog
box.

Sizes of variables File XXX.ERR (in the directory
where the source program is
located).

The Variable size check box is
selected in the Compiling
Options dialog box.

XXX represents a source program filename.
2-11

PDT 1100 Terminal Programmer’s Guide
Displaying the Compile Result Files (XXX.ERR)
Set the editor to display the XXX.ERR files generated by the Compiler:

1. From the Editor menu, choose Set Editor.

Figure 2-5. Editor Menu

The Set Editor dialog box appears as shown below.

Figure 2-6. Set Editor Dialog Box

2. In the Command Line box, type the filename of the editor. If the editor is not located
in the current directory or working directory, type the directory name. If you don't
know the filename of the editor or the directory name, choose the Browse button in
the Set Editor dialog box to display the Browse dialog box. Select the appropriate
filename from the list, and choose the OK button.

Generating a User Program
Use the same procedure as the Windows–based Compiler. Refer to Screen Shown During
Execution of the Compiler on page 2-10.

Error Messages
The Compiler may detect two types of compilation errors: syntax errors and fatal errors. The
contents of the error output is the same as for the Windows–based Compiler.
2-12

Development Environment and Procedures
Syntax Errors
If the Compiler detects a syntax error, it outputs the error message to the XXX.ERR file
opened by the editor preset by the Set Editor command in the Editor menu. The total number
of the detected syntax errors appears on the main window.

Figure 2-7. Syntax Error Screen

Fatal Errors
If the Compiler detects a fatal error, it outputs the error message to the main window.

Figure 2-8. Fatal Error Screen

ERRORLEVEL
The Windows-based Compiler does not support the ERRORLEVEL function.

36099010.eps

Compiling the test TEST.SRC
0002 Error Statement Compiled End

36099010.eps

Compiling the test TEST.SRC
fatal error 30: Cannot find include file “XXX”
2-13

PDT 1100 Terminal Programmer’s Guide
Outputting Error Messages and Variables Size (if selected)

The Compiler outputs error messages (if any) and variables size (if selected) to the XXX.ERR
file. After compilation, if the XXX.ERR file has been made, the Compiler automatically
opens the file by the preset editor. The default editor is the notepad.exe provided with
Windows.

Using an editor with the tag-jump function allows you to efficiently correct the source
program file which caused an error. For details about the tag-jump function, refer to the
user's manual of the editor.

Figure 2-9. TEST.ERR Screen

Compiling Options
Specifying the check box option in the Compiling Options dialog box causes the Compiler to
output the specified debug information or list files.

For details, refer to Generating a User Program on page 2-12.

Table 2-2. List of Compiling Options Available

Compiling
Options

Description

Debug
information file

Outputs a debug information file. If this option is not selected, no debug
information file is output (default).
(For details, refer to the +D option in the Windows–based Compiler.)

Address-source
List

Outputs an address-source list to the file XXX.LST. If this option is not
selected, no address-source list is output (default).
(For details, refer to the +L option in the Windows–based Compiler.)

Symbol table Outputs a symbol table to the file XXX.LST. If this option is not selected, no
symbol table is output (default).
(For details, refer to the +S option in the Windows– based Compiler.)

36099013.eps
2-14

Development Environment and Procedures
The Windows-based Compiler does not support the +W option available in the Windows
version.

Designating the Work Drive and Directory
Designate the work drive and directory of the Compiler by setting the Windows
environmental variables. If you don't designate them, the Compiler creates a directory
according to the priority below.

1. In the directory set in the TMP.

2. In the directory set in the TEMP. (The Windows version does not refer to this
environmental variable.)

3. In the directory where the Compiler is located, if no work drive or directory has been
set in both the TMP and TEMP or if invalid values have been specified in them.

During compilation, the Compiler creates a work file in the directory as defined above. After
compilation, it erases the work file.

X (Cross)
reference

Outputs a cross reference to the file XXX.LST. If this option is not selected, no
cross reference is output (default).
(For details, refer to the +X option in the Windows–based Compiler.)

Variable size Outputs the sizes of common variables, work variables, and register variables
to the file XXX.ERR. If this option is not selected, no variable size is output
(default).
(For details, refer to the +V option in the Windows–based Compiler.)
[Example] C>BHTC3 prog2 +V
The output for this example is as follows:

Common = XXXXX bytes (XXXXX bytes on memory. XXXXX bytes in file)
Work = XXXXX bytes (XXXXX bytes on memory. XXXXX bytes in file)
Register = XXXXX bytes in file

Table 2-2. List of Compiling Options Available (Continued)

Compiling
Options

Description
2-15

PDT 1100 Terminal Programmer’s Guide
Downloading

Ir-Transfer Utility C & Ir-Transfer Utility E
Ir-Transfer Utility C & E transfers user programs and data files (e.g., master files) between
the PDT 1100 and the connected Windows personal computer. It has the following functions:

! Downloading extension programs

! Downloading programs

! Downloading data

! Uploading programs

! Uploading data.

For operations of Ir-Transfer Utility C & E, refer to the PDT 1100 Terminal Transfer Utility
Guide.

Setting up the PDT 1100
Before downloading user programs, initialize the RAM and flash ROM if the error message
below appears.

“System error ! Contact your administrator. Note the error

drive. (DRIVE x)”

This message appears in the following cases:

! The PDT 1100 is first powered on from the time of purchase.

! The PDT 1100 is powered on after being left without battery cartridge loaded for a
long time.

Caution

Initialization erases all programs and data stored in the RAM and flash
ROM and resets the system calendar clock and communications parameters
to their defaults. Therefore, set those reset parameters in System Mode be-
fore accessing the download menu.

For details about initialization and downloading, refer to the PDT 1100 Terminal Product
Reference Guide.
2-16

Development Environment and Procedures
Executing a User Program

Starting
To run a user program, start System Mode and select the desired program in the Program
Execution menu. If you have selected a user program as an execution program in the Setting
menu of System Mode, the PDT 1100 runs the user program when powered on. For the
operating procedure of System Mode, refer to the PDT 1100 User's Manual.

Execution
The Interpreter interprets and executes a user program from the first statement to the next,
one by one.

Termination
The PDT 1100 system program terminates a running user program if:

! the END, POWER OFF, or POWER 0 statement is executed in a user program,

! the power switch is pressed,

! no valid operations are performed within the specified time length (automatic
powering-off)

the battery voltage level becomes low.

Low battery: If the voltage level of the battery cartridge or that of the alkaline cells drops
below the specified level, the PDT 1100 displays the low battery warning message on the
LCD and powers itself off. If the resume function is activated in System Mode, only the
execution of the END, POWER OFF, or POWER 0 statement can terminate a running user program.
Other cases above merely turn off the power, so turning it on again resumes the program.

Valid operations: - Entry by pressing any key
- Bar code reading by pressing the trigger switch
- Data transmission
- Data reception

Specified time length: Length of time specified by the POWER statement
in the user program. If not specified in the program,
three minutes applies.
2-17

PDT 1100 Terminal Programmer’s Guide
2-18

Chapter 3 Program Structure

Statement Blocks

A statement block is a significant set of statements (also called “program routine”). The
following types of statement blocks are available in programming the PDT 1100:

Subroutines
A subroutine is a statement block called from the main routine or other subroutines by the
GOSUB statement.

Using the RETURN statement passes control from the called subroutine back to the statement
immediately following the GOSUB statement in the original main routine or subroutine.

Error-/Event-Handling Routines
An error- or event-handling routine is a statement block to which program control passes
when an error trap or event (of keystroke) trap occurs during program execution,
respectively.

The RESUME statement passes control from the error-handling routine back to the desired
statement.

The RETURN statement in the keyboard interrupt event-handling routine returns control to the
statement following the one that caused the interrupt.

Block-Format User-Defined Functions
A user-defined function comes in two formats: one-line format and block format, both of
which can be called from the main routine or subroutines. (Before calling user-defined
functions, it is necessary to define those functions by DEF FN statements.)
3-1

PDT 1100 Terminal Programmer’s Guide
The block-format user-defined function has the same structure as a statement block.
Generally, it should be placed at the beginning of a program before the main routine starts.

Global Variables and Local Variables
Global variables may be accessed by the same variable's name from any statement in a
complete program. They include work variables, register variables, and common variables.
Local variables are valid only within individual statement blocks where each of them is used.
A dummy argument defined by the DEF FN statement is one of the local variables.

Block-Structured Statements
The statements listed below have the statement block structure and are useful for structured
programming.

FOR...NEXT

IF...THEN...ELSE...END IF

SELECT...CASE...END SELECT

WHILE...WEND

Nested Structure
Block-structured statements allow you to write nesting programs as shown below.

FOR i=1 TO 10

FOR j=2 TO 10 STEP 2

PRINT i, j, k

NEXT j

NEXT i

Nesting subroutines as shown below is also possible.

GOSUB aaa

 :

aaa

PRINT “aaa”

GOSUB bbb

RETURN

bbb

PRINT “bbb”

RETURN
3-2

Program Structure
Jumping Into/Out of Statement Blocks
It is not recommended to jump control from a main routine or subroutines into or out of the
middle of significant statement blocks using the GOTO statement.

X : To be avoided. An execution error may occur.

z: Not recommended, although no execution error results. Nesting may cause an execution
error.

! It is possible to jump control out of the midst of block-structured statements using
the GOTO statement, except for FOR...NEXT.

! Jumping the control out of the midst of FOR...NEXT statement block by the GOTO
statement does not directly result in an execution error, although it may eventually if
repeated. The program below, for example, should be avoided.

FOR I%=0 TO 10

IF I%=5 THEN

GOTO AAA

ENDIF

NEXT I%

AAA

Note: Frequent or improper use of GOTO statements in a program decreases
debugging efficiency and might cause fatal execution errors. Avoid
using GOTO statements, if possible.

Statement Blocks Jump into Jump out

Subroutine X X

Error-/event-handling routine X X

Block-format user-defined function X X

Block-structured statement X z
3-3

PDT 1100 Terminal Programmer’s Guide
Handling User Programs

User Programs in the Memory
The user area of the memory (RAM and flash ROM) in the PDT 1100 can store more than
one user program.

If you have selected a user program as an execution program in the Setting menu of System
Mode, the PDT 1100 runs the user program when powered on. For the operating procedure
of System Mode, refer to the PDT 1100 Terminal Product Reference Guide.

Program Chaining
Program chaining, caused by the CHAIN statement below, terminates a currently running user
program and transfers control to another program.

CHAIN “another.PD3”

To transfer the variables and their values used in the current calling user program to the
chained-to program along the program chain, use the COMMON statement as follows:

COMMON a$(2),b,c%(3)

CHAIN “another.PD3”

The Interpreter writes these declared variable values into the “common variable area” in
memory. To make the chained-to program refer to these values, use the COMMON statement
again.

COMMON a$(2),b,c%(3)

In BASIC 3.0, the name, type, definition order, and number of COMMON-declared variables
used in the current calling program must match those in the next program (the chained-to
program) since they have special significance, while in MS-BASIC the names of variables may
be changed.

' prog1.PD3

COMMON a(10),b$(3),c%

:

CHAIN “prog2.PD3”

' prog2.PD3

COMMON a(10),b$(3),c%

:

3-4

Program Structure
Since the COMMON statement is a declarative statement, no matter where it is placed in a source
program, the source program results in the same output (same object program), if compiled.

Included Files
“Included files” are separate source programs which may be called by the INCLUDE
metacommand.

When INCLUDE metacommand is encountered in a source program, the Compiler fetches the
included file and compiles the main source program while integrating that file to generate a
user program.

Specify the name of an included file using the REM $INCLUDE or '$INCLUDE. In the included files,
describe any of the statements and functions except the REM $INCLUDE and '$INCLUDE.

Storing definitions of variables, subroutines, user-defined functions, and other data to be
shared by source programs into the included files promotes application of valuable program
resources.

If a compilation error occurs in an included file, it is indicated on the line where the included
file is called by the INCLUDE metacommand in the main source program, but detailed
information of syntax errors detected in the included files and the cross reference list is not
output. Debug the individual included files carefully beforehand.
3-5

PDT 1100 Terminal Programmer’s Guide
3-6

Chapter 4 Basic Program Elements

Structure of a Program Line

Format of a Program Line
A program line consists of the following elements:

[label] [statement] [:statement] ... [comment]

Labels
A label is placed at the beginning of a program line to identify lines. Labels, which designate
jump destinations can be used to transfer control to any other processing flow like program
branching. They can be omitted if unnecessary. Labels differ from line numbers used in the
general BASIC languages; they do not determine the execution order of statements.

Write a label beginning in the first column of a program line. To write a statement following
a label, place one or more separators (spaces or tabs) between the label and the statement. As
shown below, using a label in the IF statement block can eliminate the GOTO statement which
should usually precede a jump-destination label.

IF a = 1 THEN Check

ELSE 500

ENDIF

Check and 500 are used as labels.

For detailed information about labels, refer to Labels on page 4-6.
4-1

PDT 1100 Terminal Programmer’s Guide
Statements
A statement is a combination of functions, variables, and operators according to the syntax.
A group of the statements is a program. Statements can come in two types: executable and
declarative statements.

Executable statements

These cause the Interpreter to process programs by instructing the operation to be executed.

Declarative statements

These manage the memory allocation for variables and handle comments. Declarative
statements available in BASIC 3.0 are listed below.

REM or single quotation mark
(')

DATA

COMMON

DEFREG

You can describe multiple statements in one program line by separating them with a colon (:).

Comments
Comments make programs easier to understand. An apostrophe (') or REM can begin a
comment.

Apostrophe (')

An apostrophe (') can begin in the first column of a program line to describe a comment.
When following any other statement, a comment starting with an apostrophe requires no
preceding colon (:) as a delimiter.

' comment

PRINT “abc” 'comment

REM

The REM cannot begin in the first column of a program line. When following any other
statement, a comment starting with REM requires a preceding colon (:).
4-2

Basic Program Elements
REM comment

PRINT “abc” :REM

comment

Program Line Length and Maximum Number of Lines
Terminate a program line with a CR code by pressing the carriage return key. The allowable
line length is 512 characters excluding a CR code and the maximum number of lines in a
source program is 9,999. Use one of the following methods, however, to write a program line
of up to 8192 characters:

In the samples below, “↓” denotes a CR code entered by the carriage return key.

! Extend a program line with an underline (_) and a CR code.
IF (a$ = “,” OR a$ = “.”) AN D b<c_ ↓
AND EOF(d) THEN ...

! Extend a program line with a comma (,) and a CR code.
FIELD #1,13 as p$,5 a s k$, ↓
10 as t $↓

The second method (using a comma and CR code) cannot be used for the PRINT, PRINT#, and
PRINT USING statements.

Usable Characters

Following are characters which can be used for writing programs. Note that a double quote
(") cannot be used inside a character string. Symbols | and ~ inside a character string appear
as ↓ and → on the LCD of the PDT 1100, respectively.

If used outside of a character string, symbols and control codes below have special meaning
described in Special Symbols and Control Codes on page 4-4.

Letters Including both uppercase and lowercase letters (A to Z and a to z).

Numerals Including 0 to 9 for decimal notation, and 0 to 9 and A to F (a to f) for
hexadecimal notation.

Symbols Including the following: $ % * + – . / < = > " & ' () : ; [] { } # ! ? @ ¥ | ~ , _

Control codes CR, space, and tab
4-3

PDT 1100 Terminal Programmer’s Guide
Distinction between Uppercase and Lowercase Letters
The Compiler makes no distinction between the uppercase and lowercase letters, except for
those used in a character string data. The statements below, for example, all produce the same
effect.

PRINT a

print a

PRINT A

print A

When used in a character string data, uppercase and lowercase letters are distinguished from
each other. The statements below, for example, both produce different display output.

PRINT “abc”

PRINT “ABC”

Special Symbols and Control Codes
Symbols and control codes used outside of a character string have the following special
meaning:

Table 4-1. Symbols and Control Codes

Symbols and Control Codes Typical Use

$
(Dollar sign)

String suffix for variables or user-defined functions.

%
(Percent sign)

Integer suffix for variables, constants (in decimal notation), or
user-defined functions.

*
(Asterisk)

Multiplication operator.

+
(Plus sign)

Addition operator or unary positive sign.
Concatenation operator in string operation.
Format control character in PRINT USING statement.

/
(Slant)

Division operator.
Separator for date information in DATE$ function.

.
(Period)

Decimal point.
Format control character in PRINT USING statement.

–
(Minus sign)

Subtraction operator or unary negative sign.
4-4

Basic Program Elements
<
(Less-than sign)

Relational operator.

=
(Equal sign)

Relational operator.
Assignment operator in arithmetic or string operation.
User-defined function definition expressions in single-line form
DEF FN.
Register variable definition expressions.

>
(Greater-than sign)

Relational operator.

"
(Double quote)

A pair of double quotes delimits a string constant or a device file
name.

&
(Ampersand)

Integer prefix for constants (in hexadecimal notation), which
should be followed by an H.
Format control character in PRINT USING statement.

'
(Apostrophe)

Initiates a comment.
A pair of apostrophes delimits an included file name.

()
(Left and right parentheses)

Delimits an array subscript or a function parameter.
Forces the order of evaluation in mathematical, relational,
string, and logical expressions.

:
(Colon)

Separates statements.
Separates time information in TIME$ function.

(Half-width space) Separator which separates program elements in a program line.
(Note that a two-byte full-width space cannot be used as a
separator.)

CR code
(Enter)

Terminates a program line.

_
(Underline)

If followed by a CR code, an underline extends one program line
up to 8192 characters.

'
(Comma)

Separates parameters or arguments.
Line feed control character in INPUT and other statements.

@ Format control character in PRINT USING statement.

!
(Exclamation mark)

Format control character in PRINT USING statement.

Table 4-1. Symbols and Control Codes (Continued)

Symbols and Control Codes Typical Use
4-5

PDT 1100 Terminal Programmer’s Guide
Labels

A label can contain alphanumeric characters and a period (.).

Rules for naming labels
! Limit label length to 10 characters including periods.

! A program can contain up to 9,999 labels.

! Label names do not distinguish between uppercase and lowercase letters.
The following labels, for example, are treated as the same label.

filewrite

FILEWRITE

FileWrite

! Do not use an asterisk (*) or dollar sign ($) for a label. The following label examples
are invalid:

*Label0

Label1$

! A label consisting of only numerals is valid.
1000

1230

#
(Pound sign)

File number prefix in OPEN, CLFILE, FIELD, and other
statements.
Format control character in PRINT USING statement.

{ }
(Braces)

Define the initial value for an array element.

[]
(Square brackets)

Define the length of a string variable.
Define the string length of the returned value of a string user-
defined function.

;
(Semicolon)

Line feed control character in INPUT and other statements.

TAB
(Tab code)

Separates program elements in a program line.

Table 4-1. Symbols and Control Codes (Continued)

Symbols and Control Codes Typical Use
4-6

Basic Program Elements
Note: Do not use a single 0 (zero) as a label name since it has a special
meaning in ON ERROR GOTO, ON KEY...GOSUB, and RESUME statements.

! A reserved word cannot be used by itself for a label name, but can be included within
a label name as shown below.

inputkey

! A label should not start with the character string FN.

Identifiers

Identifiers for the names of variables should comprise the same alphanumerics as the labels.

Rules for Naming Identifiers
! Limit identifier length to 10 characters including periods and excluding $ (dollar

sign) and % (percent sign) suffixes.

! All variables can contain up to 255 identifiers.

! A reserved word cannot be used by itself for an identifier name, but can be included
within an identifier name.

! An identifier should not start with a numeral or the character string FN. If starting
with an FN, the character string is treated as a function identifier defined by the DEF
FN statement.

Examples of identifiers:

a

abcdef$

a1

a12345%

Reserved Words

“Reserved words” are keywords to be used in statements, functions, and operators. For the
list of reserved words, refer to Appendix B, Reserved Words.

! A reserved word cannot be used by itself for a label name, a variable name, or other
identifiers, but can be included within them. The following identifiers, for example,
4-7

PDT 1100 Terminal Programmer’s Guide
are improper since they use reserved words input and key as is, without
modification:

input = 3

key = 1

! A reserved word can be used for a data file name as shown below.
OPEN “input” AS #1
4-8

Chapter 5 Data Types

Constants

A constant is a data item that does not change during program execution. Constants are
classified into two types: string constants and numeric constants.

String Constants
A “string constant” is a character string enclosed in double quotation marks ("). Its length
should be a maximum of 255 characters. The character string should not contain a double
quotation mark (") or any control codes.

Numeric Constants

Integer Constants

In Decimal Notation

An integer constant in decimals can be followed by a percent sign (%) or the % can be
omitted.

Syntax: sign decimalnumericstring%

Constant Example

String constants “ABC”, “123”

Numeric constants Integer constants In decimal notation 123%, -4567

In hexadecimal notation &HFFF, &h1A2B

Real constants 123.45, -67.8E3
5-1

PDT 1100 Terminal Programmer’s Guide
Where sign is either a plus (+) or a minus (–). The plus sign can be omitted.

The valid range is from -32,768 to 32,767.

Using a comma in an integer constant to mark every three digits causes a syntax error.

In Hexadecimal Notation

Integer constants in hexadecimals should be formatted as shown below.

Syntax: &H hexnumericstring

The valid range is from 0h to FFFFh.

Using a period in a numeric string in hexadecimals to denote a decimal point causes a syntax
error.

Real Constants
Real constants should be formatted as shown below.

Syntax: sign mantissa

Syntax: sign mantissa E sign exponent

A lowercase “e” may be used instead of uppercase “E.”

mantissa is a numeric string of up to of 10 significant digits. It can include a decimal point.
Using a comma in a real constant as shown below to mark every three digits causes a syntax
error.

123,456 'syntax error!
5-2

Data Types
Variables

A variable is a symbolic name that refers to a unit of data storage. The contents of a variable
can change during program execution.

Types of Variables According to Format
Variables are classified into two types, string variables and numeric variables, each of which
is subclassified into non-array and array types.

Declare array variables in DIM, COMMON, and DEFREG statements. The DIM statement should
precede statements that access the array variable. BASIC 3.0 can handle array variables up to
two-dimensional. The subscript range for an array variable is from 0 to 254.

String Variables
A string variable consists of 1 through 255 characters.

Non-Array String Variables

Format non-array string variables with an identifier followed by a dollar sign ($) as shown
below.

Syntax: identifier$

Example: a$,bcd123$

Classification of Variables Example

String variables Non-array type ab3$

Array type One-dimensional e$(10)

Two-dimensional gh$(1,3)

Numeric variables Integer variables Non-array type a%

Array type One-dimensional e%(10)

Two-dimensional fg%(2,3)

Real variables Non-array type a,bcd

Array type One-dimensional e(10)

Two-dimensional fg(2,3)
5-3

PDT 1100 Terminal Programmer’s Guide
The default number of characters for a non-array string variable is 40.

Array String Variables

Format array string variables with an identifier followed by a dollar sign ($) and a pair of
parentheses () as shown below.

Syntax: identifier$(subscript[,subscript])

Example: a$(2),bcd123$(1,3)

where a pair of parentheses indicates an array.

The default number of characters for an array string variable is 20.

Memory Occupation

A string variable occupies the memory space by (the number of characters + one) bytes, where
the added one byte is used for the character count. That is, it may occupy 2 to 256 bytes. If
a non-array string variable consisting of 20 characters is declared, for example, it occupies
21-byte memory space.

Numeric Variables
A numeric variable occupies 2 bytes or 6 bytes of the memory space for an integer variable
or a real variable, respectively.

Non-Array Integer Variables

Format non-array integer variables with an identifier followed by a percentage sign (%) as
shown below.

Syntax: identifier%

Example: a%,bcd%

Array Integer Variables

Format array integer variables with an identifier followed by a percentage sign (%) and a pair
of parentheses () as shown below.

Syntax: identifier%(subscript[,subscript])

Example: e%(10),fg%(2,3),h%(i%,j%)

where a pair of parentheses indicates an array.
5-4

Data Types
Non-Array Real Variables

Format non-array real variables with an identifier only as shown below.

Syntax: identifier

Example: a,bcd

Array Real Variables

Format array real variables with an identifier followed by a pair of parentheses () as shown
below.

Syntax: identifier(subscript[,subscript])

Example: e(10),fg(2,3),h(i%,j%)

where a pair of parentheses indicates an array.

Classification of Variables

Work Variables
Optionally declare a work variable for general use using the DIM statement. The following
examples show work variables:

DIM a(10),b%(5),c$(1)

d=100:e%=45

FOR count% = s1% TO s2%

NEXT count%

At the start of a user program, the Interpreter initializes all work variables to zero (0) or a
null character string. At the end of the program, all variables will be erased. Upon execution
of the DIM statement declaring an array variable, the Interpreter allocates the memory for the
array variable. The declared array variable can be erased by the ERASE statement.

Common Variables
A common variable is declared by the COMMON statement. It passes its value to the chained-to
programs.

Register Variables
A register variable is a unique non-volatile variable supported exclusively by BASIC 3.0. It
retains its value (by battery backup) even after the program has terminated or the PDT 1100
5-5

PDT 1100 Terminal Programmer’s Guide
is powered off, and can store settings of programs and other values in memory. The
Interpreter stores register variables in the register variables area of the memory separate from
the work variables area.

Like other variables, register variables are classified into two types, string variables and
numeric variables, which are subclassified into non-array and array types. The format of
register variables is the same as general variables. Declare register variables including non-
array register variables with DEFREG statements. BASIC 3.0 can handle array variables up to
two-dimensional.

When starting a user program stored in the flash ROM for the first time, the Interpreter
copies the register variables into the RAM (so that both the flash ROM and RAM store the
register variables). When modifying register variables, the Interpreter changes those stored in
the RAM. When uploading a program file stored in the flash ROM using the XFILE statement
or System Mode, the PDT 1100 uploads the program (except for the register variables in the
flash ROM) with the register variables stored in the RAM.

User-defined Functions

User-defined functions are classified into three types: integer functions, real functions, and
character functions. All start with an FN.

Define a user-defined function with the DEF FN statement.

Setting Character String Length of Character Functions
A character function may return 1 through 255 characters. Note that the default character
string length results in the returned value of 40 characters. If the returned value is always less
than 40 characters, use the stack efficiently by setting the actual required value smaller than
the default as the maximum length, because the Interpreter positions returned values on the
stack during execution of user-defined functions to occupy the memory area by the maximum
length size. To define a function which results in the returned value of one character, for
example, describe as follows:

DEF FNshort$(i%)[1]

User-defined Function Name Format

Integer functions FN functionname %

Real functions FN functionname

Character functions FN functionname $
5-6

Data Types
If the returned value is more than 40 characters, set the actually required length. To define a
function which results in the returned values of 128 characters, for example, describe as
follows:

DEF FNlong$(i%)[128]

Dummy Arguments and Real Arguments
Dummy arguments define user-defined functions. In the example below, i% is a dummy
argument.

DEF FNfunc%(i%)

dummy%=i%*5

END DEF

Real arguments are passed to user-defined functions when those functions are called. In the
example below, 3 is a real argument.

PRINT FNfunc%(3)

Type Conversion

BASIC 3.0 type conversion facility converts a value of one data type into another data type
during value assignment to numeric variables and operations; from a real number into an
integer number by rounding off, and vice versa, depending upon the conditions.

The Interpreter converts a value of a real into an integer in the following cases:

! Assignment of real expressions to integer variables

! Operands for an arithmetic operator MOD

! Operands for logical operators: AND, OR, NOT, and XOR

! Parameters for functions

! File numbers.

In the type conversion from real into integer, the allowable value range of the resulting
integer is limited as shown below. If the resulting integer comes out of the limit, an
execution error occurs.

-32768 resultantintegervalue +32767

In assignments or operations from integer to real, the type-converted real has higher
accuracy:
5-7

PDT 1100 Terminal Programmer’s Guide
Syntax: realvariable = integerexpression

In the above case, the Interpreter applies the type conversion to the evaluated resultant of the
integer expression before assigning the real value to the real variable. Therefore, a in the
following program results in the value of 184.5.

a=123%*1.5

Type Conversion Examples
The following examples show the type conversion from real to integer.

Assignment of Real Expressions to Integer Variables
When assigning the value of the real expression (right side) to the integer variable (left side),
the Interpreter carries out type conversion.

Syntax: integervariable = realexpression

Example: b% = 123.45

where b% becomes 123.

Operands for an Arithmetic Operator MOD
Before executing the MOD operation, the Interpreter converts operands into integers.

Syntax: realexpression MOD realexpression

Example: 10.5 MOD 3.4

where the result becomes identical to 11 MOD 3.

Operands for Logical Operators AND, OR, NOT, and XOR
Before executing each logical operation, the Interpreter converts operands into integers.

Syntax: NOT realexpression,
realexpression {AND|OR|XOR} realexpression

Example: 10.6 AND 12.45

where the result is identical to 11 AND 12.
5-8

Data Types
Parameters for Functions
If parameters i and j of the functions below are real expressions, for example, the Interpreter
converts them into integers before passing them to each function.

CHR$(i),HEX$(i),LEFT$(x$,i),MID$(x$,i,j), RIGHT$(x$,i),...

File Numbers
The Interpreter also rounds off file numbers to integers.

EOF(f0),LOC(f0),LOF(f0),...
5-9

PDT 1100 Terminal Programmer’s Guide
5-10

Chapter 6 Expressions and Operators

Overview

An expression is a combination of constants, variables, and other expressions which are
connected using operators. There are two types of expressions – numeric expressions and
string expressions. BASIC 3.0 has the following types of operators:

Operator Precedence

When an expression contains more than one operator, BASIC 3.0 performs the operations in
the standard priority of the following.

Precedence
1. Parentheses ()

Parentheses allow you to override operator precedence; that is, operations enclosed
with parentheses are first carried out.

Operators Description

Arithmetic operator Performs arithmetic operations.

Relational operator Compares two values.

Logical operator Combines multiple tests or Boolean expressions into a single true/
false test.

Function operator Performs the built-in or user-defined functions.

String operator Concatenates or compares character strings.
6-1

PDT 1100 Terminal Programmer’s Guide
To improve the readability of an expression, use parentheses to separate two
operators placed in succession.

2. Function operations

3. Arithmetic operations

4. Relational operations

=, <>, ><, <, >, <=, >=, =<, =>

5. Logical operations

6. String operations

When more than one operator occurs at the same level of precedence, the BASIC 3.0
resolves the expression by proceeding from left to right.

a=4+5.0/20*2-1

In the above example, the operation order is as follows:

5.0/20 (=0.25)

0.25*2 (=0.5)

4+0.5 (=4.5)

4.5-1 (=3.5)

Operations Arithmetic Operators Precedence

Negation – 1

Multiplication and
division

* and / 2

Modulo arithmetic MOD 3

Addition and subtraction + and – 4

Operations Logical Operators Precedence

Logical Negation NOT 1

Logical multiplication AND 2

Logical addition OR 3

Exclusive logical addition XOR 4
6-2

Expressions and Operators
Operators

Arithmetic Operators
Arithmetic operators include a negative sign (-) and operators for multiplication (*), division
(/), addition (+), and subtraction (-). They also include modulo operator MOD.

Modulo Operation (MOD)
The MOD operator executes the modulo operation; that is, it divides expression 1 by
expression 2 (see the format below) and returns the remainder.

Syntax: expression1 MOD expression2

where one or more spaces or tab codes precede and follow the MOD.

If these expressions include real values, the MOD first rounds them off to integers and then
executes the division operation. For example, the MOD treats expression 8 MOD 3.4 as 8 MOD 3
and return the remainder “2”.

Overflow and Division by Zero
Arithmetic overflow resulting from an operation or division by zero causes an execution
error. Such an error may be trapped by error trapping.

Operations Arithmetic Operators Precedence Examples

Negation – 1 –a

Multiplication and division * and / 2 a*b, a/b

Modulo arithmetic MOD 3 a MOD b

Addition and subtraction + and – 4 a+b, a–b
6-3

PDT 1100 Terminal Programmer’s Guide
Relational Operators
A relational operator compares two values, and returns true (–1) or false (0). Use the
operation result to control the program flow.

Relational operators include the following:

If an expression contains both arithmetic and relational operators, the arithmetic operator
has priority over the relational operator.

Logical Operators
A logical operator combines multiple tests and manipulates Boolean operands, then returns
the results. For example, it controls the program execution flow and tests the value of an INP
function bitwise, as shown below.

IF d<200 AND f<4 THEN ...

WHILE i>10 OR k<0 ...

IF NOT p THEN ...

barcod% = INP(0) AND &h02

Following are the four types of logical operators available.

Relational Operators Meanings Examples

= Equal to A = B

<> or >< Not equal to A <> B

< Less than A < B

> Greater than A > B

<= or =< Less than or equal to A <= B

>= or => Greater than or equal to A >= B

Operations Logical Operators Precedence

Logical Negation NOT 1

Logical multiplication AND 2

Logical addition OR 3

Exclusive logical addition XOR 4
6-4

Expressions and Operators
One or more spaces or tab codes should precede and follow the NOT, AND, OR, and XOR
operators.

In the logical expressions (or operands), the logical operator first carries out the type
conversion to integers before performing the logical operation. If the resulting integer value
is out of the range of -32768 to +32767, an execution error occurs. If an expression is equal
to 0 (zero) or -1, the logical operation returns 0 or -1, as shown below.

PRINT 0 OR (NOT 0)

-1

If an expression contains logical operators with arithmetic and relational operators, the
logical operators are given lowest priority.

NOT Operator
The NOT operator reverses data bits by evaluating each bit in an expression and setting the
resultant bits according to the truth table below.

Syntax: NOT expression

For example, NOT 0 = -1 (true).

The NOT operation for an integer has the returned value of negative 1's complement. The NOT
X, for instant, is equal to –(X+1).

Table 6-1. Truth Table for NOT

Bit in Expression Resultant Bit

0 1

1 0
6-5

PDT 1100 Terminal Programmer’s Guide
AND Operator
The AND operator ANDs the same order bits in two expressions on either side of the operator,
then sets 1 to the resulting bit if both bits are 1.

Syntax: expression1 AND expression2

OR Operator
The OR operator ORs the same order bits in two expressions on either side of the operator,
then sets 1 to the resulting bit if at least one bit is 1.

Syntax: expression1 OR expression2

Table 6-2. Truth Table for AND

Bit in Expression1 Bit in Expression2 Resultant Bit

0 0 0

0 1 0

1 0 1

1 1 1

Table 6-3. Truth Table for OR

Bit in Expression1 Bit in Expression2 Resultant Bit

0 0 0

0 1 1

1 0 1

1 1 1
6-6

Expressions and Operators
XOR Operator
The XOR operator XORs the same order bits in two expressions on either side of the operator,
then sets the resulting bit according to the truth table below.

Syntax: expression1 XOR expression2

Function Operators
The following two types of functions are available in BASIC 3.0 and work as function
operators:

Built-in Functions
Already built in BASIC 3.0, e.g., ABS and INT.

User-Defined Functions
Defined by DEF FN statements in single-line or block form.

String Operators
A character string operator may concatenate or compare character strings. Following are the
types of operators available.

Table 6-4. Truth Table for XOR

Bit in Expression1 Bit in Expression2 Resultant Bit

0 0 0

0 1 1

1 0 1

1 1 0

Table 6-5. String Operators

Operations Character String Operators Examples

Concatenation + (Plus sign) a$+“."+b$

Comparison = (Equal) a$=b$

<>, >< (Not equal) a$<>b$, a$><b$

>, <, =<, =>, <=, >= (Greater or less) a$>b$, a$=>b$
6-7

PDT 1100 Terminal Programmer’s Guide
Concatenation of Character Strings
The process of combining character strings is called concatenation and is executed with the
plus sign (+). The example below concatenates the character strings, a$ and b$.

a$=“Work1” : b$ =

“dat”

PRINT a$+“."+b$

Work1.dat

Comparison of Character Strings
The relational operators compare two character strings according to character codes assigned
to individual characters. In the example below, the expression a1$<b1$ returns the value of
true to output -1.

a1$=“ABC001”

b1$=“ABC002”

PRINT a1$<b1$

-1
6-8

Chapter 7 I/O Facilities

Facilities for the LCD

Registering User-defined Fonts
The APLOAD or KPLOAD statement registers up to 32 user-defined fonts for the single-byte ANK
mode. Use this registration facility to display special marks, symbols, and icons to be used for
guidance messages on the LCD screen.

Setting National Characters
The COUNTRY$ function displays currency symbols and special characters for the countries.
Refer to National Character Sets on page C-3.

Reversing the Characters
The SCREEN statement reverses characters, as listed below.

Reversed display sample:

Indication SCREEN Statement

Normal display SCREEN ,0 (Default)

Reversed display SCREEN ,1

Communications
Error
7-1

PDT 1100 Terminal Programmer’s Guide
Note: Blinking or underscoring is not available in reverse display.

Displaying the System Status
The PDT 1100 may display the system status (the shift state of the keys) at the right end of
the bottom line of the LCD by the icon below.

* The icon is 16 dots wide by 8 dots high.

You may turn the system status indication on or off on the SET DISPLAY menu in System
Mode. The default is ON. (For the setting procedure, refer to the PDT 1100 User's Manual.)
Use the OUT statement in user programs to control the system status indication also. (Refer to
Appendix D, I/O Ports)

Notes when the system status is displayed

The following statements and functions cause different operations when the system status is
displayed.

! CLS statement

The CLS instruction clears the VRAM area assigned to the right end of the bottom
line of the LCD but does not erase the system status displayed.

! OUT statement

If you use the OUT statement to send graphic data to the VRAM area assigned to the
right end of the bottom line of the LCD, the data is written into that VRAM area but
cannot be displayed on the bottom line.

! INP function

If you specify the VRAM area assigned to the right end of the bottom line of the LCD
as an input port, the INP function reads one-byte data from that area.

Table 7-1. System Status Icon

System Status Icon Description

Shift state of the keys on the
keypad

Appears when the keys are shifted.

SF
7-2

I/O Facilities
Notes when displaying the system status with OUT statement

Specifying the system status indication with the OUT statement overwrites the system status on
the current data shown at the right end of the bottom line of the LCD.

Notes when erasing the system status with the OUT statement

Erasing the system status with the OUT statement displays the content of the VRAM area
(assigned to the right end of the bottom line of the LCD) on that part of the LCD.

Input from the Keyboard

Alphabet Input Function
The alphabet input function allows you to enter letters, a space, and symbols from the PDT
1100 keyboard (keypad) during execution of a user program. To activate or deactivate the
alphabet input function, use OUT statement in a user program.

Three characters are assigned to each 0-9 numerical key and period key. For example, A, B,
and C are assigned to the 7 key. To designate one of the three assigned characters, use the
trigger switch. (Use the M1 or M2 key when the trigger switch function or no function is
assigned to the key.)

Figure 7-1. The PDT 1100 Keypad

ABC DEF GHI

JKL MNO PQR

STU VWX YZsp

+-* /$%

36099020.eps
7-3

PDT 1100 Terminal Programmer’s Guide
Activating the alphabet input function with OUT statement
Use the OUT statement to activate or deactivate the alphabet input function by setting bit 0
of port 5 to 1 (activate) or 0 (deactivate).

OUT 5, 1

The default alphabet input function is “deactivated.”

Entering alphabetic characters from the keypad

1. Find the key that is assigned to the alphabetic character you want, and check the
position of the character (Left, Center, or Right) relative to the three characters
assigned to that key.

2. Designate the character position using the trigger switch and then pressing the key.

3. Press the trigger switch to cycle through the shift guidance blocks Left, Center, and
Right on the LCD as shown below.

The shift guidance block appears only while the trigger switch is held down, therefore, press
the key while holding down the trigger switch. To enter an N character, for example, use the
trigger switch to display the block Center on the LCD and press the 5 key. During the above
entry operation, you can use the Clear, Backspace, and numerical keys as usual.

Notes
! Displaying the shift guidance block Right when the status indication is set to ON

overwrites the status indication with the shift guidance block.

! The activated or deactivated state of the alphabet input function resumes. The shift
guidance block does not resume.

The shift guidance block appears on the top or bottom line, depending
upon the current cursor position. That is, if the cursor lies on any of the
lower lines, the shift guidance block appears on the top line; if it lies on
any of the upper lines, the block appears on the bottom line.

Left Center Right
7-4

I/O Facilities
! User programs cannot distinguish between a character entered with the alphabet
input function and the same character generated by pressing a function key assigned
the character by the KEY statement. (Refer to Function Keys on page 7-7.)

In the example below, the character “A” may be entered with the alphabet input function or
by pressing the F1 key assigned “A”. The user program does not distinguish between them.

K$=INPUT$ (1)

IF K$=“A” THEN GOTO FUNC1 ENDIF

.

.

.

To prevent this, assign another character to the F1 key with the KEY statement and modify
the judgement condition. For example, assign the character “#”to the F1 key.

KEY 1, “#”

.

.

.

K$=INPUT$ (1)

IF K$=“#” THEN GOTO FUNC1 ENDIF

.

.

.

For details, refer to KEY on page 10-61 and ON KEY...GOSUB on page 10-82.

Note: The alphabet input function does not influence the keystroke trapping
which identifies keys according to their key numbers.

Alphabet Input Example
Coding in a user program:

Entering alphabet characters “ND” under the above user program:

OUT 5,1 'Activating the
alphabet
'input function

INPUT “data=”;a$ 'Waiting for keystrokes
7-5

PDT 1100 Terminal Programmer’s Guide
1. Press the trigger switch.

2. Hold down the trigger switch.

3. Without releasing the trigger switch, press the 5 key.

4. Release the trigger switch.

5. Hold down the trigger switch.

data = ?

Left

data = ?

Center

data = ? N

Center

data = ? N

data = ? N

Left
7-6

I/O Facilities
6. Without releasing the trigger switch, press the 8 key.

7. Release the trigger switch.

8. Press the Enter key to complete the entry operation.

Function Keys
The following operations cause the pressed key to act as a function key:

! Pressing a function key (enters its default character / control code value).*

! Pressing a function key while holding down the Shift key.

! Pressing a numeric key while holding down the Shift key.

*Use a KEY statement to reassign a value.

For the keyboard layouts, key numbers, and key assignments, refer to Appendix E, Key
Number Assignment on the Keyboard.

Assigning a Character String to a Function Key
Assign a desired character string (up to two characters) or a single control code to a function
key using the KEY statement, as shown below.

! Example for characters
KEY 1,“AB”

! Example for a control code
KEY 2,CHR$(8) '—Backspace

where a backspace code is assigned to the function key numbered 2.

data = ? ND

Left

data = ? ND
7-7

PDT 1100 Terminal Programmer’s Guide
NULL Character or String Assignment

Assigning a NULL character or string to a function key causes an invalid entry if the function
key is pressed. In the example below, pressing the keys numbered 3 and 4 produces no
keyboard entry.

KEY 3, “”

KEY 4, CHR$(0)

Defining a Function Key as the LCD Backlight Function On/Off Key
Define a particular function key as the backlight function on/off key and set the length of
backlight on-time using the KEY statement.

KEY 5,“BL60”

This defines the function key numbered 5 and sets the on-time to 60.

Note: You cannot assign both a character string and the backlight on/off
function to a same function key. For details, refer to KEY in Chapter
10.

Defining a Function Key as the Battery Voltage Display Key
Define a particular function key as the battery voltage display key using the KEY statement,
as shown below.

KEY 5, “BAT”

This defines the function key numbered 5.

Defining an M Key
Define an M key as the SF key, trigger switch, or battery voltage display key, and assign a
character string, control code, ENT key, or backlight function on/off key to it. (The trigger
switch function is assigned to both M1 and M2 keys by default.)

KEY 30,“SFT”

This defines the M1 key as the SF key.

KEY 31,“TRG”

This defines the M2 key as the trigger switch.
7-8

I/O Facilities
Keystroke Trapping
You can trap the pressing of a particular key using the KEY ON, KEY OFF, and ON KEY...GOSUB
statements.

Note: If you specify a function key defined as the LCD backlight function
on/off key, trigger switch, shift key, or battery voltage display key for
keystroke trapping, no keystroke trap takes place.

For details about the keystroke trapping, refer to Chapter 9, Event Polling and Error/Event
Trapping.

Timer and Beeper

Timer Functions
The timer functions (TIMEA, TIMEB, and TIMEC) are available in BASIC 3.0 for accurate time
measurement. Use these timer functions for monitoring the keyboard waiting time,
communications timeout errors, etc.

TIMEA = 100 '10 sec

WAIT 0,&H10

BEEP

PRINT “10sec.”

TIMEC = 20 '2 sec

WAIT 0,&H41

BEEP

PRINT “2sec. or Keyboard”

BEEP Statement
The BEEP statement sounds a beeper and specifies the frequency of the beeper. The example
below sounds the musical scale of do, re, mi, fa, sol, la, ti, and do.

READ readDat%

WHILE (readDat% >= 0)

TIMEA = 3

BEEP 2,,,readDat%

WAIT 0,&h10
7-9

PDT 1100 Terminal Programmer’s Guide
READ readDat%

WEND

DATA 523,587,659,698,783,880,987,1046,-1

Specify the beeper frequency with value 0 (low pitched), 1 (medium-pitched), or 2 (high-
pitched).

FOR i% = 0 TO 2

TIMEC = 20

BEEP,,,i%

WAIT 0,&h40

NEXT

Note: For the adjustment of the beeper volume, refer to the PDT 1100
User's Manual.

Controlling and Monitoring the I/Os

Controlling by the OUT Statement
The OUT statement controls the input and output devices (I/Os) below. (Refer to Appendix D,
I/O Ports.)

OUT Statements I/O Devices

OUT 1,&h02 Turns the reading confirmation LED green. 1

OUT 1,&h01 Turns the reading confirmation LED red. 1

OUT 1,&h00 Turns off the reading confirmation LED.

OUT 2,&h01 Turns RS (RTS) signal ON. 2

OUT 2,&h00 Turns RS (RTS) signal OFF. 2

OUT 3,&hXX (XX: 00 to 07) Sets the LCD contrast.

OUT 4,&h01 Sets the English message version.

OUT 6,&hXX (XX: 00 to 0F) Sets the sleep timer.

OUT 8,&h01 Turns on the wake-up function.
7-10

I/O Facilities
1 The reading confirmation LED illuminates green when the PDT 1100 successfully scans a bar code. If
the bar code device file has already been opened with the OPEN “BAR:” statement, the OUT statement
cannot turn on the reading confirmation LED. Close the bar code device file as follows:

CLOSE

OUT 1, 1

2 The PDT 1100 cannot control the RS (RTS) signal. This signal is ignored if turned on.

3 This setting cannot affect the setting made in System Mode.
4 Setting graphic data and addresses to the VRAM using the OUT statement enables you to output
graphics to the LCD. The data value ranges from &h10 to &h24F. The data is designated by bit 7 (LSB)
to bit 0 (MSB). If the bit is 1, the corresponding dot on the LCD turns on.

OUT 8,&h00 Turns off the wake-up function.

OUT 8,&h04 Sets the wake-up time or reads the preset time

OUT &hE,&h01 Turns on the system status indication. 3

OUT &hE,&h00 Turns off the system status indication. 3

OUT &h0010,&hXX (XX: 00 to FF) Outputs to the VRAM. 4

&h024F,&hXX (XX: 00 to FF)

OUT &h6020,&h01 Turns on the LCD backlight.

OUT &h6020,&h00 Turns off the LCD backlight.

OUT &h6021,&hXX (XX: 00 to FF) Sets the LCD backlight ON-time.

OUT Statements I/O Devices
7-11

PDT 1100 Terminal Programmer’s Guide
Monitoring by the INP Function
The INP function monitors the input and output devices (I/Os) as listed below. (Refer to
Appendix D, I/O Ports.)

Note: The INP function also checks the LCD contrast, VRAM data, system
status indication, and message version (English or Japanese).

Table 7-2. Input and Output Devices

INP Functions I/O Devices Value Meaning

INP(0) AND &h01 Keyboard buffer status 1 Data present

0 No data

INP(0) AND &h02 Bar-code buffer status 1 Data present

0 No data

INP(0) AND &h04 Trigger switch status 1 1 Being pressed

0 Being released

INP(0) AND &h08 Receive buffer status 1 Data present

0 No data

INP(0) AND &h10 TIMEA function 1 Set to 0

INP(0) AND &h20 TIMEB function 1 Set to 0

INP(0) AND &h40 TIMEC function 1 Set to 0

INP(0) AND &h80 CS (CTS) signal status 2 1 ON

0 OFF
1 The INP function monitors the trigger switch status only when the trigger switch function
is assigned to a key (M1, M2, M3 or M4).

2 Using the INP function monitors the CS (CTS) signal status only when the direct-connect
interface is selected and its interface port (3-pole plug mini stereo jack) is arranged so that
the receive data signal RD is functionally regarded as CS signal.
7-12

I/O Facilities
Monitoring by the WAIT Statement
The WAIT statement monitors the input and output devices (I/Os) below. Unlike the INP
function, the WAIT statement makes the I/O devices idle while no entry occurs, saving power
consumption and increasing the battery service life. (Refer to Appendix D, I/O Ports.)

In a single WAIT statement, you can specify more than one I/O device if the same port number
applies. To monitor the keyboard buffer and the bar code buffer with a single WAIT statement,
for example, describe the program as follows.

OPEN “BAR:” AS #10 CODE “A:”

WAIT 0,&h03

This example sets the value of &h03 (00000011) to port 0, indicating that it keeps waiting
until either bit 0 or bit 1 becomes ON by pressing any key or by reading a bar code.

Table 7-3. WAIT Statement and I/O Devices

WAIT Statement I/O Devices

WAIT 0,&h01 Keyboard buffer status

WAIT 0,&h02 Bar-code buffer status

WAIT 0,&h04 Trigger switch status 1

WAIT 0,&h08 Receive buffer status

WAIT 0,&h10 TIMEA function

WAIT 0,&h20 TIMEB function

WAIT 0,&h40 TIMEC function

WAIT 0,&h80 CS (CTS) signal status 2

1 The WAIT function monitors the trigger switch status only when the trigger switch
function is assigned to a key (M1, M2, M3 or M4).

2 The WAIT statement monitors the CS (CTS) signal status only when the direct-
connect interface is selected and its interface port (3-pole plug mini stereo jack) is
arranged so that the receive data signal RD is functionally regarded as CS signal.
7-13

PDT 1100 Terminal Programmer’s Guide
7-14

I/O Facilities
7-15

PDT 1100 Terminal Programmer’s Guide
7-16

Chapter 8 Files

File Overview

Data Files and Device I/O Files
BASIC 3.0 treats data files and bar code device I/Os and communications device I/Os as files,
by assigning the specified names to them.

Note: Data files and user program files are stored in the user area of
memory.

Access Methods
To access data files or device I/O files, first use the OPEN statement to open those files. Input
or output data to/from the opened files by issuing statements or functions to them according
to their file numbers. Then, close those files using the CLOSE statement.

Table 8-1. File Type and File Name

File Type File Name Remarks

Data File filename.extension

drivename:filename.extension

Device I/O File BAR: Bar code device

Device I/O File COM: Communications device
8-1

PDT 1100 Terminal Programmer’s Guide
Data Files

Overview
Calculate the memory capacity available for data files by subtracting the memory space
occupied by both the system programs and user programs from the total RAM capacity. The
available memory capacity is the calculated RAM capacity plus the flash ROM capacity
calculated by subtracting the memory space occupied by user programs from the user area.
For the memory mapping, refer to Appendix F, Memory Area.

The FRE function checks the current occupation of the memory. The EOF function cannot be
used for data files.

Naming Files
The name of a data file generally contains filename.extension. The filename can have one
to eight characters; the extension can have one to three characters. The filename.extension
should be preceded by the drivename. The drivename is A: for specifying the RAM or B: for
flash ROM. If drivename is omitted, the default A: (RAM) applies. The following file names
cannot be used for data files since they are reserved for Easy Pack:

PACK1.DAT

PACK2.DAT

PACK3.DAT

PACK4.DAT

The extension can be omitted. In such a case, a period should be also omitted. The following
extensions cannot be used for data files:

.PD3

.FN3

.EX3

.FLD
8-2

Files
Structure of Data Files

Record
A data file is made up of a maximum of 32,767 records. A record is a set of data in a data
file and its format is defined by the FIELD statement. The maximum length of a record is 255
bytes including the number of the character count bytes (= the number of the fields).

When transferring data files, the PDT 1100 protocol/PDT 1100 Ir protocol prefixes a
character count byte in binary format to each data field.

Field
A record is made up of one or more fields. Data within the fields are treated as character
(ASCII) data. Each field precedes a character count byte in binary format, as described above.
Including that one byte, the maximum length of a field is 255 bytes. The following FIELD
statement defines a record which occupies a 28-byte memory area (13 + 5 + 10 bytes) for data
and a 3-byte memory area for three character count bytes. Totally, this record occupies not a
28-byte area but a 31-byte area in the memory.

FIELD #2,13 AS bardat$,5 AS keydat$,10 AS dt$

'1+13+1+5+1+10=31

When a data file is transmitted according to the PDT 1100 protocol, the following conditions
should be also satisfied:

" A record is made up of a maximum of 16 fields.

" The maximum length of a field is 254 bytes excluding a character count byte.

Data File Management by Directory Information
The Interpreter manages data files using the directory information stored in the system area
of the memory. The directory information, for example, contains the following:

filename.extension

Information of Each Field (Field length)

Number of Written Records

Maximum Number of Registrable Records
8-3

PDT 1100 Terminal Programmer’s Guide
Number of Written Records
The LOF function returns the number of records already written in a data file. If no record
number is specified in the PUT statement, the Interpreter assigns the current written record
number + 1 to the record.

PUT #1

Maximum Number of Registrable Records
You may declare the maximum number of records registrable in a data file using the RECORD
option in the OPEN statement, as shown below.

OPEN “work.DAT” AS #10 RECORD 50

FIELD #10,13 AS code$,5 AS price$

The above program allows you to write up to 50 records in the data file named work.DAT. If
the statement below is executed following the above program, an execution error occurs.

PUT #10,51

The maximum number of registrable records can be optionally specified only when you make
a new data file. If designated to the already existing data file, the specification will be ignored
without an execution error. Specifying the maximum number of registrable records does not
cause the Interpreter to reserve the memory area.

Programming for Data Files

Input/Output for Numeric Data

To write numeric data into a data file:

Use the STR$ function to convert the value of a numeric expression into a string.

To write -12.56 into a data file, for example, a field length of at least 6 bytes is required.
When using the FIELD statement, designate the sufficient field length; otherwise, data is lost
from the lowest digit when written to the field.

To read data to be treated as a numeric from a data file:

Use the VAL function to convert a string into a numeric value.
8-4

Files
Data Retrieval
The SEARCH function not only helps you make programs for data retrieval efficiently but also
makes the retrieval speed higher. The SEARCH function searches a designated data file for
specified data, and returns the record number where the search data is first encountered. If
none of the specified data is encountered, this function returns the value 0.

Deletion of Data Files
The CLFILE or KILL statement deletes the designated data file.

CLFILE erases only the data stored in a data file without erasing its directory information, and
resets the number of written records to 0 (zero) in the directory. This statement is valid only
to opened data files.

KILL deletes the data stored in a data file together with its directory information. This
statement is valid only to closed data files.

Program Sample with the CLFILE Statement
OPEN “work2.DAT” AS #1

FIELD #1,1 AS a$

CLFILE #1

CLOSE #1

Program Sample with the KILL Statement
CLOSE

KILL “work2.DAT”

Restrictions on Input/Output of Data Files
No INPUT#, LINE INPUT#, or PRINT# statement or INPUT$ function can access data files. To
access data files, use a PUT or GET statement. The following statements and functions cannot
be used for input and output into/from data files.

Statements: LSET and RSET

Functions: CVD, CVI, CVS, MKD$, MKI$, and MKS$

Note: If the PUT statement is executed for data files stored in the flash ROM,
an execution error (error code: 43H) occurs.
8-5

PDT 1100 Terminal Programmer’s Guide
Bar Code Device

Opening the Bar Code Device by OPEN “BAR:” Statement
The OPEN “BAR:” statement opens the bar code device. In this statement, you may specify the
following bar code types available in the PDT 1100.

Specifying Options in the OPEN “BAR:” Statement
You may also specify the options below for each bar code type in the OPEN “BAR:” statement.

! Check digit

! Read data length

! Start/stop character (only for NW7)

! Start character flag (only for universal product codes)

! Supplemental code (only for universal product codes).

Table 8-2. Bar Code Types Supported

Supported Bar Code Types Default Settings

Universal
product codes

EAN-13 No national flag specified.
Note: The EAN-13 and UPC-A bar codes may be wider than the
readable area of the scan window. For wider bars , pull the scan
window away from the bar code so that the entire bar code is in
the illumination range of the LED. (No double-touch reading
feature is supported.)

EAN-8

UPC-A

UPC-E

Interleaved 2 of 5 (ITF) No read data length specified. No check digit.

Standard 2 of 5 (STF) No read data length specified. No check digit. No start/stop
character. Standard data compression supported.

Codabar (NW7) No read data length specified. No check digit. No start/stop
character.

CODE39 No read data length specified. No check digit.

CODE93 No read data length specified.

CODE128 No read data length specified. Note: Specifying the Code 128
also enables EAN-128.
8-6

Files
Bar Code Buffer
The bar code buffer stores input bar code data. It is occupied by one operator entry job and
can contain up to 99 characters. Check whether the bar code buffer stores bar code data using
the EOF, INP, a LOC functions or the WAIT statement. The INPUT# and LINE INPUT# statements
and the INPUT$ function reads bar code data stored in the buffer into a string variable.

Programming for Bar Code Device
Use the INPUT# or LINE INPUT# statement, or the INPUT$ function to read bar code data from
the bar code buffer into a string variable.

Code Mark
The MARK$ function allows you to check the code type and the length of the bar code data.
This function returns a total of three bytes: one byte for the code mark (denoting the code
type) and two bytes for the data length.

Multiple Code Reading
Activate the multiple code reading feature which reads more than one bar code type while
identifying them by designating the desired bar code types following the CODE in the OPEN
“BAR:” statement.

Read Mode of the Trigger Switch
Use the OPEN “BAR:” statement to select the read mode of the trigger switch.

To check whether the trigger switch is pressed or not, use the INP function or the WAIT
statement, as shown below.

trig% = INP(0) AND

&h04

Table 8-3. Trigger Switch

Read Mode OPEN: “BAR:” Statement Remarks

Momentary Switching Mode OPEN “BAR:M”...

Auto-off Mode OPEN “BAR:F”... Default

Alternate Switching Mode OPEN “BAR:A”...

Continuous Reading Mode OPEN “BAR:C”...
8-7

PDT 1100 Terminal Programmer’s Guide
If the value of the trig% is 04h, the trigger switch is kept pressed; if 00h, it is released.

Generation of Check Digit
Specifying a check digit in the OPEN “BAR:” statement causes the Interpreter to check bar
codes. If necessary, use the CHKDGT$ function for generating a check digit of bar code data.

Control of Reading Confirmation LED and Beeper
When the PDT 1100 has read a bar code successfully, the reading confirmation LED
illuminates green. Activate or deactivate the confirmation LED function and the beeper
function in the OPEN “BAR:” statement.

! To turn on the reading confirmation LED and sound the beeper:
OPEN “BAR:B” AS #1 CODE “A”

! To sound the beeper without turning on the reading confirmation LED:
OPEN “BAR:BL” AS #1 CODE “A”

Communications Device

Hardware Required for Data Communications
The PDT 1100 uses an IR beam to communicate with a host computer having an IR port. To
communicate with the host computer having no IR interface port, the following hardware is
required:

! PDT 1100

! Host computer

! Optical communications cradle (CRD 1100)

! RS-232C interface cable.

Note: No cradle is required if the PDT 1100 and the host computer are
directly connected with each other via the direct-connect interface.
For the communications specifications, refer to the PDT 1100 User's
Manual.
8-8

Files
Programming for Data Communications

Setting the Communications Parameters
Use the OPEN “COM:” statement to set the communications parameters.

For Optical Interface

Parameters other than the transmission speed are fixed (Character length = 8 bits, Parity =
None, Stop bit length = 1 bit), since the physical layer of the unit's optical interface complies
with the IrDA-SIR 1.0.

For Direct-Connect Interface

Overview of Communications Protocols
The PDT 1100 supports the two communications protocols—PDT 1100 protocol, and PDT
1100 IR protocol.

PDT 1100 Protocol
The XFILE statement allows you to upload or download a data file. This file transmission uses
the PDT 1100 protocol, which is also used in System Mode or Easy Pack. For the
communications specifications of the PDT 1100 protocol, refer to the PDT 1100 Terminal
Product Reference Guide.

Communications Parameters Effective Setting Default

Transmission speed (bps) 115200, 57600, 38400, 19200, 9600, or 2400 9600

Communications Parameters Effective Setting Default

Transmission speed (bps) 38400, 19200, 9600, 4800, 2400, 1200, 600, or 300 9600

Character length 7 or 8 bits 8 bits

Parity None, even, or odd None

Stop bit length 1 or 2 bits 1 bit
8-9

PDT 1100 Terminal Programmer’s Guide
Primary Station and Secondary Station

Define the primary station and the secondary station as follows:

! When uploading data files

Primary station: PDT 1100

Secondary station: Host computer

! When downloading data files

Primary station: Host computer

Secondary station: PDT 1100

Protocol Functions

To modify a transmission header or terminator in a send data, use the following protocol
functions:

For a header: SOH$ or STX$

For a terminator: ETX$

PDT 1100 IR Protocol
The PDT 1100 also supports the PDT 1100 IR protocol which is used for file transmission
via the optical interface (infrared port). If you select the PDT 1100 Ir protocol by using the
OUT statement (Port No. &h6060) or in System Mode, you can upload or download a data
file with the XFILE statement. The PDT 1100 Ir protocol is also used in System Mode or Easy
Pack. For the communications specifications of the PDT 1100 Ir protocol, refer to the PDT
1100 User's Manual.

Primary station and secondary station

Define the primary station and the secondary station as follows:

! When uploading data files

Primary station: PDT 1100

Secondary station: Host computer

! When downloading data files

Primary station: Host computer

Secondary station: PDT 1100
8-10

Files
Protocol functions

In the PDT 1100 Ir protocol, you cannot change the values of the headers and terminator
with the protocol functions in BASIC 3.0.

File Transfer Tools
For the MS-DOS personal computers and Windows version which are available for Transfer
Utility and the operating procedure of Transfer Utility, refer to the Transfer Utility Guide.

Note: If you have modified transmission headers or terminator to any other
character codes by using the protocol functions, Transfer Utility is no
longer available.

Ir-Transfer Utility C
Ir-Transfer Utility C is optionally provided on diskette. It is available in two versions: MS-
DOS version and Windows version. It supports the PDT 1100 Ir protocol and allows you to
upload or download user program files and data files between the host and the PDT 1100
using an IR beam when invoked by the XFILE statement. This utility can also transfer user
program files and data files to/from System Mode.

For the MS-DOS personal computers and Windows versions which are available for Ir-
Transfer Utility and the operating procedure of Ir-Transfer Utility, refer to the PDT 1100
Terminal Ir-Transfer Utility Guide.
8-11

PDT 1100 Terminal Programmer’s Guide
8-12

Chapter 9 Event Polling and Error/Event Trapping

Overview

BASIC 3.0 supports event polling, error trapping and event trapping.

Event Polling
Causes programs to monitor the input devices for occurrence of events.

Error Trapping
Traps an execution error and handles it by interrupt. If an execution error occurs when this
trapping ability is disabled, the Interpreter terminates the current user program while
showing the error message.

Event (of Keystroke) Trapping
Traps a particular keystroke (caused by pressing a specified function key) to handle it by
interrupt.

Event Polling

Programming Sample
The program below shows an event polling example which monitors the bar code reader and
the keyboard for occurrence of events. This example uses the EOF and INKEY$ functions to
check the data input for the bar code reader and the keyboard, respectively.

OPEN “BAR:” AS #1 CODE “A”

loop
9-1

PDT 1100 Terminal Programmer’s Guide
WAIT 0,3

IF NOT EOF(1) THEN

GOSUB barcod

ENDIF

k$=INKEY$

IF k$<>“” THEN

GOSUB keyin

ENDIF

GOTO loop

barcod

BEEP

LINE INPUT #1,dat$

PRINT dat$

RETURN

keyin

:

:

RETURN

Listed below are the I/O devices which event polling can monitor.

Monitoring with the INP Function
Combining the INP function with the above functions enables more detailed programming for
event polling. For the INP function, refer to Appendix D, I/O Ports.

Table 9-1. I/O Devices

I/O Devices Monitor Means Events

Keyboard INKEY$ function Input of one character from the keyboard

Bar code
reader

EOF or LOC function Presence/absence of bar code data input or the
number of read characters (bytes)

Receive buffer EOF, LOC, or LOF function Presence/absence of receive data or the number
of received characters (bytes)

Timer TIMEA, TIMEB, or TIMEC function Timer count-up
9-2

Event Polling and Error/Event Trapping
Error Trapping

If an execution error occurs during a program, error trapping causes an interrupt upon
completion of the machine instruction to transfer control from the current program to the
error-handling routine specified by a label. If an execution error occurs when this trapping
ability is disabled, the Interpreter terminates the current user program while displaying the
error message below.

Error message sample:

ERL=38A4 ERR=34

This message indicates that an execution error occurred at address 38A4h and its error code
is 34h. Both the address and error code are expressed in hexadecimal notation. The address
corresponds to the address in the program list output by the Compiler, so you can pinpoint
the program line where the execution error occurred. The error code 34h (52 in decimal
notation) means that the user program attempted to access a file not opened. The ERL and ERR
functions described in an error-handling routine return the same values, 38A4h and 34h,
respectively. Refer to Execution Errors on page A-1.

Note: After handling trapped errors by the error-handling routine, do not
use the RESUME statement to pass control back to the main routine with
the different stack level. The return address from the user-defined
functions or sub-routines are left on the stack, causing an execution
error due to stack overflow. To prevent this, transfer control to the
routine which caused the interrupt in order to match the stack level,
then jump to another desired routine.

Programming for Trapping Errors
To trap errors, use the ON ERROR GOTO statement to designate the error-handling routine (to
which control is to be transferred if an execution error occurs) by the label.

ON ERROR GOTO err01

:

:

(Main routine)

:

:

END
9-3

PDT 1100 Terminal Programmer’s Guide
err01

(Error-handling routine)

PRINT “*** error ***”

PRINT ERR,HEX$(ERL)

RESUME NEXT

If an execution error occurs in the main routine, the above program executes the error-
handling routine specified by label err01 in the ON ERROR GOTO statement. In the error-handling
routine, the ERL and ERR functions pinpoint the address where the error occurred and the
error code, respectively.

Note: According to the error location and error code, troubleshoot the
programming error and correct it for proper error handling.

The RESUME statement may pass control from the error-handling routine back to any specified
statement as listed below.

Event (of Keystroke) Trapping

If the function key previously specified for keystroke trapping is pressed, event trapping cause
an interrupt to transfer control from the current program to the specified event-handling
routine. This trapping facility checks whether the function key is pressed or not between
every execution of the statements.

Programming for Trapping Keystrokes
To trap keystrokes, use both the ON KEY...GOSUB and KEY ON statements. The ON KEY...GOSUB
statement designates the key number of the function key to be trapped and the event-handling
routine (to which control is to be transferred if a specified function key is pressed) in its label.
The KEY ON statement activates the designated function key. This trapping cannot take effect

Table 9-2. RESUME Statement

RESUME Statement Description

RESUME or RESUME 0 Resumes program execution with the statement that caused the error.

RESUME NEXT Resumes program execution with the statement immediately following
the one that caused the error.

RESUME label Resumes program execution with the statement designated by label.
9-4

Event Polling and Error/Event Trapping
until both the ON KEY...GOSUB and KEY ON statements have been executed. The keystroke of an
unspecified function key or numerical key cannot be trapped. The following program sample
traps keystroke of function key F1, F2, or F3 (these keys are numbered 1, 2, and 3,
respectively).

ON KEY (1) GOSUB sub1

ON KEY (2) GOSUB sub2

ON KEY (3) GOSUB sub3

KEY (1) ON

KEY (2) ON

KEY (3) ON

:

:

(Main routine)

:

:

END

sub1

(Event-handling routine 1)

RETURN

sub2

(Event-handling routine 2)

RETURN

sub3

(Event-handling routine 3)

RETURN

The RETURN statement in the event-handling routine returns control to the statement
immediately following that statement where the keyboard interrupt occurred. Even if a
function key is assigned a null string by the KEY statement, pressing the function key causes a
keyboard interrupt when the KEY ON statement activates the function key. If function keys
specified for keystroke trapping are pressed during execution of the following statements or
functions relating keyboard input, this trapping facility operates as described below.

Table 9-3. Statement and Function

Statements or
Functions

Keystroke Trapping

INPUT statement Ignores the entry of the pressed key and causes no interrupt.

LINE INPUT statement Same as above.
9-5

PDT 1100 Terminal Programmer’s Guide
INPUT$ function Same as above.

INKEY$ function Ignores the entry of the pressed key, but causes an interrupt.

Table 9-3. Statement and Function (Continued)

Statements or
Functions

Keystroke Trapping
9-6

Chapter 10 Statement Reference

Introduction

This chapter provides detailed descriptions of the statements used to program the PDT 1100
terminal.
10-1

PDT 1100 Terminal Programmer’s Guide
APLOAD

Description
Loads a user-defined font in the single-byte ANK* mode (*ANK: Alphanumeric and
Katakana).

Syntax

Notes
APLOAD loads a user-defined font data defined by fontarrayname to the user font area
specified by characode.

! To display user-defined fonts loaded by the APLOAD, use the PRINT statement in the
single-byte ANK mode. If you attempt to display an undefined character code, a
space character appears.

! In the PDT 1100, if the small-size font is selected, user-defined fonts loaded by the
APLOAD are condensed into small size (6 dots wide by 6 dots high) for display. For
the generating procedure of the small-sized user-defined fonts, refer to Display Mode
and Letter Size on page C-4.

! The loaded user-defined fonts are in effect when the user program which loaded
those fonts is running and during execution of the successive user programs chained
by the CHAIN statement.

Statement Name: ANK Pattern LOAD Type: I/O Statement

APLOAD characode, fontarrayname

where:

characode = A numeric expression which returns a value from 128
(80h) to 159 (9Fh).

fontarrayname = An array integer variable name.

Note: Do not specify parentheses () or subscripts which
represent a general array as shown below or a syntax
error results.

APLOAD &H80,cp%() 'error

APLOAD &H80,cp%(5) 'error
10-2

Statement Reference
! If you issue more than one APLOAD statement specifying a same character code, the
last statement takes effect.

! The Interpreter refers to the array data defined by fontarrayname only when it
executes the APLOAD statement. Once a user program has finished loading the user
font, changing the data in the array or deleting the array itself (by the ERASE
statement) does not affect the loaded user font.

! An array integer variable – a work array, register array, or common array – for
fontarrayname should be declared by the DIM, DEFREG, or COMMON statement,
respectively.

DIM cp0%(5)

DEFREG cp1%(5)

COMMON cp2%(5)

The array variable should be one-dimensional and have at least six elements. Each
element data should be an integer and stored in the area from the first to 6th elements
of the array.

Syntax Errors

Execution Errors

Error Code and Message Meaning

error 71: Syntax error No fontarrayname is defined.

fontarrayname has an array string variable.

fontarrayname includes parentheses ().

fontarrayname includes subscripts.

Error Code Meaning

05h Parameter out of the range:

! characode is out of the specified range

! The array structure is not correct.

08h Array not defined
10-3

PDT 1100 Terminal Programmer’s Guide
Example
DIM cp%(5)

cp%(0)=&H00

cp%(1)=&H08

cp%(2)=&H1C

cp%(3)=&H3E

cp%(4)=&H7F

cp%(5)=&H00

APLOAD &H80,cp%

PRINT CHR$(&H80)

Figure 10-1. Array Elements

Reference

cp%(0) cp%(1) cp%(2) cp%(3) cp%(4) cp%(5) Bit in each array
element

$ # 0 (LSB)

$ $ # 1

$ $ $ # 2

$ $ $ $ # 3

$ $ $ # 4

$ $ # 5

$ # 6

7 (MSB)

Statements COMMON, DEFREG, DIM, KPLOAD, PRINT, and SCREEN
10-4

Statement Reference
BEEP

Description
Sounds the beeper.

Syntax

Notes
BEEP sounds the beeper to the following specifications:

! at the pitch of the sound in Hz specified by frequency

! during the length of time specified by onduration

! at the intervals of the length of time specified by offduration

! by the number of repetitions specified by repetitioncount.

! Defaults:

Statement Name: Beep Type: I/O Statement

BEEP[onduration[,offduration[,repetitioncount[,frequency]]]]

where:

onduration,

offduration , and
repetitioncount = Numeric expressions, each of which returns a value

from 0 to 255.

frequency = A numeric expression which returns a value from 0 to
32,767.

onduration and offduration: 1 (100 msec.)

repetitioncount: 1

frequency: 4337 Hz*

(*Same as when 2 is set to frequency)
10-5

PDT 1100 Terminal Programmer’s Guide
! Setting frequency to 0, 1, or 2 produces the special beeper effects listed below.

If frequency is set to 0, 1, or 2 (or if it is omitted), adjust the beeper volume on the
LCD when powering on the PDT 1100. (For the adjustment procedure, refer to the
PDT 1100 Terminal Product Reference Guide for details.)
If you set a value other than 0, 1, and 2, the beeper volume is set to the maximum
and is not adjustable.

! Specifying a value of 3 through 61 to frequency deactivates the beeper.

! Setting onduration to 0 deactivates the beeper.

! Setting onduration to a value other than 0 and offduration to 0 causes the PDT
1100 to beep continuously.

! Setting onduration to a value other than 0 and offduration to a value other than
0 and repetitioncount to 0 deactivates the beeper.

! The following table specifies the relationship between frequencies and the musical
scale.

Table 10-1. Beep Settings

 frequency Setting PDT 1100 Tone Statement example

0 1033 Hz Low-pitched BEEP ,,,0

1 2168 Hz Medium-pitched BEEP ,,,1

2 4337 Hz High-pitched BEEP ,,,2

Table 10-2. Relationship of Frequency to Musical Scale

Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6

do 130 Hz 261 Hz 523 Hz 1046 Hz 2093 Hz 4186 Hz

do# 138 277 554 1108 2217

re 146 293 587 1174 2349

re# 155 311 622 1244 2489

mi 164 329 659 1318 2637

fa 174 349 698 1396 2793

fa# 184 369 739 1479 2959
10-6

Statement Reference
! The subsequent instruction proceeds immediately after the BEEP instruction, even if
the beeper is still sounding.

! If a second BEEP instruction occurs while the beeper is still sounding, the first BEEP
is cancelled and the second BEEP instruction executes.

Syntax Error

Execution Error

sol 195 391 783 1567 3135

sol# 207 415 830 1661 3322

la 220 440 880 1760 3520

la# 233 466 932 1864 3729

si 246 493 987 1975 3951

Error Code and Message Meaning

error 71: Syntax error The number of parameters or commas (,) exceeds the limit.

Error Code Meaning

05h Parameter out of range.

Table 10-2. Relationship of Frequency to Musical Scale (Continued)

Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6
10-7

PDT 1100 Terminal Programmer’s Guide
Example
BEEP

bon%,boff%,count%,helz%

BEEP bon%,boff%,count%

BEEP bon%,boff%,,helz%

BEEP bon%,,count%,helz%

BEEP ,boff%,count%,helz%

BEEP bon%,boff%

BEEP bon%,,count%

BEEP ,boff%,count%

BEEP bon%,,,helz%

BEEP ,boff%,,helz%

BEEP ,,count%,helz%

BEEP bon%

BEEP ,boff%

BEEP ,,count%

BEEP ,,,helz%

BEEP
10-8

Statement Reference
CALL

Description
Calls an FN3 function.

Syntax

Notes
CALL calls a function specified by functionnumber from a file specified by “filename” and
assigns the parameter specified by data to the called function.

! “filename” is the name of a FN3 function. (For FN3 functions, refer to the BASIC
3.0 Extension Library Manual). The extension of the file name is.FN3.

! functionnumber is the function number of an FN3 specified by “filename”.

! data is a variable for the function number of the FN3 (that is, it is used as an
argument to the FN3 function).

! When specifying an array to data, add a pair of parentheses containing nothing as
shown below.

CALL “_xxx.FN3” 1 DATA ()

Statement Name: Call Type: Flow Control Statement

Syntax 1
CALL “filename” functionnumber [data [,data]...]

Syntax 2
CALL “drivename: filename” functionnumber [data [,data]...]

where:

“filename” and
“drivename:filename” = A string expression.

functionnumber = An integer constant.

data = A string variable or a numeric variable.
10-9

PDT 1100 Terminal Programmer’s Guide
! drivename should precede filename. drivename is A: or B: for the RAM or flash
ROM, respectively. If drivename is omitted, the default drive A: applies.

Note: To use the CALL statement, download the extension programs from
the BASIC 3.0 Extension Library sold separately. (The BASIC 3.0
Extension Library is supported by the PDT 1100.)

Syntax Error

Execution Error

Error Code and Message Meaning

error 3: “” missing No double quote precedes or follows filename or
drivename:filename.

error 71: Syntax error filename or drivename:filename is not enclosed in double
quotes.

Error Code Meaning

02h Syntax error (“filename” or “drivename:filename” is incorrect syntax or
the extension is not .FN3.)

1Fh functionnumber out of the range.

35h File not found.
10-10

Statement Reference
CHAIN

Description
Transfers control to another program.

Syntax

Notes
CHAIN transfers control to a program specified by “programfilename”. That is, it
terminates the current program (first program) and closes all files being opened. Then, it
initializes environments for the chained-to user program (second program) and executes it.

! “programfilename” is an executable object program compiled by the Compiler
and has the extension .PD3, as shown below. The extension .PD3 cannot be omitted.

CHAIN “prog1.PD3”

! Download an executable object program (second program) to the PDT 1100 before
the CHAIN instruction is executed.

! You can pass variables from the current program to the chained-to program (second
program) with the COMMON statement.

Statement Name: Chain Type: Flow Control Statement

Syntax 1
CHAIN “programfilename”

Syntax 2
CHAIN “drivename: programfilename”

where:

“programfilename” and
“drivename:programfilename” = A string expression.
10-11

PDT 1100 Terminal Programmer’s Guide
! User-defined fonts loaded by the APLOAD and KPLOAD statements and the setting
values assigned by the KEY statement and COUNTRY$ function remain effective in
chained-to programs.

! The ON ERROR GOTO statement cannot trap errors (while showing the error code 07h
which means “Insufficient memory space”) that occurred during initialization of
chained-to programs.

! drivename should precede program-filename.
drivename is A: or B: for the RAM or flash ROM, respectively. If drivename is
omitted, the default drive A: applies.

Syntax Error

Execution Error

Reference

Error Code and Message Meaning

error 3: “” missing No double quote precedes or follows programfilename or
drivename:programfilename.

error 71: Syntax error programfilename or drivename:programfilename is not
enclosed in double quotes.

Error Code Meaning

02h Syntax error (“programfilename” or “drivename:programfilename” is in
incorrect syntax or the extension is not .PD3.)

07h Insufficient memory space (the first program uses too many variables.)

35h File not found (the file specified by “programfilename” does not exist.)

41h File damaged.

Statements APLOAD, COMMON, and KPLOAD
10-12

Statement Reference
CLFILE

Description
Erases the data stored in a data file.

Syntax

Notes
CLFILE erases data in the data file specified by filenumber and resets the number of written
records in the directory to zero.

! The memory area freed by CLFILE can be used for other data files or user program
files.

! User programs can no longer refer to the erased data.

Syntax Error

Statement Name: Clear FILE Type: File I/O Statement

CLFILE [#] filenumber

where:

filenumber = A numeric expression which returns a value from 1 to 16.

Error Code and Message Meaning

error 71: Syntax error filenumber is missing.
10-13

PDT 1100 Terminal Programmer’s Guide
Execution Error

Example
OPEN “master.Dat” AS #1

FIELD #1,20 AS bar$,10 AS ky$

CLFILE #1

CLOSE #1

Error Code Meaning

34h Bad file name or number (filenumber of an unopened file specified.)

36h Improper file type (filenumber of a file other than data files specified.)

3Ah File number out of range.

43h Not allowed to access the data in the flash ROM.
10-14

Statement Reference
CLOSE

Description
Closes file(s).

Syntax

Notes
CLOSE closes file(s) specified by filenumber(s).

! The file number(s) closed by the CLOSE instruction becomes available for a
subsequent OPEN instruction.

! If no file number is specified, the CLOSE instruction closes all opened data files and
device I/O files.

! Specifying the unopened file number does not cause an operation or execution error.

Syntax Error

Statement Name: Close Type: File I/O Statement

CLOSE [[#] filenumber[,[#] filenumber...]]

where:

filenumber = A numeric expression which returns a value from 1 to 16.

Error Code and Message Meaning

error 71: Syntax error filenumber is missing.
10-15

PDT 1100 Terminal Programmer’s Guide
Execution Error

Reference

Error Code Meaning

3Ah File number out of range.

Statements END and OPEN
10-16

Statement Reference
CLS

Description
Clears the LCD screen.

Syntax

Notes
CLS clears the liquid crystal display (LCD) screen and returns the cursor to the upper left
corner of the screen.

! The CLS instruction does not affect the screen mode or the character attribute (the
normal or reversed display), but it turns off the cursor.

! Execution of the CLS instruction when the system status is displayed on the LCD
clears the VRAM area assigned to the system status area of the LCD but does not
erase the system status displayed.

Statement Name: CLear Screen Type: I/O Statement

CLS
10-17

PDT 1100 Terminal Programmer’s Guide
COMMON

Description
Declares common variables for sharing between user programs.

Syntax

Notes
COMMON defines common variables for sharing them when one program chains to another.

! Common variables defined by COMMON are effective as long as programs chained by
the CHAIN statement are running.

! A COMMON instruction can appear anywhere in a source program.

! All of the variable name, type, quantity, and definition order of the common
variables used in the current program should be identical with those in the chained-
to programs. If not, variables having indefinite values are passed.

! Up to two-dimensional array variables can be defined. You can specify a subscript
ranging from 0 to 254 for an array variable.

! The total variable data size which can be passed between chained programs is 6
kilobytes including work variables.

! The size of an array data is equal to the element size multiplied by the number of
elements.

! You can specify the maximum string length within the range from 1 to 255 to a string
variable.

! The default length of a non-array string variable is 40.

! The default length of an array string variable is 20.

Statement Name: Common Type: Declartive Statement

COMMON commonvariable[,commonvariable...]

where:

commonvariable = A non-array integer variable, a non-array real variable,
a non-array string variable, an array integer variable,
an array real variable, or an array string variable.
10-18

Statement Reference
Syntax Error

Execution Error

Example
COMMON a%,b,c$,d%(2,3),e(4),f$(5)

Reference

Error Code and Message Meaning

error 5: Variable name
redefinition

A same variable name is declared twice in a program.

error 73: Improper
string length

The length of a string variable is out of the range from 1 to 255.

Error Code Meaning

07h Insufficient memory space (COMMON statement defines too much data.)

Statements CHAIN
10-19

PDT 1100 Terminal Programmer’s Guide
CURSOR

Description
Turns the cursor on and off.

Syntax

Notes
When a user program is initiated, the cursor is set to OFF. CURSOR ON turns on the cursor for
keyboard entry operation by the INKEY$ function. CURSOR OFF turns off the cursor.

! The cursor size depends upon the screen mode (the single-byte ANK mode or two-
byte Kanji mode) and the display font size (standard- size or small-size). If the
standard-size font is selected, the cursor appears as 6 dots wide by 8 dots high in the
single-byte ANK mode, and as 8 dots wide by 16 dots high in the two-byte Kanji
mode. If the small-size font is selected, the cursor appears as 6 dots wide by 6 dots
high in the single-byte ANK mode, and as 6 dots wide by 12 dots high in the two-
byte Kanji mode.

! The cursor shape specified by the most recently executed LOCATE instruction takes
effect.

! After execution of LOCATE ,,0 which makes the cursor invisible, the CURSOR ON
instruction cannot display the cursor. Use the LOCATE statement to display the cursor.

Statement Name: Cursor Type: I/O Statement

CURSOR {ON|OFF}
10-20

Statement Reference
Syntax Error

Reference

Error Code and Message Meaning

error 71: Syntax error Specification other than ON and OFF is described.

Statements INPUT, LINE INPUT, and LOCATE

Functions INPUT$ and INKEY$
10-21

PDT 1100 Terminal Programmer’s Guide
DATA

Description
Stores numeric and string literals for READ statements.

Syntax

Notes
DATA stores numeric and string literals so that READ instructions can assign them to variables.

! A DATA instruction can appear anywhere in a source program.

! A string data should be enclosed with a pair of double quotation marks (").

! You may have any number of DATA instructions in a program. The READ instruction
assigns data stored by DATA instructions in the same order that those DATA
instructions appear in a source program.

! Using the RESTORE statement can read a same DATA statement more than once.

! You can specify more than one literal in a program line (within 512 characters)
by separating them with commas (,).

! You can describe DATA statements also in included files.

Statement Name: Data Type: Declarative Statement

DATA literal[,literal...]

where:

literal = A numeric or string constant.
10-22

Statement Reference
Syntax Error

Reference

Error Code and Message Meaning

error 3: “” missing No double quote precedes or follows a string data.

Statements READ, REM, RESTORE and $INCLUDE
10-23

PDT 1100 Terminal Programmer’s Guide
DEFREG

Definition
Defines register variables.

Syntax

Statement Name: DEFine REGister Type: Declarative Statement

DEFREG registerdefinition[,registerdefinition ...]

where:

registerdefinition = non-arraynumericvariable [= numericconstant]

DEFREG n1%=10

DEFREG n2=12.5

arraynumericvariable(subscript)
[= numericinitialvaluedefinition]

DEFREG n3(5,6)

non-arraystringvariable[[stringlength]]
[= stringconstant]

DEFREG s1$=“abc123”

DEFREG s2$[6]=“abc123”

arraystringvariable(subscript)[[stringlength]
]
[= stringinitialvaluedefinition]

DEFREG s2$(1,3)[16]

subscript

For one-dimensional: integerconstant

DEFREG n4%(3)

For two-dimensional: integerconstant,
integerconstant

DEFREG n5%(4,5)
10-24

Statement Reference
Notes
DEFREG defines non-array or array register variables.

! A DEFREG instruction can appear anywhere in a source program.

! Up to 2-dimensional array variables can be defined.

! For both non-arraystringvariable and arraystringvariable, the string
length can be specified.

Where integerconstant is a value from 0 to
254.

numericinitialvaluedefinition

For one-dimensional: {numericconstant[,
numericconstant...]}

DEFREG

n6%(3)={9,8,7,6}

For two-dimensional:
{{ numericconstant[,numericconstant...]},
{ numericconstant[,numericconstant...]} ...}

DEFREG

n7(1,2)={{10,11,12},{13,14,15}}

stringinitialvaluedefinition

For one-dimensional: { stringconstant[,
stringconstant...]}

DEFREG

s3$(3)={“a”,“bc”,“123”,“45”}

For two-dimensional: {{ stringconstant[,
stringconstant...]}, { stringconstant[,
stringconstant...]} ...}

DEFREG

s4$(1,1)={{“a”,“b”},{“c”,“1”}

stringlength = An integer constant from 1 to 255.
10-25

PDT 1100 Terminal Programmer’s Guide
! Defaults:

! The memory area for register variables is allocated in user program files in the
memory. Register variables, therefore, are always updated. An uploaded user
program, for example, contains the updated register variables if defined.

! The total number of bytes allowable for register variables is 64 kilobytes.

! You can specify an initial value to an array variable by enclosing it in braces { }. No
comma (,) is allowed for terminating the list of initial values.
If the number of the specified initial values is less than that of the array elements or
if no initial value is specified, Compiler sets a zero (0) or a null string as an initial
value for a numeric variable or a string variable of the array elements not assigned
initial values, respectively.

Syntax Error

stringlength for non-array variables: 40 characters

stringlength for array variables: 20 characters

Error Code and Message Meaning

error 6: Variable name
redefinition

A same register variable name is declared twice in a program.

error 71: Syntax error stringlength is not an integer constant.
The number of the specified initial values is greater than that of
the array elements.
The list of initial values is terminated with a comma.
The type of the specified variable does not match that of its
initial value. (note that a real variable can have an integer
constant as an initial value.)
subscript is not an integer constant.

error 73: Improper
string length

stringlength is out of range.

error 74: Improper
array element number

subscript is out of range.

error 75: Out of space
for register variable
area

Definition by DEFREG exceeds the register variable area.
10-26

Statement Reference
Execution Error

Examples

Example 1: Valid DEFREG statements
DEFREG a,e$

DEFREG b=100,c(10),d$(2,4)[10]

DEFREG bps$=“19200”

DEFREG a%(2)={1,2}

DEFREG a%(2)={1,,3}

DEFREG a%(2)={,,3}

DEFREG b%(1,1)={{},{1,2}}

DEFREG b%(1,1)={,{1,2}}

DEFREG b%(1,1)={{1,2}}

Example 2: Position of elements in an array
DEFREG a%(1,1)={{1},{,3}}

The elements of the above array have the following initial values:

a%(0,0) : 1

a%(0,1) : 0

a%(1,0) : 0

a%(1,1) : 3

error 77: Initial
string too long

The dimension of the specified array variable does not match
that of its initial value.
The number of initial value elements for the specified register
string variable is greater than its string length.

error 83: “)” missing No closing parenthesis follows subscript.

error 84: “]” missing No closing square bracket follows stringlength.

error 90: “{” missing No opening brace precedes the initial value.

Error Code Meaning

09h Subscript out of range (an array referred to is different from a defined array
in dimension.)
10-27

PDT 1100 Terminal Programmer’s Guide
DEFREG b$(1,1)[3]={,{“123”}}

The elements of the above array have the following initial values:

b$(0,0) : “”

b$(0,1) : “”

b$(1,0) : “123”

b$(1,1) : “”

Example 3: DEFREG statements causing syntax errors
DEFREG c%(2)={1,2,3,4}

DEFREG d%(2)={1,2,}

DEFREG e%(1,1)={{,},{1,2}}

DEFREG f%(1,1)={{1,2},}

Reference

Statements DIM
10-28

Statement Reference
DEF FN (Single-line form)

Definition
Names and defines a user-created function.

Syntax

Statement Name: DEFine FuNction Type: User-created Function Definition
Statement

Syntax 1 (Defining a numeric function)
DEF FN functionname[(dummyparameter[,dummyparameter ...])]=expression

Syntax 2 (Defining a string function)
DEF FN functionname[(dummyparameter[,dummyparameter...])] [[stringlength]]= expression

Syntax 3 (Calling the function)
FN functionname[(realparameter[,realparameter ...])]

where:

functionname = For numerics

functionname% = Integer function name
functionname = Real function name

For strings

functionname$ = Character function name
where the FN can be lowercase.

dummyparameter = A non-array integer variable, a non-array real variable,
or a non-array string variable.

stringlength = An integer constant having a value from 1 to 255.

expression and
realparameter = A numeric or a string expression.
10-29

PDT 1100 Terminal Programmer’s Guide
Notes
DEF FN creates a user-defined function.

! Definition of a user-defined function should preceed a calling statement of the user-
defined function in a source program.

! You cannot define the same function name twice.

! The DEF FN statement should not be defined in the block-structured statements
(FOR...NEXT, IF...THEN...ELSE...END IF, SELECT...CASE...END SELECT, and
WHILE...WEND), in the error-handling routine, event-handling routine, or in the
subroutines.

! DEF FN functions cannot be recursive.

! The type of functionname should match that of the function definition
expression.

! In defining a character function, you can specify the maximum stringlength. If its
specification is omitted, the default value of 40 characters takes effect.

! dummyparameter, which corresponds to the variable having the same name in the
function definition expression, is a local variable valid only in that expression.
Therefore, if a variable having the same name as dummyparameter is used outside
DEF FN statement or used as a dummyparameter of any other function in the same
program, it is treated independently.

! expression describes some operations for the user-defined function. It should be
within one program line including definition described left to the equal sign.

! expression can call other user-defined functions. You can nest DEF FN instructions
to a maximum of 10 levels.

! If variables other than dummyparameter(s) are specified in expression, they is
treated as global variables whose current values are available.

! stringlength should be enclosed with a pair of square brackets [].

FN functionname calls a user-defined function.

! The number of realparameters should be equal to that of dummyparameters, and
the types of the corresponding variables used in those parameters should be identical.

! If you specify a global variable in realparameter when calling a user-defined
function, the user-defined function cannot update the value of the global variable
because all realparameters are passed not by address but by value “Call-by-
value”.
10-30

Statement Reference
Syntax Error

When defining a user-defined function

When calling a user-defined function

Error Code and Message Meaning

error 61: Cannot use
DEF FN in control
structure

The DEF FN statement is defined in other block-structured
statements such as FOR and IF statements.

error 64: Function
redefinition

Same function name defined twice.

error 65: Function
definitions exceed 200

error 66: Arguments
exceed 50

error 71: Syntax error functionname is an integer function name, but expression is a
real type. (if functionname is a real function name and
expression is an integer type, no error occurs.)
stringlength is out of range.
stringlength is not an integer constant.

Error Code and Message Meaning

error 68: Mismatch
argument type or number

The number of real parameters is not equal to that of the dummy
parameters.
dummyparameter was an integer variable in defining a function,
but realparameter is a real type in calling the function. (if
dummyparameter was a real variable in defining a function and
realparameter is an integer type, then no error occurs.)

error 69: Function
undefined

Calling of a user-defined function precedes the definition of the
user-created function.
10-31

PDT 1100 Terminal Programmer’s Guide
Execution Error

Example

Example 1:
DEF FNadd(a%,b%)=a%+b%

PRINT FNadd(3,5)

8

Example 2:
DEF FNappend$(a$,b$)[80]=a$+b$

PRINT FNappend$(“123”,”AB”)

123AB

Error Code Meaning

07h Insufficient memory space (DEF FN instructions nested to more than 10
levels.)

0Fh String length out of range (the returned value of the stringlength exceeds
the allowable range.)
10-32

Statement Reference
DEF FN...END DEF (Block form)

Definition
Names and defines a user-defined function.

Syntax

Notes
Creating a user-defined function

DEF FN...END DEF creates a user-defined function. The function definition block between
DEF FN and END DEF is a set of some statements and functions.

Statement Name: DEFine FuNction... END
DEFine

Type: User-created Function Definition
Statement

Syntax 1 (Defining a numeric function)
DEF FN functionname[(dummyparameter[,dummyparameter ...])]

Syntax 2 (Defining a character function)
DEF FN charafunctionname[(dummyparameter [,dummyparameter...])] “” stringlength]]

Syntax 3 (Exiting from the function block prematurely)
EXIT DEF

Syntax 4 (Ending the function block)
END DEF

Syntax 5 (Assigning a returned value)
FN functionname = generalexpression

Syntax 6 (Calling a function)
FN functionname[(realparameter[,realparameter ...])]

where:

Same as for DEF FN (Single-line form).
10-33

PDT 1100 Terminal Programmer’s Guide
! Definition of a user-defined function should preceed a calling statement of the user-
defined function in a source program.

! You cannot define the same function name twice.

! This statement block should not be defined in the block-structured statements
(FOR...NEXT, IF...THEN...ELSE...END IF, SELECT...CASE...END SELECT, and
WHILE...WEND), in the error-handling routine, event-handling routine, or in the
subroutines.

! DEF FN...END DEF functions can be recursive.

! In defining a character function, you can specify the maximum stringlength. If its
specification is omitted, the default value of 40 characters takes effect.

! dummyparameter, which corresponds to the variable having the same name in the
function definition block, is a local variable valid only in that block. Therefore, if a
variable having the same name as dummyparameter is used outside DEF FN...END DEF
statement block or used as a dummyparameter of any other function in the same
program, it is treated independently.

! In user-defined functions, you can call other user-defined functions. You can nest DEF
FN...END DEF instructions to a maximum of 10 levels.

! When using the DEF FN...END DEF together with block-structured statements
(FOR...NEXT, IF...THEN...ELSE...END IF, SELECT...CASE...END SELECT, and
WHILE...WEND), you can nest them to a maximum of 30 levels.

! If variables other than dummyparameter(s) are specified in the function definition
block, they are treated as global variables whose current values are available.

! EXIT DEF exits the function block prematurely and returns control to the position
immediately after the statement that called the user-defined function.

! The block-format DEF FN statement should be followed by END DEF which ends the
function block and returns control to the position immediately after the statement
that called the user-defined function.

! Using Syntax 5 allows you to assign a return value for a function. The type of
functionname should match that of a return value. If no return value is assigned to
functionname , the value 0 or a null string is returned for a numeric function or a
character function, respectively.

FN functionname calls the user-defined function.

! The number of realparameters should be equal to that of dummyparameters, and
the types of the corresponding variables used in those parameters should be identical.

! If you specify a global variable in realparameter when calling a user-defined
function, the user-defined function cannot update the value of the global variable
10-34

Statement Reference
because all realparameters are passed not by address but by value “Call-by-
value”.

Syntax Error

When defining a user-defined function

Error Code and Message Meaning

error 59: Incorrect use The EXIT DEF statement is specified outside the function
definition block.
The END DEF statement is specified outside the function definition
block.

error 60: Incomplete
control structure (DEF
FN...END DEF)

END DEF is missing.

error 61: Cannot use
DEF FN in control
structure

The DEF FN...END DEF statement is defined in other block-
structured statements such as FOR and IF statement blocks.

error 64: Function The same function name was defined twice.

error 71: Syntax error functionname is an integer function name, but
generalexpression is a real type. (if functionname is a real
function name and generalexpression is an integer type, no
error occurs.)
stringlength is out of range.
stringlength is not an integer constant.
The function name is assigned a value outside the function
definition block.
10-35

PDT 1100 Terminal Programmer’s Guide
When calling a user-defined function

Execution Error

Example
DEF FNappend$(a$,b%)[128]

C$=“C$=“C$=””

FOR i%=1 TO b%

C$=C$+a$

NEXT

FNappend$=C$

END DEF

PRINT FNappend$(“AB”,3)

ABABAB

Error Code and Message Meaning

error 68: Mismatch
argument type or number

The number of the real parameters is not equal to that of the
dummy parameters.
dummyparameter was an integer variable in defining a function,
but realparameter is a real type in calling the function. (if
dummyparameter was a real variable in defining a function and
realparameter is an integer type, no error occurs.)

error 69: Function
undefined

Calling of a user-defined function precedes the definition of the
user-created function.

Error Code Meaning

07h Insufficient memory space (DEF FN instructions nested to more than 10
levels.)

0Fh String length out of range (the returned value of the stringlength exceeds
the allowable range.)
10-36

Statement Reference
DIM

Definition
Declares and dimensions arrays; also declares the string length for a string variable.

Syntax

Notes
DIM declares array variables and dimensions the arrays that a program utilizes.

Statement Name: DIMension Type: Memory Control Statement

DIM arraydeclaration[,arraydeclaration...]

where:

arraydeclaration = numericvariable (subscript)

DIM n1%(12)

DIM n2(5,6)

stringvariable (subscript)[[stringlength]]

DIM s1$(2)

DIM s2$(2,6)

DIM s3$(4)[16]

DIM s4$(5,3)[30]

subscript

For one-dimensional: integerexpression

For two-dimensional: integerexpression,
integerexpression

Where integerexpression is a numeric expression
which returns a value from 0 to 254.

stringlength

An integer constant which has a value from 1 to 255
which indicates the number of characters.
10-37

PDT 1100 Terminal Programmer’s Guide
! A DIM instruction can appear anywhere before the first use of the array in a source
program. However, to prevent errors, place all your DIM instructions together near
the beginning of the program and not in the program execution loops.

! Up to 2-dimensional array variables can be declared.

! In declaring an array string variable, you can specify the string length. If its
specification is omitted, the default value of 20 characters takes effect.

! If no subscript is specified for a string variable, Compiler regards the string variable
as a non-array string variable so that the default for a non-array string variable, 40
characters, takes effect.

Syntax Error

Error Code and
Message

Meaning

error 7: Variable
name redefinition

The array declared with DIM had been already declared with
DEFREG.

error 71: Syntax
error

stringlength is out of range.
stringlength is not an integer constant.

error 72: Variable
name redefinition

A same variable name is declared twice inside a same DIM
statement.
A same variable name is used for a non-array variable and array
variable.

error 78: Array
symbols exceed 30 for
one DIM statement

More than 30 variables are declared inside one DIM statement.
10-38

Statement Reference
Execution Error

Reference

Error Code Meaning

07h Insufficient memory space (the variable area has run out.)

08h Array not defined.

09h Subscript out of the range (an array referred to is different from a defined
array in dimension.)

0Ah Duplicate definition (an array is declared twice.)

Statements ERASE and DEFREG
10-39

PDT 1100 Terminal Programmer’s Guide
END

Description
Terminates program execution.

Syntax

Notes
END terminates program execution and sounds the beeper for a second.

! An END can appear anywhere in a source program.

! When an END instruction occurs, all files being opened close, and the following
operation takes place depending upon whether or not any application program (user
program or Easy Pack) has been selected as an execution program (to be run when
the PDT 1100 is powered on) in System Mode.

" If an application program has been selected, the PDT 1100 turns off the power
after three seconds from the message indication of the “Program end.”

" If an execution program has not been selected, control passes to System Mode.
(For System Mode, refer to the PDT 1100 User's Manual.)

! If no END is placed at the end of a source program, Compiler adds an intermediate
language code of END to the end of the compiled program.

Statement Name: End Type: Flow Control Statement

END
10-40

Statement Reference
ERASE

Description
Erases array variables.

Syntax

Notes
ERASE erases an array variable(s) specified by arrayvariablename and frees the memory
used by the array.

! arrayvariablename is the name of an array variable already declared by the DIM
statement. If it has not been declared by DIM, the ERASE statement is ignored.

! After erasing the name of an array variable with ERASE, you can use that name to
declare a new array variable with the DIM statement.

! arrayvariablename should not include subscripts or parentheses () as shown
below.

DIM a(3),b1%(5,10),c$(3)[20]

ERASE a,b1%,c$

! ERASE cannot erase a register variable declared by the DEFREG statement, a common
variable declared by the COMMON statement, or a non-array string variable.

Statement Name: Erase Type: Memory Control Statement

ERASE arrayvariablename[,arrayvariablename...]

where:

arrayvariablename = An array numeric or string variable.
10-41

PDT 1100 Terminal Programmer’s Guide
Syntax Error

Reference

Error Code and Message Meaning

error 71: Syntax error Erasing a register variable declared by DEFREG, a common
variable by COMMON, or a non-array string variable attempted.

Statements DIM and DEFREG
10-42

Statement Reference
FIELD

Description
Allocates string variables as field variables.

Syntax

Notes
FIELD declares the length and field variable of each field of a record in a data file.

! filenumber is the file number of a data file opened by the OPEN statement.

! fieldwidth is the number of bytes for a corresponding field variable.

! You can assign a same field variable to more than one field.

! There is no difference in usage between a field variable and a general variable except
that no register variable, common variable, or array variable can be used for a field
variable.

! A record can contain up to 16 fields. The total number of bytes of all fieldwidths
plus the number of fields should not exceed 255.

! If a FIELD instruction executes for an opened file having the number of fields or field
width unmatching that of the FIELD specifications except for field variables, an
execution error occurs.

! If more than one FIELD instruction is issued to a same file, the last one takes effect.

Statement Name: Field Type: File I/O Statement

FIELD[#]filenumber,fieldwidth AS fieldvariable[,fieldwidth AS fieldvariable...]

where:

filenumber = A numeric expression which returns a value from 1 to
16.

fieldwidth = A numeric expression which returns a value from 1 to
254.

fieldvariable = A non-array string variable.
10-43

PDT 1100 Terminal Programmer’s Guide
Syntax Error

Execution Error

Example
fileNumber% = 4

OPEN “Datafile.dat” AS #fileNumber%

FIELD #fileNumber%,20 AS code39$,

16 AS itf$,5 AS kyin$

Reference

Error Code and Message Meaning

error 71: Syntax error filenumber is missing.

Error Code Meaning

05h Parameter out of range (fieldwidth out of the range)

34h Bad file name or number (filenumber of an unopened file specified.)

36h Improper file type (filenumber of a file other than data files specified.)

3Ah File number out of range.

3Ch FIELD overflow (FIELD instruction specifies the record length exceeding
255 bytes.)

3Dh A FIELD statement specifies the field width which does not match one that
specified in file creation.

Statements GET, PUT, OPEN, CLFILE, and CLOSE
10-44

Statement Reference
FOR...NEXT

Description
Defines a loop containing instructions to be executed a specified number of times.

Syntax

Notes
FOR...NEXT defines a loop containing instructions (called “body of a loop”) to be executed by
the number of repetitions controlled by initialvalue, finalvalue, and increment.

Processing procedures:

1. The Interpreter assigns initialvalue to controlvariable.

2. The Interpreter checks terminating condition; that is, it compares the value of
controlvariable against the finalvalue.

" When the value of increment is positive:

If the value of controlvariable is equal to or less than the finalvalue, go to step
(3). If it becomes greater the finalvalue, the program proceeds with the first line
after the NEXT instruction (the loop is over).

" When the value of increment is negative:

Statement Name: For ... Next Type: Flow Control Statement

FOR controlvariable = initialvalue TO finalvalue [STEP increment]
•
•
•
NEXT [controlvariable]

where:

controlvariable = A non-array numeric variable.

initialvalue,
finalvalue, and

increment = Numeric expressions.
10-45

PDT 1100 Terminal Programmer’s Guide
If the value of controlvariable is equal to or greater than the finalvalue, go to
step (3). If it becomes less than the finalvalue, the program proceeds with the first
line after the NEXT instruction (the loop is over).

3. The body of the loop executes and the NEXT instruction increases the value of
controlvariable by the value of increment. Then, control returns to the FOR
instruction at the top of the loop. Go back to step (2).

! The default value of increment is 1.

! You can nest FOR...NEXT instructions to a maximum of 10 levels.

! When using the FOR...NEXT statement together with other block-structured
statements (IF...THEN...ELSE...END IF, SELECT...CASE...END SELECT, and
WHILE...WEND), you can nest them to a maximum of 30 levels.

! A same controlvariable should not be reused in a nested loop. Otherwise, an
execution error occurs when the NEXT instruction for an outer FOR...NEXT loop
executes.

! Nested loops should not be crossed. Shown below is a correctly nested sample.
FOR i%=1 TO 10

FOR j%=2 TO 100

FOR k%=3 TO 1000

NEXT k%

NEXT j%

NEXT i%

FOR l%=1 TO 3

.

.

.

NEXT l%
10-46

Statement Reference
Syntax Error

Execution Error

Error Code and Message Meaning

error 26: Too many nesting levels.

error 52: Incorrect use
of FOR...NEXT

NEXT without FOR.

error 53: Incomplete
index variable control
structure

Incomplete pairs of FOR and NEXT.

error 54: Incorrect FOR controlvariable for FOR is different from that for NEXT.

error 88: 'TO' missing TO finalvalue is missing.

Error Code Meaning

01h NEXT without FOR.

07h Insufficient memory space (too many nesting levels.)
10-47

PDT 1100 Terminal Programmer’s Guide
GET

Description
Reads a record from a data file.

Syntax

Notes
GET reads the record specified by recordnumber from the data file specified by filenumber
and assigns the data to the field variable(s) specified by the FIELD statement.

! filenumber is the file number of a data file opened by the OPEN statement.

! If a data file having no record is specified, an execution error occurs.

! The first record in a data file is counted as 1.

! If no recordnumber is specified, the GET instruction reads a record whose number
is one greater than that of the record read by the preceding GET instruction.

If no recordnumber is specified in the first GET instruction after opening of a file,
the first record (numbered 1) in the file is read.

! recordnumber should be equal to or less than the number of written records. If it is
greater, an execution error occurs.

! If a GET instruction without recordnumber is executed after occurrence of an
execution error caused by an incorrect record number in the preceding GET
instruction, then the new GET instruction reads the record whose record number is
one greater than that of the latest record correctly read.

Statement Name: Get Type: File I/O Statement

GET [#] filenumber[,recordnumber]

where:

filenumber = A numeric expression which returns a value from 1 to 16.

recordnumber = A numeric expression which returns a value from 1 to
32,767.
10-48

Statement Reference
! If a GET instruction without recordnumber is executed after execution of the
preceding GET instruction specifying the last record (the number of the written
records), then an execution error occurs.

Syntax Error

Execution Error

Example
GET #filNo,RecordNo

GET #4

GET #3,100

Reference

Error Code and Message Meaning

error 71: Syntax error filenumber is missing.

Error Code Meaning

34h Bad file name or number (filenumber of an unopened file specified.)

36h Improper file type (filenumber of a file other than data files specified.)

3Ah File number out of range.

3Eh A PUT or GET instruction executed without a FIELD instruction.

3Fh Bad record number (no record to be read in a data file.)

Statements OPEN, FIELD, and PUT
10-49

PDT 1100 Terminal Programmer’s Guide
GOSUB

Description
Branches to a subroutine.

Syntax

Notes
GOSUB calls a subroutine specified by label.

! Within the subroutine, use a RETURN instruction to indicate the logical end of the
subroutine and return control to the statement just after the GOSUB that called the
subroutine.

! You may call a subroutine any number of times as long as the Interpreter allows the
nest level and other conditions.

! Subroutines can appear anywhere in a source program. However, separate
subroutines from the main program by, for example, placing them after the END or
GOTO statement, to prevent the main part of the program from falling into those
subroutines.

! A subroutine can call other subroutines. You can nest GOSUB instructions to a
maximum of 10 levels.

! When using the GOSUB statement together with block-structured statements
(FOR...NEXT, IF...THEN...ELSE...END IF, SELECT...CASE...END SELECT, and
WHILE...WEND), you can nest them to a maximum of 30 levels.

Statement Name: Gosub Type: Flow Control Statement

GOSUB label
10-50

Statement Reference
Syntax Error

Execution Error

Reference

Error Code and Message Meaning

error 71: Syntax error label has not been defined.
label is missing.

Error Code Meaning

03h RETURN without GOSUB

07h Insufficient memory space (too many nesting levels.)

Statements RETURN
10-51

PDT 1100 Terminal Programmer’s Guide
GOTO

Description
Branches to a specified label.

Syntax

Notes
GOTO unconditionally transfers control to a label specified by label.

! In an IF instruction block, you can omit GOTO immediately following THEN or ELSE,
as shown below.

IF a=0 THEN Lbl1 ELSE Lbl2

END IF

! GOTO allows you to branch anywhere in your program. However, you should branch
only to another line in a program module or subroutine at the same program level.
Avoid transferring control to a DEF FN block or other blocks at the different program
level.

! You can use GO TO instead of GOTO.

Syntax Error

Statement Name: Goto Type: Flow Control Statement

GOTO label

Error Code and Message Meaning

error 71: Syntax error label has not been defined.
label is missing.
10-52

Statement Reference
IF...THEN...ELSE...END IF

Description
Conditionally executes specified statement blocks depending upon the evaluation of a
conditional expression.

Syntax

Notes
IF statement block tests whether conditionalexpression is true or false. If the condition
is true (not zero), statementblock which follows THEN is executed; if it is false (zero),
statementblock which follows ELSE is executed. Then, program control passes to the first
statement after END IF.

! You can omit either THEN block or ELSE block.

! IF statement block should terminate with END IF which indicates the end of the
block.

Statement Name: If...Then...Else...End If Type: Flow Control Statement

Syntax 1
IF conditionalexpression THEN

statementblock1

[ELSE
statementblock2]

END IF

Syntax 2
IF conditionalexpression ELSE

statementblock

END IF

where:

conditionalexpression = A numeric expression which evaluates to true
or false.
10-53

PDT 1100 Terminal Programmer’s Guide
! IF statement blocks can be nested. When using the IF statement block together with
other block-structured statements (FOR...NEXT, SELECT...CASE...END SELECT, and
WHILE...WEND), you can nest them to a maximum of 30 levels.

! A block-structured IF statement block has the following advantages over a single-
line IF statement (which is not supported in BASIC 3.0):

" More complex conditions can be tested since an IF statement block can contain
more than one line for describing conditions.

" You can describe as many statements or statement blocks as you want.

" Since it is not necessary to put more than one statement in a line, you can describe
easy-to-read programs according to the logical structure, making correction and
debugging easy.

! You can use ENDIF instead of END IF.

Syntax Error

Example
k$=INKEY$

IF k$<>“” THEN

PRINT k$;

END IF

Reference

Error Code and Message Meaning

error 26: too many nesting levels.

error 50: Incorrect use
of
IF...THEN...ELSE...END
IF

THEN is missing.

error 51: Incomplete
control structure

END IF is missing.

Statements ON...GOTO, ON...GOSUB, DEF FN...END DEF, FOR...NEXT, SELECT...CASE...END
SELECT, and WHILE...WEND
10-54

Statement Reference
INPUT

Description
Reads input from the keyboard into a variable.

Syntax

Notes
When execution reaches an INPUT instruction, the program waits for the user to enter data
from the keyboard and shows a prompting message specified by prompt. After entering data,
press the ENT key. Then, the INPUT instruction assigns the typed data to variable.

! “prompt” is a prompting message to be displayed on the LCD.

! The semicolon (;) and comma (,) after “prompt” have the following meanings:

If “prompt” is followed by a semicolon, the INPUT instruction displays the
prompting message followed by a question mark and a space.

INPUT “data= ”;a$

data= ?

If “prompt” is followed by a comma, the instruction displays the prompting message
but no question mark or space is appended to the prompting message.

INPUT “data= ”,a$

data=

Statement Name: Input Type: I/O Statement

INPUT [;][“prompt”{,|;}] variable

where:

“prompt” = A string constant.

variable = A numeric or string variable.
10-55

PDT 1100 Terminal Programmer’s Guide
! The cursor shape specified by the most recently executed LOCATE instruction takes
effect.

! Even after execution of the CURSOR OFF instruction, the INPUT instruction displays
the cursor.

! Data inputted by the user echoes back to the LCD. To assign it to variable, press the
ENT key.
Pressing the ENT key causes a line feed, except when INPUT is followed by a
semicolon (;) in an INPUT statement.
If you type no data and press the ENT key, an INPUT instruction automatically
assigns a zero or a null string to variable.

! When echoed back data is displayed on the LCD, press the Clear key to erase all
displayed data or BS key to erase the last character of data. If no data is displayed,
pressing Clear or BS has no effect.

! Notes for entering numeric data:
The effective length of numeric data is 12 characters. The 13th typed-in literal and
the following is ignored.
Valid literals include 0 to 9, a minus sign (-), and a period (.). They should be in
correct numeric data form. If not, INPUT statement accepts only numeric data from
the first literal up to correctly formed literal, as valid data. If no valid data is found,
the INPUT instruction assigns a zero to variable.
A plus sign (+) can be typed in, but is ignored in evaluation of the entered data.

! The effective length of string data is the maximum string length of variable.
Overflowed data is ignored.

! The sizes of prompting message literals, echoed back literals and cursor depend upon
the screen mode. In the single-byte ANK mode, they appear in single-byte code size.

Both the screen mode and the display font size determine the sizes of prompting
message literals, echoed back literals, and cursor. If the standard-size font is selected,
they appear in standard size; if the small-size font is selected, they appear in small
size.
10-56

Statement Reference
Syntax Error

Execution Error

Reference

Error Code and Message Meaning

error 71: Syntax error Neither a comma (,) nor semicolon (;) follows “prompt”.
“prompt” is not a string constant.

Error Code Meaning

06h The operation result is out of the allowable range. (numeric variable is out
of range.)

Statements LINE INPUT and LOCATE

Functions INKEY$ and INPUT$
10-57

PDT 1100 Terminal Programmer’s Guide
INPUT #

Description
Reads data from a device I/O file into specified variables.

Syntax

Notes
INPUT # reads data from a device I/O file (a communications device file or bar code device
file) specified by filenumber and assigns it to variable.

! filenumber is a number assigned to the device I/O file when it was opened.

! Reading data from a communications device file:

An INPUT # instruction reads data fields separated by CR codes or commas (,) and
assigns them to variable.

If more than one variable is specified in an INPUT # statement, the program waits
until all of the specified variables receive data.

If an INPUT # instruction reads data longer than the allowable string length, it
ignores only the overflowed data and completes execution, causing no execution
error.

! Reading data from a bar code device file:

An INPUT # instruction reads the scanned data into the first variable.

If more than one variable is specified in an INPUT # statement, the program ignores
the second and the following variables.

Statement Name: Input # Type: File I/O Statement

INPUT # filenumber, variable[,variable...]

where:

filenumber = A numeric expression which returns a value from 1 to 16.

variable = A numeric or string variable.
10-58

Statement Reference
If an INPUT # instruction reads data longer than the allowable string length, it
ignores only the overflowed data and completes execution, causing no execution
error.

If the maximum number of digits has been omitted in the read code specifications of
the OPEN “BAR:” statement (except for the universal product codes), then the INPUT
instruction can read bar codes of up to 99 digits. To read bar codes of 40 digits or
more, define a sufficient string variable length beforehand.

! Notes for entering numeric data:

Valid characters include 0 to 9, a minus sign (-), and a period (.) in correct numeric
data form. INPUT # statement accepts only numeric data from the first character up
to correctly formed character, as valid data. If no valid data is found, the INPUT #
instruction assigns zero to variable.

If the INPUT # instruction reads alphabetical characters with a numeric variable, it
assigns zero to variable. When reading Code 39 bar codes, special care should be
taken.

Syntax Error

Execution Error

Example
INPUT #fileNo,dat$

Error Code and Message Meaning

error 71: Syntax error filenumber is missing.

Error Code Meaning

06h The operation result is out of the allowable range (numeric variable is out
of range.)

34h Bad file name or number (filenumber of an unopened file specified.)

36h Improper file type (filenumber of a file other than device I/O files
specified.)

3Ah File number out of the range.
10-59

PDT 1100 Terminal Programmer’s Guide
Reference

Statements OPEN “BAR:”, OPEN “COM:”, CLOSE and LINE INPUT#

Functions INPUT$
10-60

Statement Reference
KEY

Description
Assigns a string or a control code to a function key; also defines a function key as the LCD
backlight function on/off key. This statement also defines an M key as the trigger switch, shift
key, or battery voltage display key.

Syntax

Statement Name: Key Type: I/O Statement

Syntax 1 (Assigning a string or a control code to a function key)
KEY keynumber, stringdata

Syntax 2 (Defining a function key as the backlight function on/off key)
KEY backlightkeynumber, onduration

Syntax 3 (Defining an M key as the trigger switch, shift key, or battery
voltage display key)
KEY M keynumber,“TRG” (Trigger switch)
KEY M keynumber,“SFT” (Shift key)
KEY M keynumber,“BAT” (Battery voltage display key)

where:

keynumber = A numeric expression which returns a value from
1 to 31, 33, and 38.

stringdata = A string expression which returns up to two
characters or a control code.

backlightkeynumber = A numeric expression which returns a value from
1 to 31, 33, and 38.

onduration = Keyword BL and a string expression which returns
a value from 0 to 255. (BL0 to BL255)

M Keynumber = 30, 31, 35
10-61

PDT 1100 Terminal Programmer’s Guide
Notes
Assigning a string or a control code to a function key

KEY in Syntax 1 assigns a string or a control code specified by stringdata to a function
key specified by keynumber. Pressing the specified function key generates the assigned
string data or control code and then passes it to the user program as if each character is
keyed in directly from the keyboard.

! keynumber is a key number assigned to a particular function key. (Refer to Appendix
E, Key Number Assignment on the Keyboard)

! Specifying 32 to keynumber is ignored.

! stringdata is a character code ranging from 0 (00h) to 255 (FFh). (For the
character codes, refer to Appendix C, Character Sets)

! If you specify more than two characters to stringdata, only the first two characters
are valid.

! String data inputted by pressing the specified function key may be read to the user
program by INPUT or LINE INPUT statement or INKEY$ or INPUT$ function.

Note: INKEY$ or INPUT$ (1) function can read only the first one character
of the assigned two. The second character remains in the keyboard
buffer and can be read by the INPUT or LINE INPUT statement or
INKEY$ or INPUT$ function.

! If pressed together with the Shift key, any numerical key can operate as a function
key.

! If you issue more than one KEY statement specifying a same function key, the last
statement takes effect.

! If a null string is assigned to a function key, pressing the function key produces no
key entry. To make a particular function key invalid, specify a null string to
stringdata as shown below.

KEY 1,“”

KEY 2,CHR$(0)

KEY 3,CHR$(&h0)

Defining a function key as the LCD backlight function on/off key:

KEY in Syntax 2 defines a function key specified by backlightkeynumber as the
backlight function on/off key and sets the length of backlight ON-time specified by
onduration. (Refer to Appendix I, Backlight Function)
10-62

Statement Reference
! backlightkeynumber is a key number assigned to a particular function key. (Refer
to Appendix E, Key Number Assignment on the Keyboard)
Pressing the specified backlight function on/off key activates or deactivates the
backlight function.

! Specifying zero (0) or 32 to backlightkeynumber is ignored.

! Pressing the M1 key (key number 33) while holding down the shift key functions as
the backlight on/off control key by default.

! If pressed together with the Shift key, any numerical key can operate as a function
key.

! onduration is the length of time in seconds from when the backlight is turned on
until it turns off. Pressing the trigger switch or any key (except for the backlight
function on/off key) while the backlight is on resets the counter of onduration to
the specified time length and restarts counting down.
Specifying of BL0 disables the backlight function. Specifying of BL255 keeps the
backlight on.

! A function key defined as the LCD backlight function on/off key cannot be used to
enter string data.

! If you issue more than one KEY statement, the last statement takes effect. That is, if
you define more than one key as the backlight function on/off key as shown below,
only the function key numbered 8 operates as the backlight function on/off key and
the length of backlight ON-time is 15 seconds.

KEY 5,“BL40”

KEY 8,“BL15”

Defining an M key as the trigger switch, shift key, or battery voltage display key:

! KEY in syntax 3 defines an M key (M1/M2/M3/M4) as the trigger switch, shift key,
or battery voltage display key as well as assigning string data.

KEY 30,“TRG” (M1 key as the trigger switch)
KEY 31,“SFT” (M2 key as the shift key)
KEY 30,“BAT” (M1 key as the voltage display key)

Note: If you issue KEY instructions specifying a same function key, only the
last KEY instruction takes effect.

The description below, for example, makes the function key numbered 3 operate as the
backlight function on/off key and the length of backlight ON-time is 100 seconds.
10-63

PDT 1100 Terminal Programmer’s Guide
KEY 3,“a”

KEY 3,“BL100”

The description below assigns string data “a” to the function key numbered 3. The default
backlight function on/off key (the combination of M1 key and shift key) is restored.

KEY 3,“BL100”

KEY 3,“a”

The description below defines the M1 key as the trigger switch. The default battery voltage
display key (combination of the ENT key and shift key) is restored.

KEY 30,“BAT”

KEY 30,“TRG”

Syntax Error

Execution Error

Examples

Syntax 1
KEY 1,“a”

KEY 2,“F”+CHR$(13)

KEY 3,“”

Error Code and Message Meaning

error 71: Syntax error keynumber is missing.
stringdata is missing.
backlightkeynumber is missing.
stringdata is a numeric expression.

Error Code Meaning

05h Parameter out of range (keynumber, backlightkeynumber, or M keynumber is
out of range.)
10-64

Statement Reference
Syntax 2
KEY 1,“BL60”

Reference

Statements ON KEY...GOSUB, KEY ON and KEY OFF
10-65

PDT 1100 Terminal Programmer’s Guide
KEY ON and KEY OFF

Description
Enables or disables keystroke trapping for a specified function key.

Syntax

Notes
KEY ON enables keystroke trapping for a function key specified by keynumber. (Refer to
Appendix E, Key Number Assignment on the Keyboard)

! Between execution of statements, the Interpreter checks whether a function key
specified by the KEY ON statement is pressed or not. If the key is pressed, the
Interpreter transfers control to the event-handling routine defined by an ON
KEY...GOSUB statement before the KEY ON instruction.

! If a function key assigned a null string by the KEY statement is specified by the KEY
ON statement, the keystroke trap takes place.

! If you specify a function key which has been defined as the LCD backlight function
on/off key, trigger switch, shift key, or battery voltage display key by using the KEY
ON statement, then no keystroke trap takes place.

! Keystroke trapping has priority over the INKEY$ function.

! When a program waits for the keyboard entry by the INPUT, LINE INPUT statement
or INPUT$ function, pressing a function key specified by the KEY ON statement neither
reads the pressed key data nor causes keystroke trapping.

! Specifying 32 to keynumber is ignored.

Statement Name: Key On and Key Off Type: I/O Statement

KEY (keynumber){ON|OFF

where:

keynumber = A numeric expression which returns a value from 1 to 31,
33, and 38.
10-66

Statement Reference
KEY OFF disables keystroke trapping for a function key specified by keynumber.

! Specifying 32 to keynumber is ignored.

Syntax Error

Execution Error

Reference

Error Code and Message Meaning

error 71: Syntax error keynumber is not enclosed in parentheses ().
Neither ON or OFF follows (keynumber).

Error Code Meaning

05h Parameter out of range (keynumber is out of range.)

Statements KEY and ON KEY...GOSUB
10-67

PDT 1100 Terminal Programmer’s Guide
KILL

Description
Deletes a specified file from the memory.

Syntax

Notes
KILL deletes a data file or a user program file specified by “filename” or
“drivename:filename”.

The filename should be preceded by the drivename. The drivename is A: for RAM or B:
for flash ROM. If the drivename is omitted, the default A: (RAM) applies.

! The specified file is deleted from both the data and the directory in the memory.

! A file to be deleted should be closed beforehand.

Statement Name: Kill Type: File I/O Statement

Syntax 1
KILL “filename”

Syntax 2
KILL “drivename:filename”

where:

“filename” and
“drivename:filename” = A string expression.
10-68

Statement Reference
Syntax Error

Execution Error

Example
CLOSE

IF kyIn$=“Y” THEN

KILL “Master.Dat”

END IF

Reference

Error Code and Message Meaning

error 3: “” missing No double quote precedes or follows filename or
drivename:filename.

error 71: Syntax error filename or drivename:filename is not enclosed in double
quotes.

Error Code Meaning

02h Syntax error (the format of “filename” or “drivename:filename” is not
correct.)

35h File not found.

37h File already open.

Statements CLFILE
10-69

PDT 1100 Terminal Programmer’s Guide
LET

Description
Assigns a value to a given variable.

Syntax

Description
LET assigns a value of expression on the right-hand side to a variable on the left-hand side.

! In a numeric data assignment, the assignment instruction converts an integer value
to a real value. In the type conversion from a real value to an integer value, it rounds
off the fractional part.

! Keyword LET can be omitted since the equal sign is all that is required to assign a
value.

! The data type of a variable and an expression must correspond.

Statement Name: Let Type: Assignment Statement

Syntax 1
[LET] stringvariable = stringexpression

Syntax 2
[LET] numericvariable = numericexpression
10-70

Statement Reference
Syntax Error

Execution Error

Error Code and Message Meaning

error 71: Syntax error The data type on the right- and left-hand sides does not
correspond. That is, the variable on the left-hand side is numeric
but the expression on the right-hand side is a string, or vice
versa.

Error Code Meaning

06h The operation result is out of the allowable range.

0Fh String length out of range (in a string assignment, the string length of the
evaluated result on the right-hand side exceeds the maximum length of the
string variable on the left-hand side.)

10h Expression too long or complex.
10-71

PDT 1100 Terminal Programmer’s Guide
LINE INPUT

Description
Reads input from the keyboard into a string variable.

Syntax

Notes
When execution reaches a LINE INPUT instruction, the program waits for the user to enter
data from the keyboard and shows a prompting message specified by prompt.

After entering data, press the ENT key. Then, the LINE INPUT instruction assigns the data to
stringvariable.

! A LINE INPUT statement cannot assign a numeric variable. (An INPUT statement
can.)

! “prompt” is a prompting message displayed on the LCD.

! If “prompt” is followed by a semicolon, the LINE INPUT instruction displays the
prompting message followed by a question mark and a space.

LINE INPUT “data= ”;a$

data= ?

! If “prompt” is followed by a comma, the instruction displays the prompting message
with no question mark or space.

LINE INPUT “data= ”,a$

data=

Statement Name: Line Input Type: I/O Statement

LINE INPUT [“prompt”{,|;}] stringvariable

where:

“prompt” = A string constant.

stringvariable = A string variable.
10-72

Statement Reference
! The cursor shape specified by the most recently executed LOCATE instruction takes
effect.

! Even after execution of the CURSOR OFF instruction, the LINE INPUT instruction
displays the cursor.

! Data entered by the user echoes back to the LCD. To assign it to stringvariable,
press the ENT key. This also causes also a line feed.
If you type no data and press the ENT key, a LINE INPUT instruction automatically
assigns a null string to stringvariable.

! When echoed back data is displayed on the LCD, press the Clear key to erase all
displayed data or BS key to erase the last character entered. If no data is displayed,
pressing Clear or BS has no effect.

! String data is the maximum string length of stringvariable. Overflowed data is
ignored.

! The sizes of prompting message literals, echoed back literals and cursor depend upon
the screen mode and the display font size. If the standard-size font is selected, they
appear in standard size; if the small-size font is selected, they appear in small size.

Syntax Error

Reference

Error Code and Message Meaning

error 71: Syntax error INPUT is missing
Neither a comma (,) or semicolon (;) follows “prompt”.
“prompt” is not a string constant.
stringvariable has a numeric variable.
A semicolon (;) immediately follows LINE INPUT.

Statements INPUT and LOCATE

Functions INKEY$ and INPUT$
10-73

PDT 1100 Terminal Programmer’s Guide
LINE INPUT #

Description
Reads data from a device I/O file into a string variable.

Syntax

Notes
LINE INPUT # reads data from a device I/O file (a communications device file or bar code
device file) specified by filenumber and assigns it to stringvariable.

! filenumber is a number assigned to the device I/O file when it was opened.

! A LINE INPUT # statement cannot assign a numeric variable. (an INPUT # statement
can.)

! A LINE INPUT # instruction reads all of the string literals preceding a CR code in a
communications device file and assigns them to stringvariable. The instruction
does not read CR codes and LF codes which immediately follow a CR code.
If a LINE INPUT # instruction reads data longer than the allowable string length
before reading a CR code, it ignores the overflowed data and completes execution
with no execution error.

! A LINE INPUT# instruction reads the scanned data from a bar code device file into
stringvariable.
If a LINE INPUT # instruction reads data longer than the allowable string length, it
ignores the overflowed data and completes execution with no execution error.
If the maximum number of digits is omitted in the read code specifications of the
OPEN “BAR:” statement (except for the universal product codes), then the INPUT #

Statement Name: Line Input # Type: File I/O Statement

LINE INPUT # filenumber, stringvariable

where:

filenumber = A numeric expression which returns a value from 1 to
16.

stringvariable = A string variable.
10-74

Statement Reference
instruction can read bar codes of up to 99 digits. To read bar codes of 40 digits or
more, define a sufficient string variable length beforehand.

Syntax Error

Execution Error

Example
LINE INPUT

#fileNo,dat$

Reference

Error Code and Message Meaning

error 71: Syntax error INPUT is missing.
filenumber is missing.
“prompt” is not a string constant.
stringvariable has a numeric variable.

Error Code Meaning

34h Bad file name or number (filenumber of an unopened file specified.)

36h Improper file type (filenumber of a file other than device I/O files
specified.)

3Ah File number out of range.

Statements INPUT#, OPEN “BAR:”, OPEN “COM:”, and CLOSE

Functions INPUT$
10-75

PDT 1100 Terminal Programmer’s Guide
LOCATE

Description
Moves the cursor to a specified position and changes the cursor shape.

Syntax

Notes
LOCATE moves the cursor to a position specified by column number and row number as
coordinates on the LCD. It also changes the cursor shape as specified by cursorswitch.

! The cursor location in the upper left corner of the LCD is 1, 1 which is the default.

! cursorswitch specifies the cursor shape as listed below.

Statement Name: Locate Type: I/O Statement

Syntax 1
LOCATE [column][,row[,cursorswitch]]

Syntax 2
LOCATE ,, cursorswitch

where: Standard-size font Small font

column A numeric expression which returns
a value from 1 to 17.

A numeric expression which returns
a value from 1 to 17.

row A numeric expression which returns
a value from 1 to 6.

A numeric expression which returns
a value from 1 to 8.

cursorswitch A numeric expression which returns
a value from 0 to 2.

A numeric expression which returns
a value from 0 to 2.

cursorswitch value Cursor shape

0 Invisible

1 Underline cursor (default)

2 Full block cursor
10-76

Statement Reference
! Specification of the maximum value to column moves the cursor off the screen and
out of sight.

If you display data on the screen under the above condition, the cursor moves to the
first column of the next row, from where the data appears.

! If you specify the right end of the bottom line as the desired cursor position when the
system status is displayed, the cursor becomes invisible.

! If a parameter is omitted, the current value remains active. If you omit column, for
example, the cursor stays in the same column but moves to the newly specified row
position.

! Any parameter value outside the range results in an execution error.

Execution Error

Example
LOCATE 1,2

LOCATE xPos,xCSRLIN

LOCATE ,,2

Reference

Error Code Meaning

05h Parameter out of range.

Functions CSRLIN and POS
10-77

PDT 1100 Terminal Programmer’s Guide
ON ERROR GOTO

Description
Enables error trapping.

Syntax

Notes
ON ERROR GOTO enables error trapping so as to pass control to the first line of an error-
handling routine specified by label if an error occurs during program execution.

! Use a RESUME statement in an error-handling routine to a specified program location.

! Assigning zero (0) to label disables error trapping.
If ON ERROR GOTO 0 is executed outside the error-handling routine, any error displays
a regular execution error code and terminates the program.
If ON ERROR GOTO 0 is executed inside the error-handling routine, the Interpreter
displays the regular execution error code and terminates the program.

! You cannot trap errors which may occur during execution of the error-handling
routine. The occurrence of such an error displays an execution error code and
terminates the program.

! You can use ON ERROR GO TO instead of ON ERROR GOTO.

Statement Name: On Error Goto Type: Error Control Statement

ON ERROR GOTO label
10-78

Statement Reference
Syntax Error

Reference

Error Code and Message Meaning

error 71: Syntax error label has not been defined.
label is missing.

Statements RESUME

Functions ERR and ERL
10-79

PDT 1100 Terminal Programmer’s Guide
ON...GOSUB and ON...GOTO

Description
Branches to one of specified labels according to the value of an expression.

Syntax

Notes
ON...GOSUB or ON...GOTO block branches to a label in the label list according to the value of
expression.

! If expression has the value 3, for example, the target label is the third in the label
list.

! If expression has the value 0 or a value greater than the number of labels in the
label list, executing the ON...GOSUB or ON...GOTO block passes control to the
subsequent statement with no execution error.

! You can specify any number of labels as long as a statement block does not exceed
one program line (512 characters).

! You can nest ON...GOSUB instructions to a maximum of 10 levels.

! When using the GOSUB statement with block-structured statements (FOR...NEXT,
IF...THEN...ELSE...END IF, SELECT...CASE...END SELECT, and WHILE...WEND), you can
nest them to a maximum of 30 levels.

! You can use ON...GO TO instead of ON...GOTO.

Statement Name: On ... Gosub and On ... Goto Type: Flow Control Statement

Syntax 1
ON expression GOSUB label [,label...]

Syntax 2
ON expression GOTO label [,label...]

where:

expression = A numeric expression which returns a value from 1 to 255.
10-80

Statement Reference
Syntax Error

Execution Error

Reference

Error Code and Message Meaning

error 71: Syntax error label has not been defined
label is missing.

Error Code Meaning

05h Parameter out of range (expression is negative or greater than 255.)

07h Insufficient memory space (too many program nesting levels by GOSUB
instructions.)

Statements GOSUB, GOTO, and SELECT...CASE...END SELECT
10-81

PDT 1100 Terminal Programmer’s Guide
ON KEY...GOSUB

Description
Specifies an event-handling routine for keystroke interrupt.

Syntax

Notes
According to label, ON KEY...GOSUB specifies the first line of an event-handling routine to be
invoked if a function key specified by keynumber is pressed. (Refer to Appendix E, Key
Number Assignment on the Keyboard)

! ON KEY...GOSUB specifies the location of an event-handling routine but does not
enable keystroke trapping. (Refer to KEY ON and KEY OFF on page 10-66 for
keystroke trapping.)

! Assigning zero (0) to label disables keystroke trapping.

! If a keystroke trap occurs, the Interpreter executes KEY OFF instruction for the
pressed function key before passing control to an event-handling routine specified by
label in ON KEY...GOSUB instruction. This prevents a same event-handling routine
from becoming invoked again by pressing a same function key during execution of
the routine until the current event-handling routine is completed by issuing a RETURN
instruction.
When control returns from the event-handling routine by a RETURN instruction, the
Interpreter executes KEY ON instruction.
If it is not necessary to resume keystroke trapping, describe a KEY OFF statement in
the event-handling routine.

! If you issue more than one ON KEY...GOSUB instruction specifying the same
keynumber, the last statement takes effect.

Statement Name: On Key ... Gosub Type: I/O Statement

ON KEY (keynumber) GOSUB label

where:

keynumber = A numeric expression which returns a value from 1 to 31,
and 33 to 38.
10-82

Statement Reference
! GOSUB instructions can be nested to a maximum of 10 levels.

! When using the ON KEY...GOSUB statement with block-structured statements
(FOR...NEXT, IF..THEN... ELSE...END IF, SELECT...CASE...END SELECT, and
WHILE...WEND), you can nest them to a maximum of 30 levels.

! Specifying a keynumber of 32 is ignored.

Syntax Error

Execution Error

Reference

Error Code and Message Meaning

error 71: Syntax error label has not been defined.
label is missing.
keynumber is not enclosed in parentheses ().

Error Code Meaning

05h Parameter out of range (keynumber is out of the range.)

07h Insufficient memory space (too many program nesting levels by GOSUB
statements.)

Statements KEY, KEY ON, and KEY OFF
10-83

PDT 1100 Terminal Programmer’s Guide
OPEN

Description
Opens a file for I/O activities.

Syntax

Notes
OPEN opens a data file specified by “filename” and associates the opened file with
filenumber for allowing I/O activities according to filenumber.

! The maximum number of files which can be opened at one time is 16 including the
bar code device file and communications device files.

! “filename” consists of a file name and a file extension.

The file name should be 1 to 8 characters long. Usable characters for the file name
include alphanumerics, a minus (-) sign, and an underline (_). Note that a minus sign
and underline should not be used for the starting character of the file name.
Uppercase and lowercase letters are both treated as uppercase letters.

Statement Name: Open Type: File I/O Statement

Syntax 1
OPEN “filename” AS [#] filenumber [RECORD filelength]

Syntax 2
OPEN “drivename:filename” AS [#] filenumber [RECORD filelength]

where:

filenumber = A numeric expression which returns a value
from 1 to 16.

“filename” and
“drivename:filename” = A string expression.

filelength = An integer constant which has the value from 1
to 32,767.
10-84

Statement Reference
The file extension can be up to 3 characters long, or may be omitted. It should not
be .PD3, .EX3, .FN3, and .FLD.

a.dat

master01.dat

! The filename should be preceded by the drivename. The drivename is A: for
RAM or B: for flash ROM. If the drivename is omitted, the default A: (RAM)
applies.

! filelength is the maximum number of registrable records in a file. It can be set
only when a new data file is created by an OPEN instruction. If you specify
filelength when opening existing data file (including a downloaded data file), the
filelength is ignored.

! Specifying filelength does not allocate memory. Therefore, whether or not a PUT
instruction can write records up to the specified filelength depends on the
memory occupation state.

! If filelength is omitted, the default file size is 1,000 records.

Syntax Error

Error Code and Message Meaning

error 3: “” missing No double quote precedes or follows filename.

error 71: Syntax error filelength is out of the range.
filelength is not an integer constant.
filename is not enclosed in double quotes.
10-85

PDT 1100 Terminal Programmer’s Guide
Execution Error

Reference

Error Code Meaning

02h Syntax error (filename is not correct, or the bar code device file or
communications device file is specified.)

07h Insufficient memory space.

32h File type mismatch.

37h File already open.

3Ah File number out of range.

41h File damaged.

Statements CLOSE, OPEN “BAR:”, and OPEN “COM:”
10-86

Statement Reference
OPEN “BAR:”

Description
Opens the bar code device file. This statement also activates or deactivates the reading
confirmation LED and the beeper individually.

Syntax

Notes
OPEN “BAR:” opens the bar code device file and associates it with filenumber for allowing
data entry from the bar code reader according to filenumber.

If the bar code device file has been opened with the OPEN “BAR:” instruction, pressing the M
keys turns on the illumination LED, indicating the PDT 1100 is ready to read bar codes.

" Only one bar code device file can be opened at a time. Up to 16 files can be
opened at a time including data files and communications device files.

" The PDT 1100 cannot open the bar code device file and the optical interface of
the communications device file concurrently. If you attempt to open them
concurrently, an execution error occurs.

Statement Name: Open “Bar:” Type: File I/O Statement

OPEN “BAR:[readmode][LEDcontrol][beepercontrol]” AS [#] filenumber CODE
readcode[,readcode...]

where:

readnumber = A string expression.

LEDcontrol = A string expression. Specification of L deactivates the
reading confirmation LED. (Default: Activated)

beepercontrol = A string expression. Specification of B activates the
beeper. (Default: Deactivated)

filenumber = A numeric expression which returns a value from 1 to
16.

readcode = A string expression.
10-87

PDT 1100 Terminal Programmer’s Guide
" The PDT 1100 can open the bar code device file and the direct-connect interface
concurrently.

" The name of the bar code device file, BAR, may be in lowercase.
OPEN “bar:” AS #10 CODE “A”

" Lowercase letters may be used for readmode, LEDcontrol, beepercontrol,
and readcode.

readmode:

The PDT 1100 supports four read modes:

Momentary switching mode (M)

OPEN “BAR:M” AS #7 CODE “A”

While you hold down the trigger switch*, the illumination LED lights and the PDT 1100
can read a bar code, even if the bar code device file is closed. You cannot scan another
bar code until the entered bar code data is read out from the bar code buffer.

Auto-off mode (F)

OPEN “BAR:F” AS #7 CODE “A”

When you press the trigger switch*, the illumination LED comes on. The LED goes off
when you release the switch or when the PDT 1100 completes bar code reading. Holding
down the M keys lights the illumination LED for up to 5 seconds.

While the illumination LED is on, the PDT 1100 scans the bar code until it is read
successfully or the bar code device file is closed. The LED turns off after 5 seconds, and
the M key must be pressed again to read a bar code.

Once a bar code is read successfully, you cannot scan another bar code until the entered
bar code data is read out from the bar code buffer.

Alternate switching mode (A)

OPEN “BAR:A” AS #7 CODE

“A”

Pressing the trigger switch* turns on the illumination LED. Even if the switch is released,
the illumination LED remains on until a bar code is read successfully, the bar code device
10-88

Statement Reference
file is closed, or a switch is pressed again. While the illumination LED is on, the PDT
1100 can read a bar code.

Pressing the trigger switch* toggles the illumination LED on and off.

Once a bar code is read successfully, you cannot scan another bar code until the entered
bar code data is read out from the bar code buffer.

Continuous reading mode (C)

OPEN “BAR:C” AS #7 CODE

“A”

The PDT 1100 turns on the illumination LED until the bar code device file is closed,
regardless of the trigger switch*. While the illumination LED is on, the PDT 1100 can
read a bar code.

Once a bar code is read successfully, the PDT 1100 cannot read the next bar code until
the entered bar code data is read out from the bar code buffer.

In each read mode, when a bar code is scanned successfully, the reading confirmation LED
illuminates green for 500 ms, (unless the reading confirmation LED is deactivated.) The read
bar code data is decoded and transferred to the bar code buffer.

* The trigger switch function is assigned to the M keys.

If readmode is omitted, the PDT 1100 defaults to the auto-off mode.

LEDcontrol and beepercontrol

The OPEN “BAR:” statement can activate or deactivate the reading confirmation LED and
beeper when a bar code is read successfully.

! Describe parameters of readmode, LEDcontrol, and beepercontrol with no space
in-between.

! readmode, LEDcontrol, and beepercontrol may be described in any order.

! To deactivate the reading confirmation LED when a bar code is read successfully:
OPEN “BAR:L” AS #7 CODE “A”

! To sound the beeper when a bar code is read successfully:
OPEN “BAR:B” AS #7 CODE “A”

readcode

The PDT 1100 supports the following bar codes – the universal product codes (UPC),
Interleaved 2 of 5 (ITF), Codabar (NW7), Code 39, Code 93, and Code 128. It also supports
10-89

PDT 1100 Terminal Programmer’s Guide
the Standard 2 of 5 (STF) and the EAN128 if Code 128 is specified. (For more information,
refer to the PDT 1100 User's Manual.)

UPC (A)

Syntax

A[:[code][1stchara[2ndchara]][supplemental]]

where

code is A, B, or C specifying the following:

If code is omitted, the default is all of the universal product codes.

OPEN “BAR:” AS #n CODE “A:49S”

Interleaved 2 of 5 (ITF) (I)

Syntax

I[:[mini.no.digits[- max.no.digits]][CD]]

Table 10-3. UPC Specifications

code Bar code

A EAN-13 or UPC-A

B EAN-8

C UPC-E

1stchara or 2ndchara = a numeral from 0 to 9 specifying the header character (country
flag). If a question mark (?) is specified to 1stchara or
2ndchara, it acts as a wild card.

supplemental = a supplemental code. Specifying an S to supplemental allows
the PDT 1100 to read also supplemental codes.
10-90

Statement Reference
where

If both mini.no.digits and max.no.digits are omitted, the default reading range is 2 to
99 digits. If only max.no.digits is omitted, the PDT 1100 can only read the number of
digits specified by mini.no.digits.

OPEN “BAR:” AS #1 CODE “I:6-10C”

Codabar (NW7) (N)

Syntax

N[:[mini.no.digits[- max.no.digits]][startstop] [CD]]

where

If both mini.no.digits and max.no.digits are omitted, the default reading range is 3 to
99 digits. If only max.no.digits is omitted, the PDT 1100 can only read the number of
digits specified by mini.no.digits.

OPEN “BAR:” AS #1 CODE “N:8AAC”

mini.no.digits and
max.no.digits =

 minimum and maximum number of digits for bar codes to be read
by the PDT 1100, in the range of 2 to 99.

CD = a check digit. Specifying a C causes the Interpreter to check bar codes with
MOD-10. The check digit is included in the number of digits.

mini.no.digits and
max.no.digits =

 minimum and maximum number of digits for bar codes to be read
by the PDT 1100, in the range of 3 to 99.

start and stop = start and stop characters. Each of them should be an A, B, C, or D. If a
question mark (?) is specified, it acts as a wild card. The start and stop
characters are included in the number of digits.

CD = a check digit. Specifying a C causes the Interpreter to check bar codes with
MOD-16. The check digit is included in the number of digits.
10-91

PDT 1100 Terminal Programmer’s Guide
Code 39 (M)

Syntax
M[:[mini.no.digits[- max.no.digits]][CD]]

where

If both mini.no.digits and max.no.digits are omitted, the default reading range is 1 to
99 digits. If only max.no.digits is omitted, the PDT 1100 can only read the number of
digits specified by mini.no.digits.

OPEN “BAR:” AS #1 CODE “M:8-12C”

Code 93 (L)

Syntax
L[:[mini.no.digits[- max.no.digits]]]

where

If both mini.no.digits and max.no.digits are omitted, the default reading range is 1 to
99 digits. If only max.no.digits is omitted, the PDT 1100 can only read the number of
digits specified by mini.no.digits.

OPEN “BAR:” AS #1 CODE “L:6-12”

Code 128 (K)

Syntax
K[:[mini.no.digits[- max.no.digits]]]

mini.no.digits and
max.no.digits =

 minimum and maximum number of digits for bar codes to be read
by the PDT 1100, in the range of 1 to 99.

CD = a check digit. Specifying a C causes the Interpreter to check bar codes with
MOD- 43. The check digit is included in the number of digits.

mini.no.digits and
max.no.digits =

 minimum and maximum number of digits for bar codes to be read
by the PDT 1100, in the range of 1 to 99.
10-92

Statement Reference
where

If both mini.no.digits and max.no.digits are omitted, the default reading range is 1 to
99 digits. If only max.no.digits is omitted, the PDT 1100 can only read the number of
digits specified by mini.no.digits.

OPEN “BAR:” AS #1 CODE “K:6-12”

Standard 2 of 5 (STF) (H)

Syntax
H[:[mini.no.digits[- max.no.digits]]][CD]

[startstop]]

where

If both mini.no.digits and max.no.digits are omitted, the default reading range is 1 to
99 digits. If only max.no.digits is omitted, the PDT 1100 can only read the number of
digits specified by mini.no.digits.

Up to eight readcodes can be specified.

If you specify more than one condition to a same read code, all are valid. The sample
below causes the PDT 1100 to read both 6- and 10-digit ITF codes.

OPEN “BAR:” AS #1 CODE “I:6”,“I:10”

mini.no.digits and
max.no.digits =

 minimum and maximum number of digits for bar codes to be read
by the PDT 1100, in the range of 1 to 99.

mini.no.digits and
max.no.digits =

 minimum and maximum number of digits for bar codes to be read
by the PDT 1100, in the range of 1 to 99.

CD = a check digit. Specifying a C causes the Interpreter to check bar codes with
MOD- 10. The check digit is included in the number of digits.

startstop = startstop specifies the normal or short format of the start/stop
characters. Specify N for the normal format; specify S for the short
format. If startstop is omitted, the PDT 1100 can read start/stop
characters in either format.
10-93

PDT 1100 Terminal Programmer’s Guide
Syntax Error

Execution Error

Error Code and Message Meaning

error 71: Syntax error The number of the specified read codes exceeds eight.

Error Code Meaning

02h Syntax error (readcode is missing.)

05h Parameter out of the range (readcode is not correct.)

37h File already open.

3Ah File number out of the range.

45h Device files prohibited from opening concurrently (opening the bar code
device file and the optical interface of the communications device file
concurrently attempted.)
10-94

Statement Reference
OPEN “COM:”

Description
Opens a communications device file.

Syntax

Notes
OPEN “COM:” opens a communications device file and associates it with filenumber for
allowing input/output activities using the communications interface.

Statement Name: Open “Com:” Type: File I/O Statement

Syntax 1 (For direct-connect interface)
OPEN “COM n:[baud][,[parity][,[charalength][,[stopbit][,[RS/CS] [,[timeout]]]]]] ”AS [#]
filenumber

Syntax 2 (For optical interface)
OPEN “COM n: [baud] ”AS [#] filenumber

where:

baud = (For the optical interface) 115200, 57600, 38400, 19200,
9600, or 2400
(For the direct-connect interface) 38400, 19200, 9600,
4800, 2400, 1200, 600, or 300

parity = N, E, or O

charalength = 8 or 7

stopbit = 1 or 2

RS/CS = 0, 1, 2, 3 or 4

timeout = An integer numeral from 0 to 255.

filenumber = A numeric expression which returns a value from 1 to 16.
10-95

PDT 1100 Terminal Programmer’s Guide
! If optional parameters enclosed with brackets are omitted, the most recently
specified values or the defaults become active. Listed below are the defaults:

COM n is a communications device file name.

Since the PDT 1100 supports both optical and direct-connect interfaces but cannot open
them concurrently, set one of the specifications listed above. If you attempt to open both
interfaces concurrently, an execution error occurs.

*** The default interface is an interface selected on the SET COM menu in System Mode.
(For details, refer to the PDT 1100 User's Manual.)

The PDT 1100 cannot open the optical interface and the bar code device file concurrently. If
you attempt to open them concurrently, an execution error occurs.

COM may be in lowercase as shown below.

OPEN “com:” AS #8

Baud rate 9600 bps

Parity check No parity

Character length 8 bits

Stop bit 1 bit

RS/CS control 0 (No control)

Timeout 3 seconds

Optical interface: Supports RS and CS.

Direct-connect interface: Does not support RS and CS.

Interface Communications device file name

Optical interface “COM1:”

Direct-connect interface “COM2:”

Default interface*** “COM:”
10-96

Statement Reference
baud

The optical interface uses one of the following baud rates: 115200, 57600, 38400, 19200,
9600 (default), or 2400. The direct-connect interface uses one of the following baud rates:
38400, 19200, 9600 (default), 4800, 2400, 1200, 600, or 300.

parity

parity is a parity check. This can be N (none - default), E (even), or O (odd).

charalength

charalength is a character length or the number of data bits, and it can 8 (default) or 7 bits.

stopbit

stopbit is the number of stop bits and can be 1 (default) or 2 bits.

RS/CS

RS/CS enables or disables the RS/CS control. It can be 0 (default), 1, 2, 3, or 4, corresponding
to the following functions:

If RS/CS is specified for the optical interface, it is ignored with no execution error.

RS/CS also applies to the direct-connect interface for Busy control.

Following is a program sample for enabling RS/CS control.

OPEN “COM:,,,,1” AS #16

Value of RS/CS PDT 1100

Optical I/F Direct-connect I/F

0 Ignored

1 Ignored

2 Ignored High RD is regarded as a high
CS.

3 Ignored Low RD is regarded as high CS.

4 Ignored CS control disabled (RD is used
as an input port.)
10-97

PDT 1100 Terminal Programmer’s Guide
An OUT statement can be used instead of the OPEN “COM:” statement to control the RS signal
or the ER signal. A WAIT statement or INP function can be used to monitor the CS signal or
CD signal. (To connect the PDT 1100 to an asynchronous half-duplex modem, use the OUT
and WAIT statements and INP function.)

timeout

timeout is the maximum time (from 0 to 255 in increment of 100 ms) until the CS signal
goes ON after the PDT 1100 becomes ready to send data.

Assigning zero (0) causes no timeout.

The optical interface of the PDT 1100 does not support timeout. If specified, the timeout
option is ignored with no execution error. The direct-connect interface supports timeout; set
the RS/CS option to “2” or “3” so the RD signal is regarded as CS. If the RS/CS option is set
to “0,” “1,” or “4”, the value of the timeout option is modified.

Syntax Error

Execution Error

Error Code and Message Meaning

error 71: Syntax error filenumber is missing.

Error Code Meaning

02h Syntax error (the x in “COM:x” contains an invalid parameter.)

37h File already open.

3Ah File number out of range.

45h File already open (there was an attempt to open the bar code device file and
the optical interface of the communications device file concurrently.)
10-98

Statement Reference
OUT

Description
Sends a data byte to an output port.

Syntax

Notes
OUT sends a data byte designated by data to a port specified by portnumber.

! portnumber is not a hardware port on the PDT 1100 but a logical port assigned by
the Interpreter. (Refer to Appendix D, I/O Ports)

! If bits not assigned a hardware resource are specified to portnumber or data, they
are ignored.

Statement Name: Out Type: I/O Statement

OUT portnumber, data

where:

portnumber = A numeric expression.

data = A numeric expression which returns a value from 0 to 255.
10-99

PDT 1100 Terminal Programmer’s Guide
Syntax Error

Execution Error

Example
OUT 3,7

The above example sets the LCD contrast to the maximum.

Reference

Error Code and Message Meaning

error 71: Syntax error portnumber is missing.
data is missing.

Error Code Meaning

05h Parameter out of the range (portnumber or data is out of the range.)

Statements WAIT

Functions INP
10-100

Statement Reference
POWER

Description
Controls the automatic power-off facility.

Syntax

Notes
POWER counter turns off the power after the length of time specified by counter.

! counter is the value in seconds of the power-off. Following is a sample program for
turning off power 4800 seconds after execution of POWER instruction.

POWER 4800

! If no POWER instruction is issued, the default counter value is 180 seconds.

! If any of the following occurs while the power-off counter is counting, the counter is
reset to the preset value and starts counting again:

" Any key is pressed.

" The trigger switch is pressed.

Statement Name: Power Type: I/O Statement

Syntax 1 (Turning off the power according to the power-off counter)
POWER counter

Syntax 2 (Turning off the power immediately)
POWER {OFF|0}

Syntax 3 (Disabling the automatic power-off facility)
POWER CONT

where:

counter = A numeric expression which returns a value from 0 to 32,767.
10-101

PDT 1100 Terminal Programmer’s Guide
" The PDT 1100 sends or receives data via a communications device file. (If a
communications device file is closed, this operation does not reset the power-off
counter.)

Execution of POWER OFF or POWER 0 immediately turns off the power.

! The execution of POWER OFF or POWER 0 deactivates the resume function if preset.

POWER CONT disables the automatic power-off facility.

Execution Error

Error Code Meaning

05h Parameter out of range (counter is out of range.)
10-102

Statement Reference
PRINT

Description
Displays data on the LCD screen.

Syntax

Notes
PRINT displays a number or a character string specified by data at the current cursor position
on the LCD and repositions the cursor according to CR/LFcontrol. To position the cursor,
use a LOCATE statement.

data may be displayed in any mode. Select the screen mode using a SCREEN statement before
execution of the PRINT instruction.

If you specify single-byte ANK characters for data after using a SCREEN statement to select
the two-byte Kanji mode or condensed two-byte Kanji mode, the ANK characters appear in
the half-width size.

CLS

SCREEN 1 '—— Kanji

mode

PRINT “ABC123”

SCREEN 0 '—— ANK mode

PRINT “DEF456”

These statements produce this output:

Statement Name: Print Type: I/O Statement

PRINT [data[CR/LFcontrol...]]

where:

data = A numeric or string expression.

CR/LFcontrol = A comma (,) or a semicolon (;).
10-103

PDT 1100 Terminal Programmer’s Guide
A B C 1 2 3

DEF456

! data may be displayed in standard size or small size depending upon the display font
size selected.

! If you omit data option, a blank line outputs (the cursor moves to the first column
of the next screen line).

! Positive numbers and zero display with a leading space.

! Control codes (08h to 1Fh) appear as a space, except for BS (08h, CR(0Dh) and C
(18h) codes. BS (08h) deletes the character preceding the cursor to move the cursor
backwards by one column:

PRINT CHR$(8);

CR (0Dh) causes a carriage return which moves the cursor to the first column of the
next screen line:

PRINT CHR$(&h0D);

C (18h) clears the LCD screen which moves the cursor to its home position in the top
left corner:

PRINT CHR$(&h18);

CR/LFcontrol determines where the cursor is to be positioned after the PRINT instruction
executes.

If CR/LFcontrol is a comma (,), the cursor moves to the column position of a least multiple
of 8 plus one following the last character output.

Statement example: PRINT 123,

Output: _123____-

If CR/LFcontrol is a semicolon (;), the cursor moves to the column position immediately
following the last character output.

Statement example: PRINT 123;

Output: 123-

If neither a comma (,) nor semicolon (;) is specified to CR/LFcontrol, the cursor moves to
the first column on the next screen line.
10-104

Statement Reference
Statement example: PRINT 123

Output: 123
_

In the above cases, the screen scrolls up so the cursor is always visible on the LCD screen.

To extend one program line to more than 512 characters in a single PRINT statement, use an
underline (_) preceding a CR code instead of a comma (,).

Syntax Error

Reference

Error Code and Message Meaning

error 71: Syntax error data contains a comma (,) or semicolon (;).

Statements LOCATE, SCREEN, and PRINT USING
10-105

PDT 1100 Terminal Programmer’s Guide
PRINT #

Description
Outputs data to a communications device file.

Syntax

Notes
PRINT # outputs a numeric value or a character string specified by data to a communications
device file specified by filenumber.

filenumber is a communications device file number assigned when the file is opened.

CR/LFcontrol

! If CR/LFcontrol is a comma (,), the PRINT # instruction pads data with spaces so
the number of data bytes becomes a least multiple of 8 before outputting the data.

Statement example: PRINT #1,“ABC”,“123”

Output: ABC_ _ _ _ _123 CR LF (“_” denotes a space.)

! If CR/LFcontrol is a semicolon (;), the PRINT # instruction outputs data without
adding spaces or control codes.

Statement example: PRINT #1,“ABC”;“123”;

Output: ABC123

Statement Name: Print # Type: File I/O Statement

PRINT # filenumber[,data[CR/LFcontrol...]]

where:

filenumber = A numeric expression which returns a value from 1 to
16.

data = A numeric or string expression.

CR/LFcontrol = A comma (,) or a semicolon (;).
10-106

Statement Reference
! If neither a comma (,) nor semicolon (;) is specified to CR/LFcontrol, the PRINT #
instruction adds CR and LF codes.

Statement example: PRINT #1,“ABC123”

Output: ABC123 CR LF

To extend one program line to more than 512 characters in a single PRINT# statement, use
an underline (_) preceding a CR code, instead of a comma (,).

Syntax Error

Execution Error

Reference

Error Code and Message Meaning

error 71: Syntax error filenumber is missing.
data contains a comma (,) or semicolon (;).

Error Code Meaning

34h Bad file name or number (filenumber of an unopened file specified.)

36h Improper file type (filenumber of a file other than communications device
files specified.)

3Ah File number out of range.

Statements OPEN
10-107

PDT 1100 Terminal Programmer’s Guide
PRINT USING

Description
Displays data on the LCD screen under formatting control.

Syntax

Notes
PRINT USING displays a number or a character string specified by expression or
stringexpression on the LCD according to a format specified by numericformat or
stringformat, respectively.

To extend one program line to more than 512 characters in a single PRINT USING statement,
use an underline (_) preceding a CR code, instead of a comma (,).

numericformat is a formatting string consisting of #, decimal point (.), and/or +, each of
which causes a special printing effect as described below.

Represents a digit position.

If the number specified by expression has fewer digits than the number of digit
positions specified by #, it is padded with spaces and right-justified.

Statement Name: Print Using Type: I/O Statement

Syntax 1 (Displaying numbers)
PRINT USING “numericformat”; expression[CR/LFcontrol [expression]...]

Syntax 2 (Displaying strings)
PRINT USING “stringformat”; stringexpression[CR/LFcontrol [stringexpression]...]

where:

numericformat = #, a decimal point (.), and/or +.

stringformat = !, @, and/or &

CR/LFcontrol = A comma (,) or a semicolon (;).
10-108

Statement Reference
Statement example: PRINT USING “#####”;123

Output: 123

If the number specified by expression has more digits than the number of digit
positions specified by #, the extra digits before the decimal point are truncated and
those after the decimal point are rounded.

Statement example: PRINT USING “###.#”;1234.56

Output: 234.6

. Specifies the position of the decimal point.

If the number specified by expression has fewer digits than the number of digit
positions specified by # after the decimal point, the insufficient digits appear as zeros.

Statement example: PRINT USING “####.###”;123

Output: 123.000

+ Displays the sign of the number.

If + is at the beginning of the format string, the sign appears before the number
specified by expression; if + is at the end of the format string, the sign appears after
the number. If the number specified by expression is a positive number or zero, it
is preceded or followed by a space instead of a sign.

Statement example: PRINT USING “+#####”;-123

Output: -123

stringformat is a formatting string consisting of !, @, and/or &&, each of which causes a
special printing effect as described below.

! Displays the first character of the stringexpression.

Statement example: PRINT USING “!”;“ABC”

Output: A

@ Displays the entire stringexpression.

Statement example: PRINT USING “@”;“ABC”

Output: ABC
10-109

PDT 1100 Terminal Programmer’s Guide
&& Displays the first n+2 characters of the stringexpression, where n is the number
of spaces between the ampersands (& &).

If the format field specified by stringformat is longer than the
stringexpression, the string is left-justified and padded with space; if it is shorter,
the extra characters are truncated.

Statement example: PRINT USING “& &”;“ABCDE”

Output: ABCDE

Below are statement examples containing incorrect formatting strings.

Example: PRINT USING “Answer=###”;a

Example: PRINT USING “####.# ######”;a,b

expression or stringexpression

If more than one number or string is specified, the PRINT USING instruction displays each of
them according to numericformat or stringformat, respectively.

PRINT USING

“###”;a,b,c

CR/LFcontrol

CR/LFcontrol determines where the cursor is to be positioned after the PRINT USING
instruction executes. For details, refer to the CR/LFcontrol in the PRINT statement.

Syntax Error

Error Code and Message Meaning

error 71: Syntax error numericformat is missing.
expression or stringexpression contains a comma (,) or
semicolon (;).

error 86: ';' missing No semicolon (;) follows “numericformat” or “string-format”.
10-110

Statement Reference
PUT

Description
Writes a record from a field variable to a data file.

Syntax

Notes
PUT writes a record from a field variable(s) declared by the FIELD statement to a data file
specified by filenumber.

! filenumber is the number of a data file opened by the OPEN statement.

! recordnumber is the record number where the data is to be placed in a data file,
within the range of 1 to the maximum number of registrable records (filelength)
specified by the OPEN statement (when a new data file is created).

! If recordnumber option is omitted, the default record number is one more than the
last record written.

! Record numbers to be specified do not have to be continuous. If you specify record
number 10 when records 1 through 7 have been written, for example, the PUT
instruction creates records 8 and 9 filled with spaces and then writes data to record
10.

! If the actual data length of a field variable is longer than the field width specified by
the FIELD statement, the excess is truncated from the right end column.

! Since data in a data file is treated as text (ASCII strings), numeric data should be
converted into the proper string form with the STR$ function before being assigned
to a field variable.

Statement Name: Put Type: File I/O Statement

PUT [#] filenumber[,recordnumber]

where:

filenumber = A numeric expression which returns a value from 1 to 16.

recordnumber = A numeric expression which returns a value from 1 to
32,767.
10-111

PDT 1100 Terminal Programmer’s Guide
! The PUT statement cannot write data to files stored in the flash ROM (B:).

Syntax Error

Execution Error

Reference

Error Code and Message Meaning

error 71: Syntax error filenumber is missing.

Error Code Meaning

05h Parameter out of range (either filenumber or recordnumber is out of range.)

07h Insufficient memory space.

34h Bad file name or number (filenumber of an unopened file specified.)

36h Improper file type (filenumber of a file other than communications device
files specified.)

3Eh A PUT instruction executed without a FIELD instruction.

41h File damaged.

42h File write error (writing onto a read-only file attempted.)

43h Not allowed to access data in flash ROM.

Statements OPEN and GET
10-112

Statement Reference
READ

Description
Reads data defined by DATA statement(s) and assigns them to variables.

Syntax

Notes
READ reads as many data values as necessary from data stored by DATA statement and assigns
them, one by one, to each variable in the READ instruction.

! If the data type of a read value does not match that of the corresponding variable,
the following operations take place so that no error occurs:

! The READ instruction converts the numeric data into the string data type and then
assigns it to the string variable.

Statement example: DATA 123
READ a$
PRINT a$

Output 123

If the string data is valid as numeric data, the READ instruction converts the string
data into the numeric data type and then assigns it to the numeric variable.

Statement example: DATA “123”
READ b
PRINT b

Output: 123

Statement Name: Read Type: I/O Statement

READ variable[,variable...]

where:

variable = A numeric or string variable.
10-113

PDT 1100 Terminal Programmer’s Guide
If the string data is invalid as numeric data, the READ instruction assigns the value 0
to the numeric variable.

Statement example: DATA “ABC”
READ c
PRINT c

Output: 0

! The number of data values stored by the DATA statement must be equal to or greater
than that of variables specified by the READ statement. If not, an execution error
occurs.

! To specify the desired DATA statement location where the READ instruction should
start reading data, use the RESTORE statement.

Execution Error

Reference

Error Code Meaning

04h Out of DATA (DATA values remain to be read by the READ instruction.)

Statements DATA and RESTORE
10-114

Statement Reference
REM

Description
Declares the rest of a program line to be remarks or comments.

Syntax

Notes
REM causes the rest of a program line to be treated as a programmer's remark or comment for
the sake of the program readability and future program maintenance. The remark statements
are non-executable.

! Difference in description between Syntax 1 and Syntax 2:

The keyword REM cannot begin in the first column of a program line. When following
any other statement, REM should be separated from it with a colon (:).

An apostrophe ('), which may be replaced for keyword REM, can begin in the first
column. When following any other statement, an apostrophe (') requires no colon (:)
as a delimiter.

! You can branch to a REM statement labelled by the GOTO or GOSUB statement. The
control is transferred to the first executable statement following the REM statement.

Statement Name: Rem Type: Declarative Statement

Syntax 1
REM comment

Syntax 2
' comment
10-115

PDT 1100 Terminal Programmer’s Guide
Syntax Error

Reference

Error Code and Message Meaning

error 2: Improper label

name (redefinition,
variable name, or
reserved word used)

REM begins in the first column of a program line.

Statements $INCLUDE
10-116

Statement Reference
RESTORE

Description
Specifies a DATA statement location where the READ statement should start reading data.

Syntax

Notes
RESTORE specifies a DATA statement location where the READ statement should start reading
data, according to label designating the DATA statement.

! You can specify DATA statements in included files.

! If label option is omitted, the default label is a DATA statement appearing first in the
user program.

Syntax Error

Reference

Statement Name: Restore Type: I/O Statement

RESTORE [label]

Error Code and Message Meaning

error 81: Must be DATA
statement label.

label is not a DATA statement.

Statements DATA and READ
10-117

PDT 1100 Terminal Programmer’s Guide
RESUME

Description
Causes program execution to resume at a specified location after control is transferred to an
error-handling routine.

Syntax

Notes
RESUME returns control from the error-handling routine to a specified location of the main
program to resume program execution.

! The RESUME instruction has three forms as listed below. The form determines where
execution resumes.

! The RESUME statement should be put inside the error-handling routine.

Statement Name: Resume Type: Error Control Statement

Syntax 1
RESUME [0]

Syntax 2
RESUME NEXT

Syntax 3
RESUME label

RESUME or RESUME 0 Resumes program execution with the statement that caused the
error.

RESUME NEXT Resumes program execution with the statement immediately
following the one that caused the error.

RESUME label Resumes program execution with the statement designated by
label.
10-118

Statement Reference
Syntax Error

Execution Error

Reference

Error Code and Message Meaning

error 71: Syntax error label has not been defined.

Error Code Meaning

14h RESUME without error (RESUME instruction occurs before the start of an
error-handling routine.)

Statements ON ERROR GOTO

Functions ERR and ERL
10-119

PDT 1100 Terminal Programmer’s Guide
RETURN

Description
Returns control from a subroutine or an event-handling routine (for keystroke interrupt).

Syntax

Notes
RETURN instruction in a subroutine returns control to the instruction immediately following
the GOSUB that called the subroutine.

RETURN instruction in an event-handling routine for keystroke interrupt returns control to the
program following the one where the keystroke trap occurred.

! No label designating a return location should be specified in a RETURN statement.

! You may specify more than one RETURN statement in a subroutine or an event-
handling routine.

Reference

Statement Name: Return Type: Flow Control Statement

RETURN

Statements GOSUB and ON KEY...GOSUB
10-120

Statement Reference
SCREEN

Description
Sets the screen mode and the character attribute.

Syntax

Notes
SCREEN sets the screen mode and the character attribute of the LCD screen according to
screenmode and charaattribute as listed below.

! At program start-up, the defaults – single-byte ANK mode and normal display – are
active.

Statement Name: Screen Type: I/O Statement

Syntax 1
SCREEN screenmode[,charaattribute]

Syntax 2
SCREEN , charaattribute

where:

screenmode and
charaattribute = A numeric expression which returns a value 0 or 1.

Screen mode screenmode SCREEN statement

Single-byte ANK mode
(default)

0 SCREEN 0

Character attribute charaattribute SCREEN statement

Normal display (default) 0 SCREEN , 0

Reversed display 1 SCREEN , 1
10-121

PDT 1100 Terminal Programmer’s Guide
! If a parameter is omitted, the corresponding screen mode or character attribute does
not change.

Execution Error

Error Code Meaning

02h Syntax error

05h Parameter out of the range
10-122

Statement Reference
SELECT...CASE...END SELECT

Description
Conditionally executes a statement block depending upon the value of an expression.

Syntax

Notes
This instruction executes one of the statementblocks depending upon the value of
conditionalexpression according to the steps below.

1. SELECT evaluates conditionalexpression and compares it with tests sequentially
to look for a match.

2. When a match is found, the associated statementblock executes and passes control
to the first statement following the END SELECT.

If no match is found, the statementblock following the CASE ELSE executes and
passes control to the first statement following the END SELECT. If you include no
CASE ELSE, control passes to the first statement following the END SELECT.

Statement Name: Select ... Case ... End Select Type: Flow Control Statement

SELECT conditionalexpression

CASE test1

[statementblock]

[CASE test2

[statementblock]]...

[CASE ELSE

[statementblock]]

END SELECT

where:

conditionalexpression,
test1 and test2 = A numeric or string expression.
10-123

PDT 1100 Terminal Programmer’s Guide
! If the SELECT statement block includes more than one CASE statement containing the
same value of test, only the first CASE statement executes and passes control to the
first statement following the END SELECT.

! If no executable statement follows a CASE, control passes to the first statement
following the END SELECT.

! conditionalexpression (numeric or string) and tests must agree in type.

! Up to 10 levels of SELECT...CASE...END SELECT instructions can be nested.
SELECT a

CASE 1

SELECT b

CASE 3

PRINT “a=1,b=3”

END SELECT

CASE 2

PRINT “a=2”

END SELECT

! When using the SELECT...CASE statement block with other block-structured
statements (FOR...NEXT, IF...THEN...ELSE...END IF, and WHILE...WEND), you can nest
them up to 30 levels.

Syntax Error

Error Code and Message Meaning

error 26: Too many nesting levels.

error 55: Incorrect use
of SELECT...CASE...END
SELECT

CASE, CASE ELSE, or END SELECT statement appears outside of the
SELECT statement block.

error 56: Incomplete
control structure

No END SELECT corresponds to SELECT.

error 71: Syntax error conditionalexpression and tests do not agree in type.
10-124

Statement Reference
Execution Error

Error Code Meaning

0Ch CASE and END SELECT without SELECT.

10h Expression too long or complex (too many levels of program nesting by
SELECT statement.)
10-125

PDT 1100 Terminal Programmer’s Guide
WAIT

Description
Pauses program execution until a designated input port presents a given bit pattern.

Syntax

Notes
WAIT suspends a user program while monitoring the input port designated by portnumber
until the port presents the bit pattern given by ANDbyte and XORbyte. (Refer to Appendix D,
I/O Ports)

Each bit in ANDbyte corresponds to a port bit to be turned on. Each bit in XORbyte
corresponds to a port bit to be turned off.

The byte at the input port is first XORed with the XORbyte parameter. Next, the result is
ANDed with the value of ANDbyte parameter.

If the final result is zero (0), the WAIT instruction rereads the input port and continues the
same process. If it is nonzero, control passes to the statement following the WAIT.

! If XORbyte option is omitted, the WAIT instruction uses a value of zero (0).
WAIT 1,x ' = WAIT 1,x,0

! If an invalid port number or bit data is specified, zero (0) is assumed so the WAIT
instruction falls into an infinite loop.

Statement Name: Wait Type: I/O Statement

WAIT portnumber, ANDbyte[,XORbyte]

where:

portnumber = A numeric expression.

ANDbyte and
XORbyte = A numeric expression which returns a value from 0 to 255.
10-126

Statement Reference
Syntax Error

Execution Error

Example
WAIT 0,&H03

The above instruction suspends a user program until data is entered from the
keyboard or the bar code reader.

Reference

Error Code and Message Meaning

error 71: Syntax error portnumber is missing.
ANDbyte is missing.

Error Code Meaning

05h Parameter out of range.

Statements OUT

Functions INP
10-127

PDT 1100 Terminal Programmer’s Guide
WHILE...WEND

Description
Continues to execute a statement block as long as the conditional expression is true.

Syntax

Notes
! A WHILE...WEND continues to execute statementblock as long as the

conditionalexpression is true (not zero) according to the steps below.

1. The conditionalexpression in the WHILE statement is evaluated.

2. If the condition is false (zero), the statementblock is bypassed and control passes
to the first statement following the WEND.

If the condition is true (not zero), the statementblock is executed. When WEND
statement is encountered, control returns to the WHILE statement. (Go back to step
(1).)

! The WHILE and WEND statements cannot be written on a same program line.

! If no WEND statement is written corresponding to the WHILE, a syntax error occurs.

! The BASIC 3.0 does not support a DO...LOOP statement block.

! You can nest the WHILE...END instructions to a maximum of 10 levels.

Statement Name: While ... Wend Type: Flow Control Statement

WHILE conditionalexpression
[statementblock]

WEND
10-128

Statement Reference
! When using the WHILE...WEND statement with other block-structured statements
(FOR...NEXT, IF...THEN...ELSE...END IF, and SELECT...CASE...END SELECT), you can
nest them up to 30 levels.

WHILE a

WHILE b

WHILE c

•

•

•

WEND

WEND

WEND

Syntax Error

Reference

Error Code and Message Meaning

error 26: Too many nesting levels.

error 57: Incorrect use
of WHILE...END

WEND appears outside of the WHILE statement block.

error 58: Incomplete
control structure

No WEND corresponds to WHILE.

Statements FOR...NEXT
10-129

PDT 1100 Terminal Programmer’s Guide
XFILE

Description
Transmits a designated file according to the specified communications protocol.

Syntax

Notes
XFILE transmits a data file designated by “filename” or “drivename:filename” between
the PDT 1100 and the host computer according to the communications protocol specified by
“protocolspec.” For types of protocol, refer to the PDT 1100 User's Manual.

“filename” or “drivename:filename”

“filename” is a data file name. For the format of data file names, refer to an OPEN
statement.

“protocolspec”

“protocolspec” parameter can specify the following protocol specifications:

Statement Name: Xfile Type: I/O Statement

Syntax 1
XFILE “filename”[,“protocolspec”]

Syntax 2
XFILE “drivename:filename”[,“protocolspec”]

where:

“filename,” and
“protocolspec,” and

“drivename:filename” = String expressions.
10-130

Statement Reference
Transmission direction:

Example: XFILE “d2.dat”,“R”

“filename” or “drivename:filename” cannot be omitted even in file reception.

Serial number:

Example: XFILE “d2.dat”,“S”

A 5-digit decimal serial number follows the text control character heading each
transmission block. When less than five digits, the upper digits with no value are
filled with zeros.

Horizontal parity checking (BCC):

Example: XFILE “d2.dat”,“P”

A block check character (BCC) follows the terminator of each transmission block.
The horizontal parity checking checks all bits except for headers (SOH and STX).

Parameter omitted (default) Transmits a file from the PDT 1100.

R or r Receives a file from the host
computer.

Parameter omitted (default) No serial number setting.

S or s Adds a serial number to every
transmission block.

Parameter omitted (default) No horizontal parity checking.

P or p Suffixes a BCC to every transmission
block.
10-131

PDT 1100 Terminal Programmer’s Guide
Transmission monitoring:

Example: XFILE “d2.dat”,“M”

A 5-digit decimal serial number appears at the current cursor position before
execution of the XFILE instruction.

Space codes in the tail of a data field during file transmission:

Example: XFILE “d2.dat”,“T”

Space codes in the tail of a data field are handled as 20h in file reception.

Parameter omitted (default) No serial number indication.

M or m Displays a serial number of the
transmission block during file
transmission.

Parameter omitted (default) Ignores space codes.

T or t Handles space codes as data.
10-132

Statement Reference
Timeout length

Specify the timeout length when a link is to be established from 1to 9.

Example: XFILE “d2.dat”,“2"

In file reception, the timeout length is 60 seconds; in file transmission, the maximum
number of ENQ retries is 20 (when the PDT 1100 protocol is used.)

! A communications device file should be opened before execution of the XFILE
instruction (refer to OPEN “COM:” on page 10-95.)

! A data file to be transmitted should be closed beforehand.

! To transfer a file using the PDT 1100 Ir protocol or multilink protocol, set the PDT
1100's ID from 1 to FFFFh. Specifying zero (0) to the ID results in an execution error.

! Undefined letters, if specified in protocolspec, are ignored. The specifications
below produce the same operation. The last timeout value becomes active.

“RSPMT1”

“R,S,P,M,T,1”

“m,p,s,r,m,t,1”

“ABCDEFGHIJKLMNOPQRSTUVWXYZ1”

Table 10-4. Timeout Length for XFILE

Set value Downloading Uploading

PDT 1100 protocol PDT 1100 Ir protocol

1 30 sec. Retries of ENQ, 10 times Retries of ENQ, 60 times

2 60 sec. Retries of ENQ, 20 times Retries of ENQ, 120 times

3 90 sec. Retries of ENQ, 30 times Retries of ENQ, 180 times

4 120 sec. Retries of ENQ, 40 times Retries of ENQ, 240 times

5 150 sec. Retries of ENQ, 50 times Retries of ENQ, 300 times

6 180 sec. Retries of ENQ, 60 times Retries of ENQ, 360 times

7 210 sec. Retries of ENQ, 70 times Retries of ENQ, 420 times

8 240 sec. Retries of ENQ, 80 times Retries of ENQ, 480 times

9 No timeout No timeout No timeout
10-133

PDT 1100 Terminal Programmer’s Guide
“2”

“3462”

“22”

! If you transmit a data file with the same name as another file in the receiving station:

" the new file replaces the old when the field structure is matched.

" an execution error occurs when the field structure is not matched.

To receive a data file with the same name at the PDT 1100, delete the old file beforehand.

! Press the Clear key during file transmission to abort the execution of the XFILE
instruction. This issues an EOT code and displays an execution error.
10-134

Statement Reference
Syntax Error

Execution Error

Example
The sample below transmits a data file by adding a serial number and horizontal parity
checking, and then displays the serial number on the first line of the screen.

CLOSE

OPEN “d0.dat”AS #1

Error Code and Message Meaning

error 3: ‘ ” ’ missing No double quote precedes or follows filename or
drivename:filename.

error 71: Syntax error filename or drivename:filename is not enclosed in double
quotes.

Error Code Meaning

02h Syntax error (filename is not correct.)

07h Insufficient memory space (during file reception, the memory runs out.)

32h File type mismatch (the received file is not a data file.)

33h Received text format not correct.

34h Bad file name or number (filename of an unopened file specified.)

35h File not found.

37h File already open.

38h The file name is different from that in the receive header.

3Bh The number of records is greater than the defined maximum value.

40h ID not set.

46h Communications error (a communications protocol error has occurred.)

47h Abnormal end of communications or termination of communications by
the Clear key (Clear key has aborted the file transmission.)
10-135

PDT 1100 Terminal Programmer’s Guide
FIELD #1,10 AS A$,20 AS B$

L%=LOF(1)

CLOSE

LOCATE 1,1

PRINT “00000/

”;RIGHT$(“00000”+MID$(STR$(L%),2),5)

LOCATE 1,1

OPEN “COM:19200,N,8,1” AS #8

XFILE “d0.dat”,“SPM”

CLOSE #8

Before file transmission After file transmission

00000/00100 00100/00100

Reference

Statements OPEN and OPEN “COM:”
10-136

Statement Reference
$INCLUDE

Description
Specifies an included file.

Syntax

Notes
$INCLUDE reads a source program specified by ' filename' into the program line following
the $INCLUDE line in compilation.

Storing definitions of variables, subroutines, user-defined functions, and other data to be
shared by source programs in the included files promotes application of valuable program
resources.

If you describe a $INCLUDE statement at the beginning of source programs, for example, same
user-defined functions or subroutines may be shared by those source programs.

! filename is a file to be included.

! If the specified filename does not exist in compiling a source program, a fatal error
occurs and compilation terminates.

! Do not place characters, including a space, between $ and INCLUDE and between
single quotes (') and filename.

! As shown below, if any character except for space or tab is placed between REM and
$INCLUDE in Syntax 1 or between a single quote (') and $INCLUDE in Syntax 2, the
program line is regarded as a comment line and the $INCLUDE instruction does not
execute.

Statement Name: $ Include Type: File I/O Statement

Syntax 1
REM $INCLUDE:'filename'

Syntax 2
'$INCLUDE:'filename'
10-137

PDT 1100 Terminal Programmer’s Guide
REM xxx $INCLUDE:'mdlprg1.SRC'

! Before specifying included files, debug them carefully.

! $INCLUDE instructions cannot be nested.

! Program lines in included files are not output to the compile list.

If a compilation error occurs in an included file, the error message shows the line number
where the $INCLUDE statement is described.

! Symbols defined in included files are not output to the symbol list.

! If a program line in an included file refers to a variable, user-defined function, or
others defined outside the included file, the program line number where the
$INCLUDE statement is described is output to the cross reference list, as the referred-
to line.

Fatal Error

Error Code and Message Meaning

fatal error 30: Cannot
find include file “XXX”

No included file is found.

fatal error 31: Cannot
nest include file

Included files are nested.
10-138

Chapter 11 Function Reference

Introduction

This chapter provides detailed descriptions of the functions used to program the PDT 1100.
11-1

PDT 1100 Terminal Programmer’s Guide
ABS

Description
Returns the absolute value of a numeric expression.

Syntax

Notes
ABS returns the absolute value of numericexpression. The absolute value is the magnitude
of numericexpression regardless of sign, e.g., both ABS (-12.34) and ABS (12.34) are
equal to 12.34.

! If a real number is entered, this function returns a real number; if an integer number
is entered, an integer number is returned.

Function Name: ABSolute Type: Numeric Function

ABS(numericexpression)
11-2

Function Reference
ASC

Description
Returns the ASCII code value of a given character.

Syntax

Notes
ASC returns the ASCII code value of the first character of stringexpression, which is an
integer from 0 to 255. (For the ASCII character codes, refer to Appendix C, Character Sets.)

! If stringexpression is a null string, this function returns the value 0.

Reference

Function Name: ASCii code Type: String Function

ASC(stringexpression)

Functions CHR$
11-3

PDT 1100 Terminal Programmer’s Guide
BCC$

Description
Returns a block check character (BCC) of a data block.

Syntax

Notes
BCC$ calculates a block check character (BCC) of datablock according to the block checking
method specified by checktype, and returns the BCC.

! checktype is 0, 1, or 2 which specifies SUM, XOR, or CRC-16, respectively, as
described below.

Function Name: Block Check Character Type: String Function

BCC$(datablock, checktype)

where:

datablock = A string expression.

checktype = A numeric expression which returns a value from 0 to 2.

Table 11-1. Block Checking Method and Description

checktype Block
checking
method

No. of
chars for

BCC

BCC Generative
polynomial

0 SUM 1 Lowest one byte of the sum of all character
codes contained in a datablock.

1 XOR 1 One byte gained by XORing all character
codes contained in a datablock.

2 CRC-16 2 Two bytes gained from the cyclic redundancy
check operation applied to bit series of all
characters in datablock with the bit order in
each byte inverted.

X16 +X15 +X2 +1
11-4

Function Reference
! BCC$ performs block checking and generates a BCC for a data block.

Execution Error

Error code Meaning

05h Parameter out of range (checktype is out of range.)
11-5

PDT 1100 Terminal Programmer’s Guide
CHKDGT$

Description
Returns a check digit of bar code data.

Syntax

Notes
CHKDGT$ calculates a check digit (CD) of barcodedata according to the calculation method
specified by CDtype and returns it as one-character string.

CDtype is A, I, M or N, which specifies the bar code type and the corresponding calculation
method as listed below.

CDtype may be in lowercase.

Function Name: CHecK DiGiT Type: String Function

CHKDGT$(barcodedata, CDtype)

where:

barcodedata and
CDtype = String expressions.

CDtype Bar Code Type Calculation Method

A EAN and UPC MOD-10 (Modulo arithmetic-10)

I ITF (Interleaved 2 of 5) MOD-10 (Modulo arithmetic-10)

M Code-39 MOD-43 (Modulo arithmetic-43)

N NW-7 (Codabar) MOD-16 (Modulo arithmetic-16)
11-6

Function Reference
When CDtype is A (EAN or UPC), this function identifies the EAN or UPC of barcodedata
depending upon the data length (number of digits) as listed below.

If the data length is a value other than 13, 8, and 7, this function returns a null string.

! To check that the CD is correct, pass a CD-suffixed barcodedata to a CHKDGT$ as
shown below. If the returned value is equal to the CD, the CD data is suitable for the
barcodedata.

Sample coding: IF CHKDGT$(“49400458”,”A”)=”8”
THEN...

! To add a CD to bar code data, pass barcodedata followed by a dummy character
to a CHKDGT$ as shown below. The returned value will become the CD to be replaced
with the dummy character.

Sample coding: PRINT “4940045”+CHKDGT$(“4940045”+”0”,”A”)
49400458

When CDtype is I (ITF), the length of barcodedata must be an even number of two or more
digits. If not, this function returns a null string.

! To check that the CD is correct, pass a CD-suffixed barcodedata to a CHKDGT$ as
shown below. If the returned value is equal to the CD, the CD data is suitable for the
barcodedata.

Sample coding: IF CHKDGT$(“123457”,”I”)=”7”
THEN...

! To add a CD to bar code data, pass barcodedata followed by a dummy character
to a CHKDGT$ as shown below. The returned value becomes the CD to be replaced
with the dummy character.

Sample coding: PRINT “12345”+CHKDGT$(“12345”+”0”,”I”)
123457

When CDtype is M (Code 39), the length of barcodedata must be two or more digits not
including start and stop characters. If not, this function returns a null string.

Data length of barcodedata Universal Product Codes

13 EAN-13 or UPC-A

8 EAN-8

7 UPC-E
11-7

PDT 1100 Terminal Programmer’s Guide
! To check that the CD is correct, pass a CD-suffixed barcodedata to a CHKDGT$ as
shown below. If the returned value is equal to the CD, the CD data is suitable for the
barcodedata.

Sample coding: IF CHKDGT$(“CODE39W”,”M”)=”W”
THEN...

! To add a CD to bar code data, pass barcodedata followed by a dummy character
to a CHKDGT$ as shown below. The returned value will become the CD to be replaced
with the dummy character.

Sample coding: PRINT “CODE39”+CHKDGT$(“CODE39”+”0”,”M”)
CODE39W

When CDtype is N (NW-7), the length of barcodedata must be three digits or more including
start and stop characters. If not, this function returns a null string.

! To check that the CD is correct, pass a CD-suffixed barcodedata to a CHKDGT$ as
shown below. If the returned value is equal to the CD, the CD data is suitable for the
barcodedata.

Sample coding: IF CHKDGT$(“a0123-a”,”N”)=”-”
THEN...

! To add a CD to bar code data, pass barcodedata followed by a dummy character
and include start and stop characters to a CHKDGT$ as shown below. The returned
value becomes the CD to be replaced with the dummy character.

Sample coding: ld%=LEN(“a0123a”)
PRINT LEFT$(“a0123a”,ld%-1)+CHKDGT$
(“a01230a”,”N”)+RIGHT$(“a0123a”,1)
a0123-a

Execution Error

Reference

Error code Meaning

05h Parameter out of range (CDtype is out of range.)

Statements OPEN “BAR:”
11-8

Function Reference
CHR$

Description
Returns the character corresponding to a given ASCII code.

Syntax

Notes
CHR$ converts a numerical ASCII code specified by characode into the equivalent single-byte
character. This function sends control codes (e.g., ENQ and ACK) to a communications
device file or displays a double quotation mark or other characters having special meanings
in the BASIC 3.0.

Execution Error

Example
! To output an ACK code to a communications device file, use CHR$(&H06). The

ASCII value for the ACK code is &H06.
PRINT #1,CHR$(&H06);

! To display control codes from 8 (08h) to 31 (1Fh), refer to the program examples
shown in the PRINT statement.

! To display double quotation marks around a string, use CHR$(34) as shown below.
The ASCII value for a double quotation mark is 34 (22h).

Function Name: CHaRacter code Type: String Function

CHR$(characode)

where:

characode = A numeric expression which returns a value from 0 to 255.

Error code Meaning

05h Parameter out of range (characode is out of range.)
11-9

PDT 1100 Terminal Programmer’s Guide
PRINT CHR$(34);”bar code”;CHR$(&H22)

“bar code”

Reference

Statements PRINT

Functions ASC
11-10

Function Reference
COUNTRY$

Description
Sets a national character set or returns a current country code.

Syntax

Notes

Syntax 1
COUNTRY$ sets a national character set specified by countrycode. The national character set
is assigned to codes from 32 (20h) to 127 (7Fh). (Refer to National Character Sets on page
C-3.)

! “countrycode” specifies one of the following national character sets:

Function Name: COUNTRY Type: I/O Function

Syntax 1 (Setting a national character set)
COUNTRY$=“countrycode”

Syntax 2 (Returning a country code)
COUNTRY$

where:

countrycode = A string expression--A, D, E, F, G, I, J, N, S, or W

countrycode National character set

A America (default)

D Denmark

E England

F France

G Germany
11-11

PDT 1100 Terminal Programmer’s Guide
! After setting a national character set, you may display it for codes from 32 (20h) to
127 (7Fh) on the LCD.

! If “countrycode” is omitted, the default national character set is America (code A) .

! “countrycode” set by this function is effective in the programs chained by CHAIN
statements.

! If “countrycode” has more than one character, only the first takes effect.

! If “countrycode” is a letter other than those listed above, the function is ignored.

! “countrycode” may be in lowercase.
COUNTRY$=“j”

Syntax 2
COUNTRY$ returns a current country code as an uppercase alphabetic letter.

I Italy

J Japan (default)

N Norway

S Spain

W Sweden
11-12

Function Reference
CSRLIN

Description
Returns the current row number of the cursor.

Syntax

Notes
CSRLIN returns the current row number of the cursor in the current screen mode selected by
a SCREEN statement as an integer.

If the current screen mode is the single-byte ANK mode, this function returns a value from 1
to 6 (when the standard-size font is selected) or from 1 to 8 (when the small-size font is
selected); if it is the two-byte Kanji mode, this function returns a value from 1 to 5 (when the
standard-size font is selected) or from 1 to 7 (when the small-size font is selected).

! Even if the cursor is invisible (by a LOCATE statement), the CSRLIN function operates.

! For the current column number of the cursor, refer to the POS function.

Reference

Function Name: CurSor LINe Type: I/O Function

CSRLIN

Statements LOCATE and SCREEN

Functions POS
11-13

PDT 1100 Terminal Programmer’s Guide
DATE$

Description
Returns the current system date or sets a specified system date.

Syntax

Notes

Syntax 1
DATE$ returns the current system date as an 8-byte string. The string has the format below.

yy/ mm/ dd

where yy is the lower two digits of the year from 00 to 99, mm is the month from 01 to 12,
and dd is the day from 01 to 31.

Syntax 2
DATE$ sets the system date specified by “date”. The format of “date”is the same as that in
syntax 1.

Example: date$=”90/10/12”

! The year yy must be the lower two digits of the year: otherwise, the system does not
compensate for leap years .

Function Name: DATE Type: I/O Function

Syntax 1 (Retrieving the current system date)
DATE$

Syntax 2 (Setting the current system date)
DATE$=“date”

where:

date = A string expression.
11-14

Function Reference
! The calendar clock is backed up by the battery. (For the system time, refer to the
TIME$ function.)

Execution Error

Reference

Error code Meaning

05h Parameter out of range (date is out of range.)

Functions TIME$
11-15

PDT 1100 Terminal Programmer’s Guide
EOF

Description
Tests whether the end of a device I/O file has been reached.

Syntax

Notes
EOF tests for an end of a file designated by filenumber, and returns -1 (true) if no data
remains, or 0 (false) if any data remains.

! filenumber should be the file number of an opened device file.

! The EOF function cannot be used for data files. Specifying a data file number for
filenumber causes an execution error.

Function Name: End Of File Type: File I/O Function

EOF([#] filenumber)

where:

filenumber = A numeric expression which returns a value from 1 to 16.

File Type Returned Value End-of-file Condition

Communications device file -1 (true) No data remains in the receive buffer.

0 (false) More than one character remains in the
receive buffer.

Bar code device file -1 (true) No data remains in the bar code buffer.

0 (false) Any data remains in the bar code buffer.
11-16

Function Reference
Execution Error

Reference

Error code Meaning

34h Bad file name or number (filenumber of an unopened file specified.)

36h Improper file type (filenumber of a data file specified.)

3Ah File number out of range.

Statements INPUT#, LINE INPUT#, OPEN “BAR:”, and OPEN “COM“”

Functions INPUT$, LOC, and LOF
11-17

PDT 1100 Terminal Programmer’s Guide
ERL

Description
Returns the current instruction location of the program where an execution error occurred.

Syntax

Notes
ERL returns the current instruction location of the program where an execution error
occurred most recently.

! The ERL function works only with line numbers, not labels.

! Addresses which the ERL returns correspond to ones that are output to the left end
of the address-source list in hexadecimals when a +L option is specified in
compilation, if converted from decimals to hexadecimals with the HEX$ function.

! Since the ERL function returns a significant value only when an execution error
occurs, use this function in error-handling routines where you can check the error
type for effective error recovery.

! The returned value is in decimals, so it may be necessary to use the HEX$ function for
decimal-to-hexadecimal conversion.

Reference

Function Name: ERror Line Type: Error-Handling Function

ERL

Statements ON ERROR GOTO and RESUME

Functions ERR and HEX$
11-18

Function Reference
ERR

Description
Returns the error code of the most recent execution error.

Syntax

Notes
ERR returns the code of an execution error that invoked the error-handling routine.

! Codes which the ERR returns correspond to ones that are listed in Execution Errors
on page A-1 if converted from decimals to hexadecimals with the HEX$ function.

! Since the ERR function returns a significant value only when an execution error
occurs, use this function in error-handling routines to check the error type for
effective error recovery.

! The returned value is in decimals, so it may be necessary to use the HEX$ function for
decimal-to-hexadecimal conversion.

Reference

Function Name: ERror Code Type: Error-Handling Function

ERR

Statements ON ERROR GOTO and RESUME

Functions ERL and HEX$
11-19

PDT 1100 Terminal Programmer’s Guide
ETX$

Description
Modifies the value of a terminator (ETX) for the PDT 1100 protocol; also returns the current
value of a terminator.

Syntax

Notes

Syntax 1
ETX$ modifies the value of a terminator (a text control character) which indicates the end of
data text in the PDT 1100 protocol when a data file is transmitted by an XFILE instruction.
(For the PDT 1100 protocol, refer to the PDT 1100 User's Manual.)

! ETX$ is called a protocol function.

! The initial value of a terminator (ETX) is 03h.

Syntax 2
ETX$ returns the current value of a terminator.

Function Name: End of TeXt Type: I/O Function

Syntax 1 (Changing the value of a terminator)
ETX$= stringexpression

Syntax 2 (Returning the current value of a terminator)
ETX$

where:

stringexpression = A string expression which returns a single-byte
character.
11-20

Function Reference
Execution Error

Reference

Error code Meaning

05h Parameter out of range (stringexpression is a null string.)

0Fh String length out of range (stringexpression is more than a single byte.)

Statements XFILE and OPEN “COM:”

Functions SOH$ and STX$
11-21

PDT 1100 Terminal Programmer’s Guide
FRE

Description
Returns the number of bytes available in a specified area of the memory.

Syntax

Notes
FRE returns the number of bytes left unused in a memory area specified by areaspec listed
below.

! The file area is allocated to data files and program files in cluster units (where a
cluster is equal to 4,096 bytes). The FRE function returns the total number of bytes
of non-allocated clusters. (For details about a cluster, refer to Appendix F, Memory
Area.)

! The operation stack area for the Interpreter is mainly used for numeric operations,
string operations, and for calling user-defined functions.

! A returned value of this function is a decimal number.

Function Name: FREe area Type: Memory Management Function

FRE(areaspec)

where:

areaspec = A numeric expression which returns a value from 0 to 3.

areaspec RAM

0 Array work variable area

1 File area

2 Operation stack area for the Interpreter

3 File area in the flash ROM
11-22

Function Reference
Execution Error

Error code Meaning

05h Parameter out of range (areaspec is out of range.)

0Fh String length out of range (stringexpression is more than a single byte.)
11-23

PDT 1100 Terminal Programmer’s Guide
HEX$

Description
Converts a decimal number into the equivalent hexadecimal string.

Syntax

Notes
HEX$ function converts a decimal number from -32768 to 32767 into the equivalent
hexadecimal string which is expressed with 0 to 9 and A to F.

Listed below are conversion examples.

Execution Error

Function Name: HEXadecimal Type: String Function

HEX$(numericexpression)

where:

numericexpression = A numeric expression which returns a value from
-32,768 to 32,767.

numericexpression Returned value

-32,768 8000

-1 FFFF

0 0

1 1

32,767 7FFF

Error code Meaning

06h The operation result is out of allowable range.
11-24

Function Reference
INKEY$

Description
Returns a character read from the keyboard.

Syntax

Notes
INKEY$ reads from the keyboard to see whether a key has been pressed, and returns one
character read. If no key has been pressed, INKEY$ returns a null string. (For the character
codes, refer to Appendix C, Character Sets. For the key number assignment, refer to
Appendix E, Key Number Assignment on the Keyboard.)

! INKEY$ does not echo back a read character on the LCD screen.

! A common use for INKEY$ is to monitor a keystroke while the PDT 1100 is ready
for bar code reading or other events.

! If any key previously specified for keystroke trapping is pressed, INKEY$ cannot
return the typed data since the INKEY$ has lower priority than keystroke trapping.

! To display the cursor, use the LOCATE and CURSOR statements as shown below.
LOCATE,,1:CURSOR ON

k$=INKEY$

IF k$=“k”“ THEN...

Reference

Function Name: INput KEYboard Type: I/O Function

INKEY$

Statements CURSOR, LOCATE, KEY ON, and KEY OFF

Functions ASC and INPUT$
11-25

PDT 1100 Terminal Programmer’s Guide
INP

Description

Returns a byte read from a specified input port.

Syntax

Notes
INP reads one-byte data from an input port specified by portnumber and returns the value.
(For the input port numbers, refer to Appendix D, I/O Ports.) It also reads the battery voltage
level.

! Listed below are effective port numbers.

0, 3, 4, 8 10h to 24Fh
Eh, Fh
6010h, 6011h, 6040h, 6060h, 6061h,
6062h, 6070h, 6080h

! If you specify an invalid value to portnumber, INP returns an indeterminate value.

Function Name: INput data Type: I/O Function

INP(portnumber)

where:

portnumber = A numeric expression which returns a value from 0 to
32,767.
11-26

Function Reference
Execution Error

Reference

Error code Meaning

05h Parameter out of range (portnumber is out of range.)

Statements OUT and WAIT
11-27

PDT 1100 Terminal Programmer’s Guide
INPUT$

Description
Returns a specified number of characters read from the keyboard or from a device file.

Syntax

Notes
INPUT$ reads the number of characters specified by numcharas from the keyboard or from
a device file specified by filenumber, then returns the resulting string.

Syntax 1 (without specification of filenumber)

INPUT$ reads a string or control codes from the keyboard.

! INPUT$ does not echo back read characters on the LCD screen.

! The cursor shape (invisible, underlined, or full block) depends upon the specification
selected by the LOCATE statement.

! If any key previously specified for keystroke trapping is pressed during execution of
the INPUT$, the keyboard input will be ignored; that is, neither typed data is read by
INPUT$ nor keystroke is trapped.

Function Name: INPUT file Type: File I/O Function

Syntax 1 (Reading from the keyboard)
INPUT$(numcharas)

Syntax 2 (Reading from a device file)
INPUT$(numcharas,[#] filenumber)

where:

numcharas = A numeric expression which returns a value from 1 to 255.

filenumber = A numeric expression which returns a value from 1 to 16.
11-28

Function Reference
Syntax 2 (with specification of filenumber)

INPUT$ reads from a device file (the bar code device file or any of the communications device
files).

! Use the LOC function to indicate the number of characters in a device file.

Execution Error

Reference

Error code Meaning

05h Parameter out of range (numcharas is out of range.)

34h Bad file name or number (filenumber of an unopened file specified.)

36h Improper file type (filenumber of a data file specified.)

3Ah File number out range.

Statements CURSOR, INPUT, LINE INPUT, LOCATE, OPEN “BAR:”, and OPEN “COM:”

Functions EOF, INKEY$, LOC, and LOF
11-29

PDT 1100 Terminal Programmer’s Guide
INSTR

Description
Searches a specified target string for a specified search string, and then returns the position
where the search string is found.

Syntax

Notes
INSTR searches a target string specified by targetstring for a search string specified by
searchstring, and then returns the first character position of the search string first found.

! startposition is the character position where the search is to begin in
targetstring. If you omit startposition option, the search begins at the first
character of targetstring.

! targetstring is the string being searched.

! searchstring is the string you are looking for.

! Do not mistake the description order of targetstring and searchstring.

! A returned value of INSTR is a decimal number from 0 to 255, depending upon the
following conditions.

Function Name: IN STRing Type: String Function

INSTR([startposition,] targetstring, searchstring)

where:

startposition = A numeric expression which returns a value from 1 to
32,767.

targetstring and
searchstring = A string expression.
11-30

Function Reference
Execution Error

Reference

Conditions Returned value

If searchstring is found within
targetstring:

First character position of the search string first
found

If startposition is greater than the length
of targetstring or 255:

0

If targetstring is a null string: 0

If searchstring is not found: 0

If searchstring is a null string: Value of startposition 1 if startposition
option is omitted.

Error code Meaning

05h Parameter out of range (startposition is out of range.)

Functions LEN
11-31

PDT 1100 Terminal Programmer’s Guide
INT

Description
Returns the largest whole number less than or equal to the value of a given numeric
expression.

Syntax

Notes
INT returns the largest whole number less than or equal to the value of numericexpression
by stripping off the fractional part.

! Use INT as shown below to round off the fractional part of a real number.
INT(realnumber+0.5)

Example: dat=1.5
PRINT INT(dat+0.5)
2

! If numericexpression is negative, this function operates as shown below.
PRINT INT(-1.5)

PRINT INT(-0.2)

-2

-1

Function Name: INTeger Type: Numeric Operation Function

INT(numericexpression)

where:

numericexpression = A real expression.
11-32

Function Reference
LEFT$

Description
Returns the specified number of leftmost characters from a given string expression.

Syntax

Notes
LEFT$ extracts a portion of a string specified by stringexpression by the number of
characters specified by stringlength, starting at the left side of the string.

! If stringlength is zero, LEFT$ returns a null string.

! If stringlength is greater than the length of stringexpression, the whole
stringexpression is returned.

Execution Error

Reference

Function Name: LEFT Type: String Function

LEFT$(stringexpression, stringlength)

where:

stringlength = A numeric expression which returns a value from 0 to
255.

Error code Meaning

05h Parameter out of range (stringlength is out of range.)

Functions LEN, MID$, and RIGHT$
11-33

PDT 1100 Terminal Programmer’s Guide
LEN

Description
Returns the length (number of bytes) of a given string.

Syntax

Notes
LEN returns the length of stringexpression, that is, the number of bytes in the range from
0 to 255.

! If stringexpression is a null string, LEN returns the value 0.

Function Name: LENgth Type: String Function

LEN(stringexpression)
11-34

Function Reference
LOC

Description
Returns the current position within a specified file.

Syntax

Notes
LOC returns the current position within a file (a data file, communications device file, or bar
code device file) specified by filenumber.

! Depending upon the file type, the content of the returned value differs as listed below.

! If LOC is used before execution of the first GET instruction after a data file is opened,
it returns 1 or 0 when the data file has any data or no data, respectively.

Function Name: LOcation Counter of file Type: File I/O Function

LOC([#] filenumber)

where:

filenumber = A numeric expression which returns a value from 1 to 16.

File type Returned value

Data file Record number following the number of the last record read
by a GET statement.

Communications device file Number of characters contained in the receive buffer (0 if no
data is present in the receive buffer.)

Bar code device file Number of characters contained in the bar code buffer*
(0 if the PDT 1100 is waiting for bar code reading.)
* The size of the bar code buffer is 99 bytes.
11-35

PDT 1100 Terminal Programmer’s Guide
Execution Error

Reference

Error code Meaning

34h Bad file name or number (filenumber of an unopened file specified.)

3Ah File number out of range.

3Eh A PUT or GET instruction executed without a FIELD instruction (no FIELD
instruction is found.)

Statements OPEN

Functions EOF and LOF
11-36

Function Reference
LOF

Description
Returns the length of a specified file.

Syntax

Notes
LOF returns the length of a data file or communications device file specified by filenumber.

! Depending upon the file type, the content of the returned value differs as listed below.

! If you specify the bar code device file, an execution error occurs.

Function Name: Location Of file Type: File I/O Function

LOF([#] filenumber)

where:

filenumber = A numeric expression which returns a value from 1 to 16.

File type Returned value

Data file Number of written records

Communications device file Number of bytes of unoccupied area in the receive buffer
11-37

PDT 1100 Terminal Programmer’s Guide
Execution Error

Reference

Error code Meaning

34h Bad file name or number (filenumber of an unopened file specified.)

36h Improper file type (filenumber of a bar code device file specified.)

3Ah File number out of range

3Eh A PUT or GET instruction executed without a FIELD instruction (no FIELD
instruction is found.)

Statements GET, INPUT, LINE INPUT, LOCATE, OPEN , and OPEN “COM:”

Functions EOF, INPUT$, and LOC
11-38

Function Reference
MARK$

Description
Returns a bar code type and the number of digits of the bar code.

Syntax

Notes
MARK$ returns a 3-byte string which consists of the first one byte representing a bar code type
and the remaining two bytes indicating the number of digits of the bar code.

! The first one byte of a returned value contains one of the following letters
representing bar code types:

! The remaining two bytes of a returned value indicate the number of digits of the bar
code in decimal notation.

Function Name: code MARK Type: I/O Function

MARK$

Bar code type First one byte of a returned value

EAN-13 or UPC-A A

EAN-8 B

UPC-E C

ITF (Interleaved 2 of 5) I

STF (Standard 2 of 5) H

NW7 (Codabar) N

Code 39 M

Code 93 L

Code 128 K

EAN128 W
11-39

PDT 1100 Terminal Programmer’s Guide
! MARK$ returns a null string until bar code reading takes place first after start of the
program.
11-40

Function Reference
MID$

Description
Returns a portion of a given string expression from anywhere in the string.

Syntax

Notes
Starting from a position specified by startposition, MID$ extracts a portion of a string
specified by stringexpression, by the number of characters specified by stringlength.

! A returned value of MID$ depends upon the conditions as listed below.

Function Name: MIDdle Type: String Function

MID$(stringexpression, startposition[,stringlength])

where:

startposition = A numeric expression which returns a value from 1 to
255.

stringlength = A numeric expression which returns a value from 0 to
255.

Conditions Returned value

If stringlength option is omitted: All characters from startposition to the end
of the string

Example: PRINT MID$(“ABC123”,3)

C123
11-41

PDT 1100 Terminal Programmer’s Guide
Note: BASIC 3.0 does not support such MID$ function that replaces a part
of a string variable.

Execution Error

Reference

If stringlength is greater than the number
of characters contained between
startposition and the end of the string:

All characters from startposition to the end
of the string

Example: PRINT MID$(“ABC123”,3,10)

C123

If startposition is greater than the length
of stringexpression:

Null string

Example: PRINT MID$(“ABC123”,10,1)

Error code Meaning

05h Parameter out of range

Functions LEFT$, LEN, and RIGHT$
11-42

Function Reference
POS

Description
Returns the current column number of the cursor.

Syntax

Notes
POS returns the current column number of the cursor in the current screen mode selected by
a SCREEN statement.

This function returns an integer value from 1 to 17 (independently of the display font size
selected)

! Even if the cursor is invisible (by a LOCATE statement), the POS function operates.

! If the maximum value in the current screen mode is returned, it means that the cursor
stays outside of the rightmost column.

! When the small-size font is selected, a full- or half-width character occupies a screen
area two times or one time as wide as a character in the single-byte ANK mode,
respectively.

! (0) is a dummy parameter that can have any value or expression, but it is usually 0.

For the current row number of the cursor, refer to the CSRLIN function.

Reference

Function Name: POSition Type: I/O Function

POS(0)

Statements LOCATE and SCREEN

Functions CSRLIN
11-43

PDT 1100 Terminal Programmer’s Guide
RIGHT$

Description
Returns the specified number of rightmost characters from a given string expression.

Syntax

Notes
Starting at the right side of the string, RIGHT$ extracts a portion of a string specified by
stringexpression by the number of characters specified by stringlength.

! If stringlength is zero, RIGHT$ returns a null string.

! If stringlength is greater than the length of stringexpression, the whole
stringexpression is returned.

Execution Error

Reference

Function Name: RIGHT Type: String Function

RIGHT$(stringexpression, stringlength)

where:

stringlength = A numeric expression which returns a value from 0 to
255.

Error code Meaning

05h Parameter out of range (stringlength is out of range.)

Functions LEN, LEFT$, and MID$
11-44

Function Reference
SEARCH

Description
Searches a specified data file for specified data, and then returns the record number where the
search data is found.

Syntax

Notes
SEARCH searches a target field specified by fieldvariable in a data file specified by
filenumber for data specified by searchdata, and then returns the number of the record
where the search data is found.

! fieldvariable is a string variable defined by a FIELD statement.

! searchdata is the data you are looking for.

! startrecord is the number of a record where the search is to begin in a data file.
The search ends when all of the written records have been searched.

If you omit startrecord option, the search begins at the first record of the data file.

! If the search data is not found, SEARCH returns the value 0.

! A convenient use for SEARCH is, for example, to search for a particular product name,
unit price, or stock quantity in a product master file by specifying a bar code data to
searchdata.

Function Name: SEARCH Type: File I/O Function

SEARCH([#] filenumber, fieldvariable, searchdata“” startrecord“”

where:

filenumber = A numeric expression which returns a value from 1 to
16.

fieldvariable = A non-array string variable.

searchdata = A string expression.

startrecord = A numeric expression which returns a value from 1 to
32,767.
11-45

PDT 1100 Terminal Programmer’s Guide
! Since the search begins at a record specified by startrecord in a data file and
finishes at the last record, sort records in the data file in the order of frequency of use
before executing of this function to increase searching speed.

Execution Error

Reference

Error code Meaning

05h Parameter out of range.

34h Bad file name or number (filenumber of an unopened file specified.)

36h Improper file type (filenumber of a bar code device file specified.)

3Ah File number out of range.

3Eh A PUT or GET instruction executed without a FIELD instruction (no FIELD
instruction is found.)

Statements FIELD, GET, and OPEN

Functions LOF
11-46

Function Reference
SOH$

Description
Modifies the value of a header (SOH) for the PDT 1100 protocol; also returns the current
value of a header.

Syntax

Notes

Syntax 1
SOH$ modifies the value of a header (one of the text control characters) which indicates the
start of heading text in the PDT 1100 protocol when a data file is transmitted by an XFILE
instruction. (For the PDT 1100 protocol, refer to the PDT 1100 User's Manual.)

! SOH$ is a protocol function.

! The initial value of a header (SOH) is 01h.

Syntax 2
SOH$ returns the current value of a header.

Function Name: Start Of Heading Type: I/O Function

Syntax 1 (Changing the value of a header)
SOH$= stringexpression

Syntax 2 (Returning the current value of a header)
SOH$

where:

stringexpression = A string expression which returns a single-byte
character.
11-47

PDT 1100 Terminal Programmer’s Guide
Execution Error

Reference

Error code Meaning

0Fh String length out of range (stringexpression is more than a single byte.)

Statements XFILE and OPEN “COM:”

Functions ETX$ and STX$
11-48

Function Reference
STR$

Description
Converts the value of a numeric expression into a string.

Syntax

Notes
STR$ converts the value of numericexpression into a string.

! If numericexpression is 0 or positive, STR$ adds a leading space as shown below.
PRINT STR$(123);LEN(STR$(123))

123 4

To delete the leading space, use the MID$ function as shown below.

PRINT

MID$(STR$(123),2);LEN(STR$(123))

123 4

! If numericexpression is negative, STR$ adds a minus sign as shown below.
PRINT STR$(-456);LEN(STR$(-456))

-456 4

! Use STR$ to write numeric data into a data file.

! The VAL function has the opposite capability to STR$.

Function Name: STRing Type: String Function

STR$(numericexpression)

where:

numericexpression = A numeric expression.
11-49

PDT 1100 Terminal Programmer’s Guide
Reference

Functions VAL
11-50

Function Reference
STX$

Description
Modifies the value of a header (STX) for the PDT 1100 protocol; also returns the current
value of a header.

Syntax

Notes

Syntax 1
STX$ modifies the value of a header (one of the text control characters) which indicates the
start of data text in the PDT 1100 protocol when a data file is transmitted by an XFILE
instruction. (For the PDT 1100 protocol, refer to the PDT 1100 User's Manual.)

! STX$ is called a protocol function.

! The initial value of a header (STX) is 02h.

Syntax 2
STX$ returns the current value of a header.

Function Name: Start of TeXt Type: I/O Function

Syntax 1 (Changing the value of a header)
STX$= stringexpression

Syntax 2 (Returning the current value of a header)
STX$

where:

stringexpression = A string expression which returns a single-byte
character.
11-51

PDT 1100 Terminal Programmer’s Guide
Execution Error

Reference

Error code Meaning

0Fh String length out of range (stringexpression is more than a single byte.)

Statements XFILE and OPEN “COM:”

Functions ETX$ and SOH$
11-52

Function Reference
TIME$

Description
Returns the current system time or wake-up time, or sets a specified system time or wake-up
time.

Syntax

Notes

Syntax 1
! Retrieving the current system time

TIME$ returns the current system time as an 8-byte string. The string has the format below.

hh:mm:ss

where hh is the hour from 00 to 23 in 24-hour format, mm is the minute from 00 to 59, and
ss is the second from 00 to 59.

Example: CLS
PRINT TIME$

! Retrieving the wake-up time

TIME$ returns the wake-up time as a 5-byte string. The string has the format below.

hh:mm

Function Name: TIME Type: I/O Function

Syntax 1 (Retrieving the current system time or the wake-up time)
TIME$

Syntax 2 (Setting the current system time or the wake-up time)
TIME$=”time”

where:

time = A string expression.
11-53

PDT 1100 Terminal Programmer’s Guide
Syntax 2
! Setting the system time

TIME$ sets the system time specified by “time.” The format of “time” is the same as that in
syntax 1.

Example: TIME$=“13:35:45”

! Setting the wake-up time

TIME$ sets the wake-up time specified by “time.” The format of “time” is the same as that
in syntax 1.

" The calendar clock is backed up by the battery. (For the system date, refer to the
DATE$ function.)

" Set bit 2 of port 8 to 1 with the OUT statement before executing this function to
return the current wake-up time or set a specified wake-up time.

" For the wake-up function, refer to Appendix H, Programming Notes.

Execution Error

Reference

Error code Meaning

05h Parameter out of range (time is out of range.)

Functions DATE$
11-54

Function Reference
TIMEA/TIMEB/TIMEC

Description
Returns the current value of a specified timer or sets a specified timer.

Syntax

Notes

Syntax 1
TIMEA, TIMEB, or TIMEC returns the current value of timer-A, -B, or -C, respectively, as a 2-
byte integer.

Syntax 2
TIMEA, TIMEB, or TIMEC sets the count time specified by count.

! count is a numeric value in units of 100 ms.

! When executed, the Interpreter starts a specified timer counting down in increments
of 100 ms (equivalent to -1) until the timer value becomes 0.

Function Name: TIMER-A/TIMER-B/TIMER-C Type: I/O Function

Syntax 1 (Retrieving the current value of a specified timer)
TIMEA
TIMEB
TIMEC

Syntax 2 (Setting a specified timer)
TIMEA= count
TIMEB= count
TIMEC= count

where:

count = A numeric expression which returns a value from 0 to 32,767.
11-55

PDT 1100 Terminal Programmer’s Guide
Execution Error

Error code Meaning

05h Parameter out of range (count is a negative value)

06h The operation result is out of the allowable range (count is greater than
32,767.)
11-56

Function Reference
VAL

Description
Converts a string into a numeric value.

Syntax

Notes
VAL converts the string specified by stringexpression into a numeric value.

! If stringexpression is nonnumeric, VAL returns the value 0.
PRINT VAL(“ABC”)

0

! If stringexpression contains a nonnumeric in midstream, VAL converts the string
until it reaches the first character that cannot be interpreted as a numeric.

PRINT VAL(“1.2E-3ABC”)

1.200000000E-3

! The STR$ function has the opposite capability to VAL.

Reference

Function Name: VALue Type: String Function

VAL(stringexpression)

where:

stringexpression = A string expression which represents a decimal
number.

Functions ASC and STR$
11-57

Appendix A
Error Codes and Error Messages

Introduction

This Appendix specifies all error codes and their meanings

Execution Errors

Table A-1 lists the execution errors codes and their meanings.

Table A-1. Execution Errors

Error Code Meaning

00h Internal system error

01h NEXT without FOR

02h Syntax error

03h RETURN without GOSUB

04h Out of DATA (no DATA values remain to be read by the READ instruction)

05h Parameter out of range

06h Operation result is out of the allowable range

07h Insufficient memory space (too many nesting levels, etc)

08h Array not defined

09h Subscript out of range (an array subscript is out of the array, or the array is
referenced by different dimensions)
A-1

PDT 1100 Terminal Programmer’s Guide
0Ah Duplicate definition (an array is defined twice)

0Bh Division by zero

0Ch CASE and END SELECT without SELECT

0Dh END DEF or EXIT DEF instruction executed outside the DEF EN statement
block

0Fh String length out of range

10h Expression too long or complex

14h RESUME without error (RESUME instruction occurs before the start of an error-
handling routine)

1Fh Function number out of range (in CALL statement)

32h File type mismatch

33h Received text format not correct

34h Bad file name or number (an instruction uses the file number of an unopened
file)

35h File not found

36h Improper file type (instruction attempts an operation that conflicts with the
file type – data file, communications device file, or bar code device file)

37h File already open (an OPEN instruction executed for the already opened file)

38h File name is different from that in the receive header

39h Too many files

3Ah File number out of range

3Bh The number of records is greater than the defined maximum value

3Ch FIELD overflow (FIELD instruction specifies the record length exceeding 255
bytes)

3Dh FIELD statement specifies a field width which does not match that specified
in file creation

3Eh PUT or GET instruction executed without a FIELD instruction

3Fh Bad record number (record number is out of range)

Table A-1. Execution Errors (Continued)

Error Code Meaning
A-2

Error Codes and Error Messages
Fatal Errors

Table A-2 lists the fatal errors and their meanings.

40h Parameter not set (ID not set)

41h File damaged

42h File write error (writing onto a read-only file attempted)

43h Not allowed to access data in flash ROM

45h Device files prohibited from opening concurrently

46h Communications error

47h Abnormal end of communications or termination of communications by
Clear key

48h Device timeout (n o CS signal has been responded within the specified time
period)

Table A-2. Fatal Errors

Error Code Message

fatal error 1: Out of memory

fatal error 2: Work file I/O error

fatal error 3: Object file I/O error

fatal error 4: Token file I/O error

fatal error 5: Relocation information file I/O error

fatal error 6: Cross reference file I/O error

fatal error 7: Symbol file I/O error

fatal error 8: Compile list file I/O error

fatal error 9: Debug information file I/O error (source-address)

fatal error 10: Debug information file I/O error (label-address)

fatal error 11: Debug information file I/O error (variable-intermediate code)

Table A-1. Execution Errors (Continued)

Error Code Meaning
A-3

PDT 1100 Terminal Programmer’s Guide
fatal error 12: Out of disk space for work file

fatal error 13: Out of disk space for object file

fatal error 14: Out of disk space for token file

fatal error 15: Out of disk space for relocation information file

fatal error 16: Out of disk space for cross reference file

fatal error 17: Out of disk space for symbol file

fatal error 18: Out of disk space for compile list file

fatal error 19: Out of disk space for debug information file (source-address)

fatal error 20: Out of disk space for debug information file (label-address)

fatal error 21: Out of disk space for debug information file (variable-intermediate code)

fatal error 22: Source file I/O error

fatal error 23: Cannot find XXXXSRC

fatal error 24: Error count exceeds 500

fatal error 25: Out of memory (internal labels exceed 3000)

fatal error 26: Control structure nesting exceeds 30

fatal error 27: Expression type stack exceeds 50

fatal error 28: Program too large (object area over-flow)

fatal error 29: Out of memory for cross reference

fatal error 30: Cannot find include file

fatal error 31: Cannot nest include file

Table A-2. Fatal Errors (Continued)

Error Code Message
A-4

Error Codes and Error Messages
Syntax Errors

Table A-3 lists the syntax errors and their meanings.

Table A-3. Syntax Errors

Error Code Message

error 1: Improper label format

error 2: Improper label name (redefinition, variable name, or reserved word used)

error 3: “” missing

error 4: Improper expression

error 5: Variable name redefinition

error 6: Variable name redefinition

error 7: Variable name redefinition

error 8: Too many variables (work integer)

error 9: Too many variables (work float)

error 10: Too many variables (work string)

error 11: Too many variables (register integer)

error 12: Too many variables (register float)

error 13: Too many variables (register string)

error 14: Too many variables (common integer)

error 15: Too many variables (common float)

error 16: Too many variables (common string)

error 17: Too many variables (work integer array)

error 18: Too many variables (work float array)

error 19: Too many variables (work string array)

error 20: Too many variables (register integer array)

error 21: Too many variables (register float array)

error 22: Too many variables (register string array)

error 23: Too many variables (common integer array)
A-5

PDT 1100 Terminal Programmer’s Guide
error 24: Too many variables (common float array)

error 25: Too many variables (common string array)

error 26:

error 27:

error 28:

error 29:

error 30:

error 31:

error 32:

error 33:

error 34:

error 35: Source line too long

error 36:

error 37:

error 38:

error 39:

error 40:

error 41: Value out of range for integer constant

error 42: Value out of range for float constant

error 43: Value out of range for integer constant (hexadecimal expression)

error 44: Improper hexadecimal expression

error 45: Symbol too long

error 46:

error 47:

error 48:

error 49:

Table A-3. Syntax Errors (Continued)

Error Code Message
A-6

Error Codes and Error Messages
error 50: Incorrect use of IF...THEN...ELSE...ENDIF

error 51: Incomplete control structure (IF...THEN...ELSE...ENDIF)

error 52: Incorrect use of FOR...NEXT

error 53: Incomplete control structure (FOR...NEXT)

error 54: Incorrect FOR index variable

error 55: Incorrect use of SELECT...CASE...END SELECT

error 56: Incomplete control structure (SELECT...CASE...END SELECT)

error 57: Incorrect use of WHILE...WEND

error 58: Incomplete control structure (WHILE...WEND)

error 59: Incorrect use of DEF FN...EXIT DEF...END DEF

error 60: Incomplete control structure (DEF FN...END DEF)

error 61: Cannot use DEF FN in control structure

error 62: Operator stack overflow

error 63: Inside function definition

error 64: Function redefinition

error 65: Function definitions exceed 200

error 66: Arguments exceed 50

error 67: Total arguments exceed 500

error 68: Mismatch argument type or number

error 69: Function undefined

error 70: Label redefinition

error 71: Syntax error

error 72: Variable name redefinition

error 73: Improper string length

error 74: Improper array elements number

error 75: Out of space for register variable area

Table A-3. Syntax Errors (Continued)

Error Code Message
A-7

PDT 1100 Terminal Programmer’s Guide
error 76: Out of space for work, common variable area

error 77: Initial string too long

error 78: Array symbols exceed 30 for one DIM statement

error 79: Record number out of range (1 to 32767)

error 80: Label undefined

error 81: Must be DATA statement label

error 82: “(” missing

error 83: ‘)’ missing

error 84: ‘]’ missing

error 85: ‘,’ missing

error 86: ‘;’ missing

error 87: 'DEF' missing

error 88: 'TO' missing

error 89: 'INPUT' missing

error 90: ‘{‘ missing

error 91: Improper initial value for integer variable

Table A-3. Syntax Errors (Continued)

Error Code Message
A-8

Appendix B Reserved Words

Table B-1 lists reserved words (keywords) of BASIC 3.0. These words must not be used as a
variable name or label name.

Table B-1. Reserved Words

A ABS COMMON ERROR

AND CONT ETB

APLOAD COUNTRY ETX

AS CSRLIN EXIT

ASC CURSOR F FIELD

B BCC$ D DATA FN

BEEP DATE$ FOR

C CALL DEF FRE

CASE DEFREG G GET

CHAIN DIM GO

CHKDGT E ELSE GOSUB

CHR END GOTO

CLFILE EOF H HEX

CLOSE ERASE I IF

CLS ERL $INCLUDE

CODE ERR INKEY

INP ON SOH
B-1

PDT 1100 Terminal Programmer’s Guide
INPUT OPEN STEP

INSTR OR STR

INT OUT STX

K KEY P POS T THEN

KILL POWER TIME

KPLOAD PRINT TIMEA

L LEFT PRINT# TIMEB

LEN PUT TIMEC

LET R READ TO

LINE RECORD U USING

LOC REM V VAL

LOCATE RESTORE W WAIT

LOF RESUME WEND

M MARK RETURN WHILE

MID RIGHT$ X XFILE

MOD S SCREEN XOR

N NEXT SEARCH

NOT SELECT

O OFF SEP

Table B-1. Reserved Words (Continued)
B-2

Appendix C Character Sets

Character Set

The following table lists the character set which the PDT 1100 can display on the LCD screen.
It is based on the ASCII codes.
C-1

PDT 1100 Terminal Programmer’s Guide
BS is a backspace code.

CR is a carriage return code.

C is a cancel code.

is a space code.

Upper 4 bits

L
ow

er
 4

 b
it

s

0 1 2 3 4 5 6 7 8

0 } [[0 @ P ‘ p

1 c

[! 1 A Q a q

2 ▲ [“ 2 B R b r

3

▲

[# 3 C S c s

4 ▲

▼ [
$ 4 D T d t

5 ■ [% 5 E U e u

6 % [& 6 F V f v

7 & [‘ 7 G W g w

8 BS C (8 H X h x

9 [[) 9 I Y i y

A [[* : J Z j z

B [[+ ; K [k {

C [[, < L \ l |

D CR [- || M] m }

E [[. > N ^ n ~

F [[/ ? O _ o [
C-2

Character Sets
Note: You can assign user-defined fonts to codes from 80h to 9Fh with
APLOAD statement. (Refer to APLOAD statement in Chapter 10.)

Note: Characters assigned to codes 20h to 7Fh are default national
characters when the English message version is selected in the SET
DISPLAY menu in the System Mode. Use the COUNTRY$ function to
switch to other national characters (see National Character Sets on
page C-3). (Refer to COUNTRY$ on page 11-11)

National Character Sets

Use the COUNTRY$ function to switch characters assigned to codes 20h to 7Fh of the character
set table in Character Set on page C-1 to a national character set. The default national
character set is America (code A) or Japan (code J) depending on whether the English or
Japanese message version is selected on the SET DISPLAY menu in System Mode. Listed
below are national characters different from the defaults.

** Refer to COUNTRY$ on page 11-11 (COUNTRY$=“countrycode”).

Country Country
Code ** 23 24 40 5B 5C 5D 5E 60 7B 7C 7D 7E 7F

America
(Default)

A # $ @ [\] ^ ‘ { | } ~

[

Denmark D Æ Ø Å æ ø å ~ [

England E £ $ \ ~ [

France F à º ç § é ù è ¨ [
Germany G § Ä Ö Ü ä ö ü ß [

Italy I º \ é ù à ò è ì [

Japan
(Default)

J # $ @ [¥] ^ ‘ { | } ' (

Norway N ¤ É Æ Ø Å Ü é æ ø å ü [

Spain S Pt í Ñ ¿ ¨ ñ } ~ [

Sweden W ¤ É Ä Ö Å Ü é ä ö å ü [
C-3

PDT 1100 Terminal Programmer’s Guide
Note: Empty boxes in the table are assigned the same characters as the
default in Character Set on page C-1.

Display Mode and Letter Size

Character Frame and Letter Size in Single-Byte ANK Mode

Generating Small Font Patterns

Single-byte ANK characters
To display single-byte ANK characters in the small font, small font patterns stored in flash
ROM are used and no condensation occurs. The Interpreter condenses patterns loaded by the
APLOAD statement as follows:

Figure C-1. Condensed ANK Characters

The Interpreter ORs adjacent horizontal rows (2nd and 3rd rows and 5th and 6th rows) to
produce a single row each. Other rows are displayed as is. In the figure shown above, rows
marked with O are displayed as is; adjacent rows without O are condensed into a single row.

Display font size Character frame
(W x H)

Letter size
(W x H)

Standard size 6 x 8 5 x 7

Small 6 x 6 5 x 5

1
2
3
4
5
6
7
8

1 2 3 4 5 6

36099021.eps
C-4

Appendix D I/O Ports

Input Ports

A user program uses the WAIT statement or INP function to monitor the hardware status
through the input ports. BASIC 3.0 defines port as a byte. The table below lists the input ports
and their monitoring function in the PDT 1100.

Table D-1. Input Port Assignments

Port No. Bit Assignment 1 Monitors the following:

0 0 Keyboard buffer 0: No data 1: Data stored

1 Bar code buffer 0: No data 1: Data stored

2 Trigger switch 2 0: OFF 1: ON

3 Receive buffer 0: No data 1: Data stored

4 Value of TIMEA function 0: Nonzero 1: Zero

5 Value of TIMEB function 0: Nonzero 1: Zero

6 Value of TIMEC function 0: Nonzero 1: Zero

7 CS (CTS) signal 3 0: OFF or file closed 1: ON

3 3-0 LCD contrast level 4 5 0 to 11 (0: Lowest, 11: Highest)

4 0 Message version 5 6 0: Japanese 1: English
D-1

PDT 1100 Terminal Programmer’s Guide
1 BASIC 3.0 represents the bit order by the exponent of each binary digit in the byte. For
example, bit 0 means LSB; bit 7 means MSB.

2 Only when the trigger switch function is assigned to an M key (M1, M2, M3, or M4), a
user program returns the ON/OFF state of the switch.

8 0 Wake-Up function 0: Deactivated 1: Activated

1 Initiation of PDT 1100 7 0: Initiated by the
Power Key

1: Initiated by the
wake-up function

2 TIME$ function 0: System time
selected

1: Wake-up time
selected

Eh 0 System Status Indication 5
8

0: OFF 1: ON

Fh 7-0 Re-read prevention
enabled time 9

0 to 255

10h-24Fh 7-0 VRAM 5 10 0: OFF 1: ON

6010h 7-0 Battery voltage level 11 0 to 255

6011h 0 Battery type 0: NiMH battery
cartridge

1: Dry batteries

6040h 0 M Key 1 0: Released 1: Held down

6040h 1 M Key 2 0: Released 1: Held down

6060h 7-0 Communications protocol
12

0: PDT 1100
protocol

1: PDT 1100 Ir
protocol

6061h 7-0 ID (lower byte) 13 0 to 255

6062h 7-0 ID (upper byte) 13 0 to 255

6070h 0 Output pulse width of IR
beam

0: 1.63 µs 1:3/16 bit time

6080h 0 Display font size 14 0: Standard size 1: Small size

Table D-1. Input Port Assignments (Continued)
D-2

I/O Ports
3 During the direct-connect interface operation, a user program regards RD signal as CS
signal, when the returned value of CS is specified by RS/CS control parameter in the OPEN
“COM:” statement as listed below.

If the direct-connect interface is closed, the PDT 1100 returns the value 0.

4 Lower four bits (bit 3 to bit 0) in this byte represent the contrast level of the LCD in 0000
to 1011 in binary notation or in 0 to 11 in decimal notation. 0 represents the lowest contrast;
11 the highest.

5 Do not use the WAIT statement to monitor the LCD contrast, message version , system status
indication, or VRAM because the program may enter an infinite loop.

6 In System Mode, the message version appears on the LCD.

7 If the PDT 1100 is initiated by the wake-up function, this bit goes ON (1).

8 The PDT 1100 can display the system status on the bottom line of the LCD.

9 The PDT 1100 returns the re-read prevention enabled time length in units of 100 ms. If the
returned value is zero (0), the re-read prevention is permanently enabled so that the PDT
1100 does not read same bar codes in succession.

10 An 8-bit binary pattern (bits 7 to 0) on the input ports 10h to 24Fh (which read VRAM)
represents a basic dot pattern column of the LCD. Bit value 1 means a black dot. The port
number gives the dot column address.

11 A user program returns the A/D converted value (0 to 255) of the battery voltage level (0
to 5V). The returned value is an instantaneous value when data on the input port is read. Use
the voltage level as a reference value as it varies depending upon PDT 1100 operation and is
not proportional to the battery capacity.

OPEN “COM:” statement Returned value of CS (CTS)

OPEN “COM:,,,,0” Always 1

OPEN “COM:,,,,1” Always 1

OPEN “COM:,,,,2” 1 if RD signal is High

OPEN “COM:,,,,3” 1 if RD signal is Low

OPEN “COM:,,,,4” Depends upon the RD signal state
D-3

PDT 1100 Terminal Programmer’s Guide
12 A user program returns the communications protocol type used for file transmission with
the XFILE statement. For details about the communications protocol, refer to the PDT 1100
User's Manual.

13 A user program returns the PDT 1100's ID number required to use the PDT 1100 Ir
protocol. The ID number is expressed by two bytes: lower byte on port 6061h and upper byte
on port 6062h. The range of the returned value is from 1 to FFFFh. If the ID number is
1234h, for example, the value on 6061h is 34h and that on 6062h is 12h.

14 If the value of this bit is 0 (standard-size), characters are displayed as follows:

If the value of this bit is 1 (small-size), characters will be displayed as follows:

Output Ports

A user program can use the OUT statement to control the hardware through the output ports.
BASIC 3.0 defines each port as a byte. The table below lists the output ports and their
controlling function in the PDT 1100.

(W) x (H)

Single-byte ANK mode 6 dots x 8 dots

(W) x (H)

Single-byte ANK mode 6 dots x 6 dots

Table D-2. Output Port Assignments

Port No. Bit Assignment 1 Controls the following:

1 0 Reading Confirmation LED (red) 2 0: OFF 1: ON

1 Reading Confirmation LED (green) 2 0: OFF 1: ON

3 3-0 LCD contrast level3 0 to 11(0: Lowest, 11: Highest)

4 0 Message version 0: Japanese 1: English

6 7-0 Sleep Timer 4 0 to 255

8 0 Wake-up function5 0: Deactivates 1: Activates

2 TIME$ function6 0: Selects the
system time

1: Selects the
wake-up time
D-4

I/O Ports
1BASIC 3.0 represents the bit order by the exponent of each binary digit in the byte. For
example, bit 0 means LSB; bit 7 means MSB.

2 The reading confirmation LED is controllable only when the bar code device file is closed.
If the file is open, the OUT statement is ignored. If the confirmation LED is set to OFF in the
OPEN “BAR:” statement, a user program can control the reading confirmation LED although
the bar code device file is open.

3 Lower four bits (bit 3 to bit 0) in this byte control the contrast level of the LCD in 0000 to
1011 in binary notation or in 0 to 11 in decimal notation. 0 represents the lowest contrast;
11 the highest. Following are examples of OUT statements.

Eh 0 System status indication 7 0: OFF 1: ON

Fh 7-0 Re-read prevention enabled time8 0 to 255

10h-24Fh 7-0 VRAM9 0: OFF 1: ON

6000h 0 Initiation of system mode 10 0: Not initiate 1: Initiates

6020h 0 LCD Backlight 11 0: Turns OFF 1: Turns ON

6021h 7-0 LCD Backlight ON-duration11 0 to 255

6030h 7-0 Effective held-down time of power
key 12

1 to 255

6060h 7-0 Communications protocol 13 0: PDT 1100
protocol

1: PDT 1100 Ir
protocol

6061h 7-0 ID (lower byte) 14 0 to 255

6062h 7-0 ID (upper byte) 14 0 to 255

6070h 0 Output pulse width of IR beam15 0: 1.63 µs 1:3/16 bit time

6080h 0 Display font size 16 0: Standard size 1: Small size

OUT 3,11 'Contrast is highest

OUT 3,&h0b 'Contrast is lowest

Table D-2. Output Port Assignments (Continued)
D-5

PDT 1100 Terminal Programmer’s Guide
4 The sleep time feature interrupts program execution if the PDT 1100 receives no input
within the length of time set by bit 7 to 0. Shown below are examples of OUT statements.
Setting 0 to this byte disables the sleep timer feature. (Refer to Sleep Timer on page H-1.)

5 To activate the wake-up function, set this bit to 1; to deactivate it, set it to 0.

6 To make the TIME$ function return or set the system time, set 0 to this bit; to make the TIME$
function return or set the wake-up time, set 1. Executing the TIME$ function after selecting
the wake-up time resets this bit to zero. *** reviewers - help!

7 To display the system status on the bottom line of the LCD, set this port to 1; to erase it,
set it to 0.

8 This byte sets the re-read prevention enabled time length in units of 100 ms. Specifying zero
(0) permanently enables the re-read prevention so the PDT 1100 does not read same bar
codes in succession.

9 An 8-bit binary pattern (bits 7 to 0) on output ports 10h to 24Fh (stored in the VRAM)
represents a basic dot pattern column of the LCD. Bit value 1 means a black dot. The port
number gives the dot column address. If you use the OUT statement to send graphic data to
the VRAM area (assigned to the bottom line of the LCD) when the system status is displayed
on the LCD, the data is written into that VRAM area but cannot be displayed on the bottom
line of the LCD.

10 Refer to APLINT.PD3 Program File on page H-7.

11 If the backlight function is activated with the OUT statement, the KEY statement specification
is ignored. For details, refer to Appendix I, Backlight Function. If you set 0 to the ON-
duration (6021h), the backlight does not come on; if you set 255, it stays on.

12 You can set the time the power key must be held-down to power off the PDT 1100 from
0.1 to 25.5 seconds in increments of 0.1 second. The default is 5 (0.5 second).

13 Use the XFILE statement to set the communications protocol type for transmitting files. To
transmit files via the direct-connect interface or via the optical interface (using the CRD-
1100), set this port to 0 (PDT 1100 protocol). To transmit files between the PDT 1100 and
IrDA-compliant equipment (e.g., personal computers having an IR interface port or an IrDA
adapter) or between the PDT 1100 and CRD-1100 optically, set this port to 1 (PDT 1100-Ir

OUT 6,30 '3 seconds

OUT 6,0 'No sleep operation
D-6

I/O Ports
protocol). For the details about the communications protocols, refer to the PDT 1100
Terminal Product Reference Guide.

14 You may set the PDT 1100's ID number to be used for the PDT 1100 Ir protocol. The ID
number is expressed by two bytes: lower byte on port 6061h and upper byte on port 6062h.
The setting range is from 1 to FFFFh. Set the ID number to 1234h as follows:

15 For data transmission via the optical interface, this bit sets the output pulse width of IR
beam in accordance with the IrDA physical layer (IrDA-SIR 1.0). The default width is 1.63
µs.

16 If you set this bit to 0 (standard size), characters are displayed as follows:

If the value of this bit is 1 (small), characters are displayed as follows:

OUT &h6061h,&h34 'Sets 34h to the lower byte of the ID

OUT &h6062h,&h12 'Sets 12h to the upper byte of the ID

(W) x (H)

Single-byte ANK mode 6 dots x 8 dots

(W) x (H)

Single-byte ANK mode 6 dots x 6 dots
D-7

PDT 1100 Terminal Programmer’s Guide
D-8

Appendix E Key Number Assignment
on the Keyboard

Key Number Assignment

The keys on the PDT 1100 keyboard are assigned numbers as shown below.

Non-shift mode Shift mode

35864090.eps

30 31

1 2 3 4

5 6 7 8

3635

35864090.eps

33 34

17 18 19

21 22 23

25 26 27

28 29

9 10 11 12

13 14 15 16

24 20

37 38
E-1

PDT 1100 Terminal Programmer’s Guide
Figure E-1. Key Number Assignments

Default Data Assignment
The default data assignment is shown below.

Figure E-2. Default Data Assignments

Non-shift mode Shift mode

35864090.eps

TRG TRG

1 2 3

4 5 6

7 8 9

0 . CR

A B C D

C

E F G H

BS

35864090.eps

I J K L

M N O P

Q R S

U V W

Y Z +

- .

TX
E-2

Appendix F Memory Area

Memory Map

Figure F-1 illustrates the PDT 1100 memory map.

Figure F-1. Memory Map

The size and area allocation of the memory incorporated in the PDT 1100 differ depending
upon the following models.

ROM

RAM

User Area

(60 KB)

System Work Area

(48 KB or 172 KB)

User Area

(464 AKB or 1976 KB)

System Program Area

(196 KB)
F-1

PDT 1100 Terminal Programmer’s Guide
ROM (Flash ROM)

RAM

In the system program area, the system programs (the drivers, BASIC 3.0 Interpreter, and
System Mode) are resident. The system work area is shared by the system parameters, work
variables, common variables, directories, etc. The user area stores application programs and
collected data. The size of the user area is [Memory size - System area size].

Memory Management

The PDT 1100 manages the user area of the memory by a 4-kilobyte or 8-kilobyte segment
called a “cluster,” for user programs and data files. In units with 2048-kilobyte RAM, the
cluster size is 8 kilobytes; in other units, it is 4 kilobytes. The maximum allowable size for a
single user program is 64 kilobytes excluding register variables.

Battery Backup of Memory

The PDT 1100 backs up user programs and data files stored in the memory with dry batteries
or a battery cartridge so data is not lost if the program is terminated or the unit is powered
off. Backed-up data is listed below.

! User programs

! Execution status of a current user program

! Data files

! Register variables

! Screen contents

ROM size (KB) System program area (KB) User area (KB)

512 160 64

1024 160 568

RAM size (KB) System work area (KB) User area (KB)

512 48 464

2048 72 1976
F-2

Memory Area
! Keyboard status.

Memory Space Available for Variables

Listed below are the maximum memory spaces available for work, common, and register
variables.

Each variable occupies the memory space listed below.

An array variable occupies the memory space by [number of bytes per array element x
number of array elements].

Variables Maximum memory space

Work and common variable area 6 KB

Register variable area 64 KB

Variables Memory occupation

An integer variable 2 bytes

A real variable 6 bytes

A string variable 2 to 256 bytes
(including a single character count byte)
F-3

PDT 1100 Terminal Programmer’s Guide
F-4

Appendix G Handling Space
Characters in Downloading

Space Characters as Padding Characters

A data file can be downloaded with System Mode or an XFILE statement via a
communications protocol which eliminates space characters padded in the tail of each data
field. The PDT 1100 has a new feature which treats such space characters as data. For details,
refer to the end of this appendix. The following figure shows how the space characters used
as padding characters are eliminated. (Space characters between a and b and between b and
c in field 3 are not padding characters.)
G-1

PDT 1100 Terminal Programmer’s Guide
Figure G-1. Padding Characters Elimination

Space Characters as Data

Special considerations must be made when treating space characters in the tail of a data field
as data (not as padding characters).To use a SEARCH function to search for a field data
containing space characters in its tail, for instance, use one of the following methods:

4 1 2 3 4 4 A B C D 5 a b c

Field 1 Field 2 Field 3

Field 1 Field 3Field 2

(denotes a space character.)

1 2 3 4 A B C D a b c

1 2 3 4 A B C D a b c

is the count byte of a significant
data length
in a field.

36099022.eps

PDT 1100

Downloading a data file

Host Computer
G-2

Handling Space Characters in Downloading
Example 1
After downloading a data file, fill the unused spaces in each field with space characters and
then search for the target field data.

Figure G-2. Space Character Substitution

Example 2
Before downloading a data file, substitute any character not used as effective data, e.g., an
asterisk (*), for the space characters in the host computer.

Figure G-3. Asterisk Character Substitution

A B C

A B C

A B C

A B C

Send data

Receive data

Filling with space characters

Search data to be specified

(denotes a space character.)

36099023.eps

A B C * *

A B C * *

Send data

Receive data

Data to be searched

Search data to be specified

(denotes a space character.)

A B C * *

A B C

36099024.eps
G-3

PDT 1100 Terminal Programmer’s Guide
Example 3
When specifying a field data to be searched, do not include space characters in the tail of the
data field.

Figure G-4. No character Substitution

You can also use System Mode or an XFILE statement to specify the handling of space
characters in the tail of a data field.

System Mode: To handle space characters as data, select “Data” on the field space setting screen
on the communications parameter setting menu from the SET SYSTEM menu.

XFILE statement: To handle space characters as data, specify T to “protocolspec” in the XFILE
statement.

XFILE “d2.dat”,“T”

A B C

A B C

A B C

A B C

Send data

Receive data

Data to be searched

Search data to be specified

(denotes a space character.)
36099025.eps
G-4

Handling Space Characters in Downloading
The figure below shows how the space characters in the tail of a data field are handled as data
in the PDT 1100.

4 1 2 3 4 4 A B C D 8 a b c

Field 1 Field 2 Field 3

Field 1 Field 3Field 2

(denotes a space character.)

1 2 3 4 A B C D a b c

is the count byte of a significant
data length
in a field.

1 2 3 4 A B C D a b c

36099026.eps

Host Computer

PDT 1100

Downloading a data file
G-5

PDT 1100 Terminal Programmer’s Guide
G-6

Appendix H Programming Notes

Sleep Timer

The sleep timer feature interrupts program execution if the PDT 1100 receives no input
within the specified length of time, minimizing power consumption. When input is received,
the PDT 1100 resumes the interrupted program execution. Use the OUT statement to set the
sleep timer within the range from 0 to 25.5 seconds in increment of 100 ms. The default
setting is 1 second. The sleep timer does not work in the following cases:

! While a communications device file is opened by an OPEN “COM:” statement.

! During execution of a SEARCH function.

! When a TIMEA, TIMEB, or TIMEC function returns a nonzero value.

! When the bar code device file is opened by the OPEN “BAR:” statement under any of
the following conditions:

" With the continuous reading mode specified

" With the momentary switching mode or auto-off mode specified, and with the
trigger switch held down

" With the alternate switching mode, and the illumination LED on.

! When any key is held down.

! When the LCD backlight is on.

! When the beeper is beeping.

! When the PDT 1100 is updating data on the screen.
H-1

PDT 1100 Terminal Programmer’s Guide
Resume Function

The resume function preserves the current status of a running application program (user
program or Easy Pack) when the PDT 1100 is powered off, and then resumes it when the PDT
1100 is powered on. If you unintentionally turn off the PDT 1100 or the automatic powering-
off function turns it off, turn on the PDT 1100 again to resume the previous screen and
continue the program execution. The resume function is effective during data transmission in
an application program, but a few bytes of data may be lost.

Note: Powering off the PDT 1100 does not escape from the current status
of an executed program because the resume function does not
initialize the variables or restart the PDT 1100. (Disable the resume
function in System Mode.)

The resume function does not work after execution of System Mode or after the following
instructions:

! END instruction

! POWER OFF instruction

! POWER 0 instruction.

Before you run System Mode, store important information using register variables or other
means, or powering the PDT 1100 off and on restarts it.

Low Battery Warning

If the battery voltage of dry batteries (or the NiMH battery cartridge) drops below the
specified level, the PDT 1100 displays the “Replace the batteries!” message (or “Charge the
battery!” message), beeps five times, and then turns off power. (Refer to the PDT 1100 User's
Manual.)
H-2

Programming Notes
Selecting a Communications Device File

The PDT 1100 supports both optical interface and direct-connect interface. Only one can be
opened at a time using the OPEN “COM:” statement.

If you designate “COM:”, the default interface selected on the SET COM menu in System Mode
becomes active. If an XFILE instruction is executed, the interface specified by the OPEN “COM:”
statement becomes active.

Prohibited Simultaneous Operations

To save power at peak load, the beeper, the LASER diode and the LCD backlight do not work
simultaneously. The beeper has the highest priority, the LASER diode has the next priority,
and the LCD backlight has the lowest priority.

Controlling the LCD Backlight

A KEY statement defines the backlight function on/off key and sets the length of backlight on-
time. Use the OUT statement to turn the LCD backlight on or off and set the backlight on-time.
When the LCD backlight is activated with the OUT statement, pressing the backlight function
on/off key cannot turn off the backlight. (Refer to KEY on page 10-61, Appendix D, I/O
Ports, and Appendix I, Backlight Function.)

Keyboard (Keypad)

The keys on the PDT 1100 are not auto-repeat. The Shift key can be set to non-lock type or
lock type by selecting Nonlock or Onetime on the shift key setting menu of the SET SYSTEM
screen in System Mode.

! Non-lock type: The keypad shifts only when the Shift key is held down.

! Lock type: Once the Shift key is pressed, the next key pressed is shifted and the
following keys are not shifted.

When keys are shifted, the shift-key icon appears at the right end of the bottom line of the
LCD if the system status indication is on. (Turn on the system status indication through the
SET DISPLAY menu in System Mode or by using the OUT statement.)

OPEN “COM1:” AS # filenumber For the optical interface

OPEN “COM2:” AS # filenumber For the direct-connect interface
H-3

PDT 1100 Terminal Programmer’s Guide
Beeper

A BEEP statement sounds the beeper at a specified frequency (Hz). If frequency option is
omitted, the default frequency is 4,337 Hz. Specification of 0, 1, or 2 to frequency produces
the special beeper effects listed below.

When frequency is set to 0, 1, or 2 or the frequency option is omitted, adjust the beeper
volume on the LCD when powering on the unit (refer to the PDT 1100 User's Manual.)
When frequency is set to a value other than 0, 1, and 2, the beeper volume is set to the
maximum and is not adjustable.

RS/CS Control

The PDT 1100 supports only the SD (TXD) and RD (RXD) lines during both optical
interface and direct-connect interface operations. The CS (CTS) signal may be monitored
only if you modify the cable connection and arrange the direct-connect interface port (3-pole
plug mini stereo jack) with an OPEN “COM:” statement so that the RD signal is regarded as a
CS signal.

Supplemental Codes

Specifying an S to the supplemental option of a readcode in an OPEN “BAR:” statement allows
the PDT 1100 to read supplemental codes.

Flash ROM

The PDT 1100 incorporates a flash ROM and RAM where you can store user program files
and data files. The following tips help you use the flash ROM correctly.

Specification to
frequency

Frequency Statement example

0 986Hz BEEP ,,,0

1 1807 Hz BEEP ,,,1

2 2711 Hz BEEP ,,,2
H-4

Programming Notes
Storing Files
To store a file in flash ROM, download it from the DOWNLOAD menu in System Mode or
use the XFILE statement in user programs. Copy files stored in RAM into flash ROM with the
file copy function (activated by pressing the 1 key while holding down the SF key on the SET
SYSTEM screen). The user area of flash ROM is 568 kilobytes or 64 kilobytes (depending
upon ROM size). Only the GET statement can be used for files stored in flash ROM; the PUT
statement cannot be used.

Deleting Files
Delete files stored in flash ROM using the KILL statement or the file deletion function
(activated by pressing the 0 key while holding down the SF key on the SET SYSTEM screen).

Note: The Interpreter erases the file in flash ROM when the subsequent
downloading operation is carried out. Since the Interpreter erases
data in units of 128 kilobytes, it temporarily copies the data
containing the file to be deleted (128 kilobytes) into RAM and then
returns files not to be deleted into flash ROM. If the RAM does not
have sufficient space for the data, a system error (or execution error)
occurs.

Specifying Files
Include the drive name when specifying a file in user programs. The drive name is A: for RAM
and B: for flash ROM. If no drive name is specified, the default drive A: (RAM) applies.
Specify files with the following statements:

CALL, CHAIN, KILL, OPEN, and XFILE

This example opens the file named DATA1.DAT stored in flash ROM.

Memory Areas Required for User Programs
If you store a user program in flash ROM, the area for its register variables is also reserved
in flash ROM. When starting the program for the first time, the Interpreter copies the register
variables stored in flash ROM into RAM where the user program uses them. If RAM does
not have sufficient area for storing the register variables, an execution error occurs. When

Example: OPEN “B:DATA1.DAT” AS
#1
H-5

PDT 1100 Terminal Programmer’s Guide
uploading a program file stored in flash ROM, the PDT 1100 combines the program
(excluding register variables in flash ROM) with the register variables stored in RAM.

Retained Contents of Flash ROM
Files stored in RAM are backed up by the built-in rechargeable lithium battery. The files may
be damaged if the unit is left unused long enough for the battery voltage to drop below the
specified level. Unlike files stored in RAM, files stored in flash ROM are retained regardless
of the voltage level of the lithium battery. Once data is written onto flash ROM, it is retained
until deleted.

Wake-up Function

The wake-up function allows you to turn on the PDT 1100 from “OFF” at the wake-up time
(of the system clock) specified in user programs. To set the wake-up time using the TIME$
function:

1. Set bit 2 on port 8 to 1 to switch the TIME$ function to the setting of the wake-up
time.

2. Set the wake-up time using the TIME$ function.

3. Set bit 0 on port 8 to 1 to activate the wake-up function.

To confirm the wake-up time preset:

1. Set bit 2 on port 8 to 1 to switch the TIME$ function to the setting of the wake-up
time.

2. Retrieve the wake-up time using the TIME$ function.

If you set or retrieve the system time or wake-up time using the TIME$ function, the value of
bit 2 on port 8 is reset to zero, and you can set or retrieve the current system time with the
TIME$ function. The value of bit 1 on port 8 in user programs indicates the initiation option
of the PDT 1100. If this bit is 1, the unit is initiated by the wake-up function; if it is 0, by the
PW key.

LED and Beeper Control

Using the OPEN “BAR:” statement to control whether the reading confirmation LED lights in
green (default: light) and whether the beeper beeps (default: no beep) on successful decodes.
For setting details, refer to OPEN “BAR:” on page 10-87.
H-6

Programming Notes
Controlling Reading Confirmation LED
If the OPEN “BAR:” statement activates the reading confirmation LED (in green), the OUT
instruction cannot control the LED via output port 1 (refer to Appendix D, I/O Ports) when
the bar code device file is opened. If the statement deactivates the reading confirmation LED,
the OUT instruction can control the LED even when the bar code device file is opened,
enabling:

! a user program to check the value of a scanned bar code and turn on the green LED
when the bar code has been read successfully. (e.g., the user program can interpret
bar code data valued from 0 to 100 as correct data.)

! a user program to turn on the red LED when the bar code is read.

Controlling the Beeper
If the beeper is activated, it beeps once for 100 ms at the frequency of 4337 Hz (equivalent
to setting frequency to 2 in the BEEP statement) when a bar code is read successfully.

APLINT.PD3 Program File

If a program file named APLINT.PD3 is stored in the PDT 1100, the System Mode initiation
sequence (pressing the PW key with the SF and 1 keys held down) does not start System Mode
but executes that program. This allows you to:

! enter an ID number at the start of System Mode

! set the condensed System Mode used for maintenance of user programs.

To terminate the APLINT.PD3 file, use the END or POWER OFF statement. When terminating the
file with the END statement, start System Mode by setting the port 6000h as listed below.

Modifying PW Key Depression

Modify the time the PW key must be depressed for the unit to turn off from 0.1 to 25.5
seconds in increments of 0.1 ms, by setting bits 0 to 7 on port 6030h to 1 to 255 (&h00 to
&hFF). The default is 5 (0.5 second).

Port No. Bit assignment Controls the following:

6000h 0 0: Does not start System Mode (default)

1: Starts System Mode
H-7

PDT 1100 Terminal Programmer’s Guide
CODE128 Reading

CODE128 bar codes are read in the following manner.

The start/stop characters and check digits are not transmitted to the bar code buffer.

When a code comprised only of special characters (FNC characters, CODE A, CODE B and
CODE C characters, and SHIFT character) is read, the data is not transmitted to the bar code
buffer.

FNC characters are processed as explained below.

1. FNC1 - A FNC1 placed in the first or second position after the start character is not
transmitted to the bar code buffer. Any other FNC1 characters are converted into GS
characters (1Dh) before they are transmitted to the bar code buffer. When the first
character right after the start character is FNC1, this is a EAN-128 code whose code
mark is ìWî.

2. FNC2 - If a FNC2 character is included in the code, the data is not temporally stored
and all the data excluding the FNC2 character is transmitted to the bar code buffer.

3. FNC3 - If a FNC3 character is included in the code, no read data is transmitted to
the bar code buffer. When the LED indicator and/or the buzzer (vibrator) are/is
enabled, only these two functions become operable.

4. FNC4 - In a FNC4 character, the data encoded by Code Set A or B is converted into
Extended ASCII data (Full ASCII + 128).

One FNC4 character converts one subsequent data character into Extended ASCII data. A
pair of FNC4 characters in succession keeps converting all of the subsequent data characters
into ASCII data until another such pair or the stop character is encountered. However, if only
one FNC4 is encountered, the data character right after the FNC4 is excluded from this data
conversion.

The GS character(s) converted from FNC1 is also excluded from the same conversion.

Field Length Restriction

When a data file is transmitted from PDT 1100 according to the communications protocol,
the maximum field length is 255 bytes including a character count byte. The host computer
should support the same field length.
H-8

Appendix I Backlight Function

Press the [M1] key while holding down the Shift key to activate or deactivate the backlight
function. The default backlight on-time (on-duration) is 3 seconds. You can also use a KEY
statement to select the backlight function on/off key and modify the on-duration.

For details about the KEY statement, refer to KEY on page 10-61.
I-1

PDT 1100 Terminal Programmer’s Guide
Figure I-1. LCD Backlight Function

You can control the backlight function using the OUT statement. Set port 6020h to 1 with the
OUT statement to activate the LCD backlight function and turn on the backlight. If no key is

The backlight function is
OFF when you power on

the terminal.

Backlight OFF

Press the [M1] key while holding
down the Shift key.

Or, press the backlight function
on/ off key specified by KEY
statement.

Backlight ON

Backlight OFF
(The backlight function is ON.)

Press the [M1] key while
holding down the Shift key.

Or, press the backlight function
on/ off key specified by KEY
statement.

If no key is pressed
for at least 3 seconds:

Press any key except for the
backlight function on/off key.

Press the [M1] key while
holding down the Shift key.

Or, press the backlight function
on/ off key specified by KEY
statement.
I-2

Backlight Function
pressed for the time length set to port 6021h (default: 5 seconds), the backlight goes off but
the backlight function remains activated. Set port 6020h to 0 to deactivate the LCD backlight
function and turn off the backlight. When the backlight function is activated with the OUT
statement, the backlight function on/off key and ON-duration specified by the KEY
statement are ignored.

Figure I-2. Setting Backlight Function via OUT Statement

Backlight OFF

The backlight function is
deactivated when the PDT 1100

is powered on.

With the OUT statement,
set port 6020h to 1.

Backlight ON

Backlight OFF

The backlight function
remains activated. With the OUT statement, set 0

to port 6020h.

Press any key.

If no key is pressed
for the time length
set to port 6021h,
the backlight goes
off.

With the OUT statement, set 0
to port 6020h.
I-3

PDT 1100 Terminal Programmer’s Guide
I-4

Appendix J Program Samples

Writing a Function

Following is a sample function for receiving bar code and key entry.

If you use an invariant for f.no% or bar$, you don’t need to pass the value as an argument.
The bar$ can pass a single type of bar code. If two or more types are required, directly
describe necessary invariants.

def fnbarkey$(f. no%, bar$, max%, esc$)
while 1

Feature: This function determines whether bar code data or keyed data is entered first,
and returns that data.
If pressing the Backspace key or Clear key empties the input string, the function
is ready to receive the subsequent bar code entry or key entry.

Returned value: The function returns bar code or key entry received (before the ENT key is
pressed) as a string.

Arguments: f.no% Specifies the file number which opens the bar code device file.
(Invariant allowed)

bar$ Specifies bar code reading. (Invariant allowed)
Ex. “M:10-20”

max% Specifies the maximum length of a returned string.

esc$ If a key(s) contained in this string is entered, the function returns
the key entry only.

Work: .kb$ and .rt$
J-1

PDT 1100 Terminal Programmer’s Guide
open “BAR:” as #f. no% code bar$
wait 0, 3 ' Wait for completion of bar code reading or key press.
if loc(#f. no%) then
beep ' Beep when bar code reading is completed.
fnbarkey$ = input$(max%, #f. no%)
' For displaying:
' rt$ = input$(max%, #f. no%) : print .rt$;
' fnbarkey$ = .rt$
close #f. no%
exit def

else
close #f. no% ' Receive only key entry.
.rt$ = “”
.kb$ = input$(1)
while .kb$<>“”

if instr(esc$, .kb$) then ' Key designated in esc$?
fnbarkey$ = .kb$ ' Then, return the character.
exit def

endif
select .kb$
case chr$(13)

fnbarkey$ = .rt$
exit def

case chr$(8) ' BS key.
if len(.rt$) then

print chr$(8); ' Erase one character.
.rt$ = left$(.rt$, len(.rt$)-1)

endif
case chr$(24) ' Clear key.

while len(.rt$) ' Erase all characters entered.
print chr$(8);
.rt$ = left$(.rt$, len(.rt$)-1)

wend
case else

if len(.rt$)<max% then
' Check if only numeric data should be received.

print .kb$; ' Echo back.
.rt$ = .rt$ + .kb$
else

beep ' Exceeded number of characters error.
endif

end select
if .rt$=“” then ' If input string is empty, go back to the initial state.

.kb$ = “”
J-2

Program Samples
else
.kb$ = input$(1) ' Subsequent key entry.

wend
endif

wend
end def

Testing the Written Function

while 1 'Infinite loop
a$ = fnbarkey$ (1, “A”, 15, “DL”) 'F4 and SFT/F4 as escape characters.
print
if a$<>“D” and a$<>“L” then

print “Data=”; a$
else

print “ESC(“;a$;”) key push”
endif

wend
end
J-3

PDT 1100 Terminal Programmer’s Guide
J-4

Appendix K
Quick Reference for Statements and Functions

Controlling Program Flow

Statements Definitions

CALL Calls an FN3 function.

CHAIN Transfers control to another program.

END Terminates program execution.

FOR...NEXT Defines a loop containing instructions to be executed a specified number
of times.

GOSUB Branches to a subroutine.

GOTO Branches to a specified label.

IF...THEN...ELSE...END IF Conditionally executes specified statement blocks depending upon the
evaluation of a conditional expression.

ON...GOSUB Branches to one of specified labels according to the value of an expression.

ON...GOTO Branches to one of specified labels according to the value of an expression.

RETURN Returns control from a subroutine or an event-handling routine (for
keystroke interrupt).

SELECT...CASE...END
SELECT

Conditionally execute a statement block depending upon the value of an
expression.

WHILE...WEND Continues to execute a statement block as long as the conditional
expression is true.
K-1

PDT 1100 Terminal Programmer’s Guide
Handling Errors

Defining and Allocating Variables

Statements Definitions

ON ERROR GOTO Enables error trapping.

RESUME Resumes program execution at a specified location after control is
transferred to an error-handling routine.

Functions Definitions

ERL Returns the current instruction location of the program where an
execution error occurred.

ERR Returns the error code of the most recent execution error.

Statements Definitions

COMMON Declares common variables for sharing between user programs.

DATA Stores numeric and string literals for READ statements.

DEFREG Defines register variables.

DIM Declares and dimensions arrays; also declares the string length for a
string variable.

ERASE Erases array variables.

LET Assigns a value to a given variable.

READ Reads data defined by DATA statement(s) and assigns them to
variables.

RESTORE Specifies a DATA statement location where the READ statement should
start reading data.
K-2

Quick Reference for Statements and Functions
Controlling the LCD Screen

Statements Definitions

APLOAD Loads a user-defined font in the single-byte ANK mode.

CLS Clears the LCD screen.

CURSOR Turns the cursor on or off.

KEY Assigns a string or a control code to a function key; also defines a
function key as the LCD backlight function on/off key. This statement
also defines a magic key as the trigger switch, shift key, or battery
voltage display key.

KPLOAD Loads a user-defined Kanji font in the two-byte Kanji mode.

LOCATE Moves the cursor to a specified position and changes the cursor shape.

PRINT Displays data on the LCD screen.

PRINT USING Displays data on the LCD screen under formatting control.

SCREEN Sets the screen mode and the character attribute.

Functions Definitions

COUNTRY$ Sets a national character set or returns a current country code.

CSRLIN Returns the current row number of the cursor.

POS Returns the current column number of the cursor.
K-3

PDT 1100 Terminal Programmer’s Guide
Controlling the Keyboard Input

Beeping

Statements Definitions

INPUT Reads input from the keyboard into a variable.

KEY Assigns a string or a control code to a function key; also defines a function
key as the LCD backlight function on/off key. This statement also defines
a magic key as the trigger switch, shift key, or battery voltage display key.

KEY ON Enables keystroke trapping for a specified function key.

KEY OFF Disables keystroke trapping for a specified function key.

LINE INPUT Reads input from the keyboard into a string variable.

ON KEY...GOSUB Specifies an event-handling routine for keystroke interrupt.

Functions Definitions

INKEY$ Returns a character read from the keyboard.

INPUT$ Returns a specified number of characters read from the keyboard or from
a device file.

Statements Definitions

BEEP Sounds the beeper.
K-4

Quick Reference for Statements and Functions
Manipulating System Date, Current Time, or Timers

Communicating with I/Os

Functions Definitions

DATE$ Returns the current system date or sets a specified system date.

TIME$ Returns the current system time or wake-up time, or sets a specified
system time or wake-up time.

TIMEA Returns the current value of timer A or sets timer A.

TIMEB Returns the current value of timer B or sets timer B.

TIMEC Returns the current value of timer C or sets timer C.

Statements Definitions

OUT Sends a data byte to an output port.

POWER Controls the automatic power-off facility.

WAIT Pauses program execution until a designated input port presents a given
bit pattern.

Functions Definitions

FRE Returns the number of bytes available in a specified area of the memory.

INP Returns a byte read from a specified input port.
K-5

PDT 1100 Terminal Programmer’s Guide
Communicating with Bar Code Device

Statements Definitions

CLOSE Closes file(s).

INPUT# Reads data from a device I/O file into specified variables.

OPEN "BAR:" Opens the bar code device file, also activates or deactivates the reading
confirmation LED and the beeper individually in the PDT 1100.

Functions Definitions

CHKDGT$ Returns a check digit of bar code data.

EOF Tests whether the end of a device I/O file has been reached.

INPUT$ Returns a specified number of characters read from the keyboard or from
a device file.

LOC Returns the current position within a specified file.

MARK$ Returns a bar code type and the number of digits of the bar code.
K-6

Quick Reference for Statements and Functions
Manipulating Data Files and User Program Files

Statements Definitions

CLFILE Erases the data stored in a data file.

CLOSE Closes file(s).

FIELD Allocates string variables as field variables.

GET Reads a record from a data file.

KILL Deletes a specified file from the memory.

OPEN Opens a file for I/O activities.

PUT Writes a record from a field variable to a data file.

Functions Definitions

LOC Returns the current position within a specified file.

LOF Returns the length of a specified file.

SEARCH Searches a specified data file for specified data, and then returns the record
number where the search data is found.
K-7

PDT 1100 Terminal Programmer’s Guide
Communicating with Communications Devices

Statements Definitions

CLOSE Closes file(s).

INPUT# Reads data from a device I/O file into specified variables.

LINE INPUT# Reads data from a device I/O file into a string variable.

OPEN "COM:" Opens a communications device file.

PRINT# Outputs data to a communications device file.

XFILE Transmits a designated file according to the specified communications
protocol.

Functions Definitions

BCC$ Returns a block check character (BCC) of a data block.

EOF Tests whether the end of a device I/O file has been reached.

ETX$ Modifies the value of a terminator (ETX) for the PDT 1100 protocol; also
returns the current value of a terminator.

INPUT$ Returns a specified number of characters read from the keyboard or from
a device file.

LOC Returns the current position within a specified file.

LOF Returns the length of a specified file.

SOH$ Modifies the value of a header (SOH) for the PDT 1100 protocol; also
returns the current value of a header.

STX$ Modifies the value of a header (STX) for the PDT 1100 protocol; also
returns the current value of a header.
K-8

Quick Reference for Statements and Functions
Commenting a Program

Manipulating Numeric Data

Manipulating String Data

Statements Definitions

REM Declares the rest of a program line to be remarks or comments.

Functions Definitions

ABS Returns the absolute value of a numeric expression.

INT Returns the largest whole number less than or equal to the value of a given
numeric expression.

Functions Definitions

ASC Returns the ASCII code value of a given character.

CHR$ Returns the character corresponding to a given ASCII code.

HEX$ Converts a decimal number into the equivalent hexadecimal string.

INSTR Searches a specified target string for a specified search string, and then
returns the position where the search string is found.

LEFT$ Returns the specified number of leftmost characters from a given string
expression.

LEN Returns the length (number of bytes) of a given string.

MID$ Returns a portion of a given string expression from anywhere in the
string.

RIGHT$ Returns the specified number of rightmost characters from a given string
expression.

STR$ Converts a numeric expression into a string.

VAL Converts a string into a numeric value.
K-9

PDT 1100 Terminal Programmer’s Guide
Defining User-Created Functions

Specifying Included Files

Statements Definitions

DEF FN Names and defines a user-created function.

DEF FN...END DEF Names and defines a user-created function.

Statements Definitions

$INCLUDE Specifies an included file.

REM $INCLUDE Specifies an included file.
K-10

Appendix L
Unsupported Statements and Functions

BASIC 3.0 does not support the following MS-BASIC statements and functions:

- For handling sequential data files:

CVD MKD$ PRINT# USING

CVI MKI$ RSET

CVS MKS$ WRITE#

LSET PRINT#

- For RS-232C interface operation:

PRINT# USING

WRITE#

- For interrupt handling:

COM OFF ON STOP GOSUB

COM ON STOP OFF

COM STOP STOP ON

ON STCOM GOSUB
L-1

PDT 1100 Terminal Programmer’s Guide

- For graphics and color control:

CIRCLE DRAW WIDTH

COLOR LINE WINDOW

CONSOLE POINT

CSRLIN PSET

- For I/O control:

DEFUSR POKE

PEEK VARPTR

- For mathematical functions and trigonometric functions:

ATN LOG SQR

COS SCNG TAN

EXP SIN

- For others:

CDBL FIX SGN

CINT IF GOTO STRING$

CLEAR LPOS SWAP

COPY OCT$ TAB

DEF DBL OPTION BASE WRITE

DEF SNG RANDOMIZE

DEFINT RND
L-2

Appendix M Communications

Basic Communications Specifications

The following table lists the communications specifications for the PDT 1100 and a host
computer via the CRD 1100 (optical interface) or direct-connect interface cable.

Synchronization
For accurate data transaction, synchronize the transmission between the sender and receiver.
To do this, define the bit order, position, the character length, and the beginning and end of
the character to be transmitted.

The start-stop synchronization is an asynchronous system which synchronizes each character
as a unit; that is, it externally adds start and stop bits to the leading and trailing bit positions

Table M-1. Communications Specifications

 Communications Port Optical Interface Direct-connect Interface

Synchronization Start-stop

Transmission Speed 2400, 9600, 19200, 38400,
57600, or 115200 bps

300, 600, 1200, 2400, 4800,
9600, 19200, or 38400 bps

Character Length 8-bits 7- or 8-bits

Transmission Bit Order LSB (Least significant bit) first

Response Method ACK/NAK response

Vertical Parity None Even, odd, or none

Transparency Transparent or non-transparent mode

Stop Bit Length 1 bit 1 or 2 bits
M-1

PDT 1100 Terminal Programmer’s Guide
of the character to be transmitted, respectively. A clock starts counting when it receives the
start bit and it stops communicating when the stop bit is received. The number of the stop
bits is selectable (1 or 2 bits).

Optical Interface Communications Range
The optical interface's maximum effective range is 80 cm with the IR beam within a 10° angle
of divergence.

Transmission Code and Bit Order
All characters should be coded to 7- or 8-bit code for data transmission. The standard data
exchange code of the PDT 1100 is 7- or 8-bit code. The transmission bit order is LSB (Least
Significant Bit) first. Following is an example for transmitting character A (41h, 01000001b)
coded to 8-level code with an even parity and a single bit for start and stop bits.

Figure M-1. Transmission Example

Response Method
When two devices initiate communications, they exchange signals for correct data
transmission. This procedure is called “handshaking” or “data link establishment phase.”
The sender sends a control code ENQ (05h) to inquire if the receiver is ready to receive data,
and the receiver replies with a control code ACK (06h)(positive) or NAK (15h)(negative) to
start data transmission.

Vertical Parity
A vertical parity bit is a redundancy bit added to every character to be transmitted to check
that data has been transmitted accurately. The parity bit should be set to “1” or “0”
depending upon the parity parameter setting, to make the number of set bits in the character
even or odd. The receiver counts the number of set bits in the transmitted character code to

35864050.eps

Start Bit

LSB

1 0 0 0 0 0 0 01

Parity Bit
Stop Bit
M-2

Communications
make sure that it has the selected number (even or odd) of set bits. The vertical parity bit
immediately follows the MSB (Most Significant Bit) as shown below.

Figure M-2. Vertical Parity

BCC for Horizontal Parity Checking
The PDT 1100 supports horizontal parity checking for every transmission block to check
data transmission. A horizontal parity byte called BCC (Block Check Character) is appended
after the ETX of every transmission block. Every parity bit of BCC is set so that all set bits at
the same bit level (including a parity bit) in the transmission block characters have an even
number by binary addition, excluding SOH, STX, and functions SOH$ and STX$. (Refer to
SOH$ on page 11-47 and STX$ on page 11-50.)

35864051.eps

MSB

MSB

LSB

LSB

b0

b0

b1

b1

b2

b2

b3

b3

b4

b4

b5

b5

b6

b6 b7

Vertical Parity Bit

Vertical Parity Bit
M-3

PDT 1100 Terminal Programmer’s Guide
Figure M-3. Horizontal Parity Checking

IR Protocol
The IR protocol is the communications procedure for the serial infrared link, which is used
to transmit files between the PDT 1100 and a host (or between the PDT 1100s). It adopts the
response method using ACK/NAK codes. The Ir protocol can be used also for
communications through the direct-connect interface. The Ir protocol is composed of a
defined set of the control character sequences including the following three phases:

! Phase 1: Establishment of data link - the sending station confirms that the receiving
station is ready to receive data.

! Phase 2: Data transmission - the sending station transmits data to the target receiving
station.

! Phase 3: Release of data link - the sending station confirms that transmitted data has
been correctly received by the receiving station. If yes, the sending station terminates
the data transmission and releases the data link.

(Vertical Parity)

Character Horizontal Parity Byte
(BCC)

[For 8-bit Data]

35864062.eps
M-4

Communications
Communications Parameters
In System Mode and user programs written in BASIC 3.0, you may set the communications
parameters listed below

In System Mode
Refer to the PDT 1100 Terminal Product Reference Guide to set communications parameters
in the system mode.

In BASIC 3.0
To set the transmission speed (optical interface only), character length, vertical parity, and
stop bit length , use the OPEN "COM:" statement in BASIC 3.0.

! OPEN "COM:... " opens the interface port selected in System Mode.Through the
interface port opened by the OPEN "COM:" statement. The XFILE statement
transmits a designated file through the interface port.

! OPEN "COM1:... " opens the optical interface port for data transmission routing
through the CRD 1100, regardless of the setting in System Mode.

! OPEN "COM2:... " opens the direct-connect interface port for data transmission,
irrespective of the setting in System Mode.

Note: You cannot open both the optical interface port and the direct-
connect interface port at the same time.

Table M-2. Communications Parameters

 Communications Port Optical interface Direct-connect interface

Transmission Speed 2400, 9600, 19200, 38400,
57600, or 115200 bps

300*, 600*, 1200, 2400, 4800,
9600, 19200, or 38400 bps

Character Length 8 bits 7 or 8 bits

Vertical Parity None Odd, even, or none

Stop Bit Length 1 bit 1 or 2 bits

* The 300 bps and 600 bps are not available in System Mode.
M-5

PDT 1100 Terminal Programmer’s Guide
Communications Protocols

The PDT 1100 supports both the protocol and the Ir protocol for file transmission.

Protocol
The protocol uses the ACK/NAK response method to transmit files between the PDT 1100
and a host (or between PDT 1100s). The protocol is composed of a defined set of control
character sequences including the following three phases:

! Phase 1: Establishment of data link - the sending station confirms that the receiving
station is ready to receive data.

! Phase 2: Data transmission - the sending station transmits data to the target receiving
station.

! Phase 3: Release of data link - The sending station confirms whether or not all of the
transmitted data has been correctly received by the receiving station. If yes, the
sending station terminates the data transmission and releases the data link.

Control Characters
There are two groups of control characters: transmission control characters and text control
characters. The transmission control characters in the following table compose transmission
control sequences in phases 1 through 3.

The PDT 1100 uses non-transparent mode. It views the control characters and codes (e.g.,
STX, ETX, and SOH) as starting or ending markers and does not transmit them as normal
data in the transmission texts.

Table M-3. Transmission Control Characters

Symbol Value Meaning Function

EOT 04h End Of Transmission Releases a data link (Phase 3), requests abort of
transmission (Phase 2).

ENQ 05h Enquiry Requests establishment of a data link (Phase 1), prompts
the receiver to respond to the sent text (Phase 2).

ACK 06h Acknowledge Acknowledgment response to ENQ (Phase 1),
acknowledgment response to text (Phase 2),
acknowledgment response to EOT (Phase 3).

NAK 15h Negative Acknowledge Negative acknowledgment response to ENQ (Phase 1),
negative acknowledgment response to text (Phase 2).
M-6

Communications
Text control characters format transmission texts. In the protocol, they include the following
headers and a terminator.

You may designate headers and a terminator with the protocol functions in BASIC 3.0. If you
do not designate them in a user program, the PDT 1100 may apply them as listed above.

Format of Transmission Messages
The PDT 1100 transmits data as units of a file. First, it transmits a heading text which
includes the file information (e.g., file name and the number of data texts) to be transmitted.
Then, it transmits the data text in the file. A heading text and data text comprise a text.

In text transmission, the text is divided into several blocks, with a header and terminator
added to each block. If the serial number management or error checking by BCC (Block
Check Character) is required, the serial number or BCC is also added to each block. This
forms a transmission block. A set of transmission blocks makes up one transmission message.

Table M-4. Text Control Characters

Symbol Value Meaning Function

SOH 01h Start Of Heading Indicates the start of heading text (Phase 2).

STX 02h Start Of Text Indicates the start of data text (Phase 2).

ETX 03h End Of Text Indicates the end of data text (Phase 2).
M-7

PDT 1100 Terminal Programmer’s Guide
Shown below is an example of a transmission message formed with the protocol.

Figure M-4. Protocol Transmission Message

In this figure, SOH, STX, and ETX are text control characters as described in Control
Characters. A serial number is expressed by a five-digit decimal number, starting from 00001
to 32767, and identifies transmitted data texts. For the BCC, refer to PDT 1100 Terminal
Product Reference Guide.

35864052.eps

Heading
Text

Data Text
1

Data Text 2 Data Text

E

T

X

B

C

C
Heading Text

Data Text 1
E

T

X

B

C

C

Serial

Number

S

T

X

S

T

X

Serial

Number Data Text

E

T

X

B
C
C

Text

S

O

H

Transmission
Message

Transmission Block

Transmission Block

Transmission Block
M-8

Communications
Transmission Control Sequences
Shown below is a typical message transmission sequence supported by the protocol. This
example does not include transmission errors or negative responses.

Figure M-5. Sample Transmission Control Sequence

35864053.eps

Establishment
of Data Link
(Phase 1)

ENQ

ACK

Data Transmission
(Phase 2)

Release of Data
Link
(Phase 3)

Sending
Station

Receiving
Station

ACK

ACK

ACK

ACK

ACK

EOT

Heading Text

Serial Number

Serial Number

Serial Number

Data Text 1

Data Text n-1

Data Text n

S
O
H

E
T
X

E
T
X

E
T
X

E
T
X

B
C
C

B
C
C

B
C
C

B
C
C

S
T
X

S
T
X

S
T
X

M-9

PDT 1100 Terminal Programmer’s Guide
Errors may occur during data transmission. The protocol recovers from these errors as
frequently as possible. Following is the protocol for errors during phases 1 through 3.

Phase 1: Establishment of Data Link

Normal phase 1:The sending station transmits an ENQ to the receiving station. When an
ACK is received the receiving station, the sending station shifts to phase 2.

Figure M-6. Normal Phase

Phase 1 with iterated ENQ transmission due to no response or invalid response: If the sending
station receives no response or any invalid response from the receiving station in response to
an ENQ , it resends an ENQ at three-second intervals up to 10 times. If it receives an ACK
during this time, it proceeds to phase 2.

Figure M-7. Phase 1 with Repeated ENQ Transmission

35864054.eps

Receiving
Station

ENQ

ACK

Sending
Station

To phase 2.

Sending
Station

3 seconds

3 seconds

ENQ

ENQ

ENQ

Receiving
Station

ACK

To phase 2.
M-10

Communications
Note: You may modify the number of ENQ iterations. Refer to the SET
LINKUP TIME screen in System Mode and the XFILE statement
given in PDT 1100 Terminal Programmer’s Guide p/n 70-36099-01.

Abnormal termination of phase 1 (Abort of phase 1): If the sending station receives no ACK
from the receiving station after sending an ENQ 10 times in succession, it sends an EOT to
the receiving station three seconds after 10th ENQ to terminate the message transmission.

Figure M-8. Abort of Phase 1

Note: The receiving station's default timeout is 30 seconds. You may modify
the timeout length on the SET LINKUP TIME screen in System Mode
(p. 52) or by using the XFILE statement (refer to the PDT 1100
Terminal Programmer’s Guide p/n 70-36099-01).

Phase 2: Data Transmission

Normal phase 2: The sending station first sends a transmission block containing the heading
text. Each time the sending station receives an ACK from the receiving station, it sends a
transmission block containing the data texts as shown below. Upon receipt of an ACK in
response to the last transmission block (data text n), the sending station shifts to phase 3. If

35864056.eps

ENQ (1)

ENQ (2)

ENQ (3)

ENQ (10)

EOT

Abnormal
Termination

Sending
Station

3 seconds

3 seconds

3 seconds

Receiving
Station
M-11

PDT 1100 Terminal Programmer’s Guide
a transmission message contains no data text, the sending station transmits the heading text
only.

Figure M-9. Normal Phase 2

Phase 2 with NAK

If the sending station receives a NAK from the receiving station in response to a transmission
block containing text data, it sends that transmission block again immediately as shown

35864057.eps

Sending
Station

Receiving
Station

To phase 3.

ACK

ACK

ACK

ACK

Heading Text

Data Text 1

Data Text n-1

Data Text n
M-12

Communications
below. If the sending station receives an ACK before receiving a NAK 10 times in succession,
it continues the subsequent message transmission.

Figure M-10. Phase 3 Termination

35864059.eps

If the sending station receives a NAK 10 times in succession or it fails to send a same
transmission block, it proceeds to phase 3 to terminate the message transmission. Even if the
Phase 3 terminates normally, the transmission is aborted.

Sending
Station

Sending
Station

Receiving
Station

Receiving
Station

ACK

Data Text m

Data Text m

Data Text m

Data Text m+1

NAK

NAK

NAK

NAK

NAK

Data Text m(1)

Data Text m(2)

Data Text m(10)

To phase 3.

Occurrence
of an error

Figure M-10. Phase 2 with NAK
M-13

PDT 1100 Terminal Programmer’s Guide
Phase 2 with EOT: If the sending station receives an EOT anytime during phase 2, it proceeds
to phase 3 to terminate the message transmission. Even if the phase 3 terminates normally.

Figure M-11. Phase 2 with Repeated ENQ Transmission

35864058.eps

Phase 2 with repeated ENQ transmission due to no response or invalid response : If the
sending station receives no response or any invalid response from the receiving station in
response to a transmission block sent, it resends an ENQ every 3 seconds up to nine times.
If the sending station receives an ACK during this time, it continues the message
transmission.

Sending
Station

Sending
Station

Receiving
Station

Receiving
Station

EOT

Occurrence
of an error

To phase 3.

Data Text m

Data Text m+1

ENQ

ENQ

ACK

3 seconds

3 seconds

Figure M-11. Phase 2 with EOT
M-14

Communications
Abort of phase 2: If the sending station receives no ACK from the receiving station after
sending an ENQ nine times in succession, it sends an EOT to the receiving station 3 seconds
after 9th ENQ to terminate the transmission sequence.

Figure M-12. Normal Phase 3

Phase 3 with Repeated EOT transmission due to no response or invalid response: If the
sending station receives no response or any invalid response from the receiving station in
response to an EOT sent, it repeats the EOT at three-second intervals up to ten times. If the

35864060.eps

Phase 3: Release of Data Link

Normal phase 3: The sending station transmits an EOT to the receiving station. When an
ACK is received from the receiving station, the sending station terminates the message
transmission normally and releases the data link.

Sending
Station

Sending
Station

Receiving
Station

Receiving
Station

3 seconds

3 seconds

3 seconds

Abnormal
Termination

Normal
Termination

EOT

EOT

ACK

ENQ (1)

ENQ (2)

ENQ (9)

Figure M-12. Abort of Phase 2
M-15

PDT 1100 Terminal Programmer’s Guide
sending station receives an ACK during this time, it terminates the message transmission
normally and releases the data link.

Figure M-13. Abnormal Termination of Phase 3

Aborting Data Transmission
Pressing the C key aborts data transmission.

If the C key is pressed during downloading, the PDT 1100 transmits an EOT and aborts the
file transmission. If it is pressed during uploading, the PDT 1100 transmits the current
transmission block followed by EOT and then aborts the file transmission.

35864061.eps

Abnormal termination of phase 3: If the sending station receives no ACK from the receiving
station within three seconds from the 10th EOT, it aborts the message transmission and
releases the data link.

Normal
Termination

Abnormal
Termination

3 seconds

3 seconds

3 seconds

3 seconds

3 seconds

Sending
Station

Sending
Station

Receiving
Station

Receiving
Station

EOT

EOT

EOT

EOT(1)

EOT(2)

EOT(3)

EOT(10)

ACK

Figure M-13. Phase 3 with repeated EPTs
M-16

Communications
BCC for Horizontal Parity Checking
The PDT 1100 supports horizontal parity checking for every transmission block to check
data transmission. A horizontal parity byte called BCC (Block Check Character) is appended
after the ETX of every transmission block. Every parity bit of BCC is set so that all set bits at
the same bit level (including a parity bit) in the transmission block characters have an even
number by binary addition, excluding SOH, STX, and functions SOH$ and STX$. (Refer to
SOH$ on page 11-47 and STX$ on page 11-50.)

Figure M-14. Horizontal Parity Checking

Shown below is a data text block indicating the bits to be added for horizontal parity
checking.

Figure M-15. Bits to be Added

(Vertical Parity)

Character Horizontal Parity Byte
(BCC)

[For 8-bit Data]

35864062.eps

35864064.eps

S
T
X

E
T
X

B
C
C

Serial
Number Data Text

To be added for
horizontal parity

checking
M-17

PDT 1100 Terminal Programmer’s Guide
Text Format
Before transmission, text should be formatted according to the standard of the protocol.
Following are two types of the standard text formats for program files and data files.

Program Text Format

Figure M-16. Program Text Format

35864064.eps

Byte Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Program File Name
(12 bytes)

Number of Data
Texts Contained

(5 bytes)

P R O G 1 P D 3. 0 0 3 5 2Example of
Contents

The program file name should be a

maximum of 12 characters in length
and consist of FILE NAME and

.EXTENSION. The FILE NAME

should be 1 to 8 characters. The
EXTENSION should be.PD3 (.FN3

and.EX3 may be available for future

functional expansion).

If the program file name is

less than 12 characters in
length, the lower blank

bytes are filled with space

characters.

The number of data
texts should be 0 to

32767. If it is less than 5

digits, the upper blank
bytes are filled with

zeros (0).
M-18

Communications
Data Text Format

Figure M-18. Heading Text

130
or

128

35864065.eps

1 2 3 4

Program Data
128 bytes if extension is .PD3;
130 bytes if it is .FN3 or .EX3.

0 D A0 0 0 0 0 0 0

Byte
Position

Example of
Contents

Object file (compiled from a
source program file having the
extensions.PD3, .FN3, or
.EX3.)

If a program data field is
less than the maximum
digits, the lower blank bytes
are filled with zeros (0).

Figure M-17. Data Text Format

.
3

Byte
Position

Example of
Contents

1 2 3 4 65 7 8 9 10 1211 13 14 15 16 17 18 19 20 21

Data File Name
(12 bytes)

Number of Data
Texts Contained

(5 bytes)

Number of Fields
(2 bytes)

Length of
Data Field 1

(2 bytes)
Length of

Data Field n
(2 bytes)

M A S T E R . D A T 0 0 0 016295 n

The data file name should be a

maximum of 12 characters and

consists of FILE NAME
and.EXTENSION. The FILE NAME

should be 1 to 8 characters. The

EXTENSION should not be .PD3,
.FN3, and.EX3, and may be omitted

(together with a period).

If the data name is less

than 12 characters, the
lower blank bytes are

filled with space

characters.

The number of data texts

should be 0 to 32767. If
less than 5 digits, the

upper blank bytes are

filled with zeros (0).

The number of fields

should be 1 to 16. If it is
less than 2 digits, the

upper blank byte are filled

with zero (0).

Every data field should be 1 to

254 digits. If less than 2 digits,
the upper blank byte are filled

with zero (0).

If a data field is 100 to 199 digits,
@0 to I9 are given; if it is 200 to

254 digits, P0 to U4 are given.

10X @ 20X P
11X A 21X Q
12X B
...
18X H 24X T
19X I 25X U
M-19

PDT 1100 Terminal Programmer’s Guide
To transfer a data file containing a data field(s) of 100 digits or more, use the Windows-based
Transfer Utility. The MS-DOS-based Transfer Utility does not support transmission of data
fields exceeding 99 digits.

Data Text

Figure M-19. Data Text

The total length of all data fields plus the number of the character count bytes (= the number
of the fields) should be 255 bytes or less. When you transfer five 50-digit (50-byte) fields, for
example, the total length of all data fields is 250 (50 x 5) bytes and the number of the
character count bytes is 5. The total is 255, so you can transfer the file.

3

Example of
Contents

Data Field 1 Data Field 2 Data Field n

T 1 1 1 112 2 2 23 340 00 9 9 5S

Every data field should

be 1 to 99 digits in

length.

If a data field is less than the

maximum digits, the lower

blank bytes are filled with
space characters.
M-20

Communications
IR Protocol

Overview
The IR protocol is the communications procedure for the serial infrared link, which is used
to transmit files between the PDT 1100 and a host (or between the PDT 1100s). It adopts the
response method using ACK/NAK codes. The Ir protocol can be used also for
communications through the direct-connect interface. The IR protocol is composed of a
defined set of the control character sequences including the following three phases:

! Phase 1: Establishment of data link - the sending station confirms that the receiving
station is ready to receive data.

! Phase 2: Data transmission - the sending station transmits data to the target receiving
station.

! Phase 3: Release of data link - the sending station confirms that transmitted data has
been correctly received by the receiving station. If yes, the sending station terminates
the data transmission and releases the data link.
M-21

PDT 1100 Terminal Programmer’s Guide
Control Characters
The control characters are classified into two groups: transmission control characters and
text control characters.

Transmission Control Characters

The transmission control characters listed below are used to compose transmission control
sequences in phases 1 through 3.

Transparency

The PDT 1100 uses the transparent mode which allows the control characters and codes (e.g.,
STX, ETX, SOH, and DLE) to be transmitted as normal data in the transmission texts. To
transmit a DLE as normal data, type DLE DLE per DLE.

Table M-5. Transmission Control Characters

Symbol Value Meaning Function

DLE EOT 1004h End Of Transmission Releases a data link (Phase 3). Requests abort of
transmission (Phase 2).

DLE ENQ 1005h Enquiry Requests establishment of a data link (Phase 1).
Prompts the receiver to respond to the sent text (Phase
2).

DLE ACK 1006h Acknowledge Acknowledgment response to DLE ENQ (Phase 1).
Acknowledgment response to text (Phase 2).

Acknowledgment response to DLE EOT (Phase 3).

DLE NAK 1015h Negative
Acknowledge

Negative acknowledgment response to DLE ENQ
(Phase 1). Negative acknowledgment response to text
(Phase 2).

WACK 1038h Wait For
Acknowledge

Requests suspension of data reception during erasure
of the flash ROM.
M-22

Communications
Text Control Characters

The text control characters are used to format transmission texts. In the Ir protocol, they
include the following headers and a terminator:

In the Ir protocol, you cannot change the values of the headers and terminator with the
protocol functions in BASIC 3.0.

Table M-6. Text Control Characters

Symbol Value Meaning Function

DLE SOH 1001h Start Of Heading Indicates the start of heading text (Phase 2).

DLE STX 1002h Start Of Text Indicates the start of data text (Phase 2).

DLE ETX 1003h End Of Text Indicates the end of data text (Phase 2).
M-23

PDT 1100 Terminal Programmer’s Guide
Format of Transmission Messages
The PDT 1100 transmits data as units of a file. First, it transmits a heading text which
includes the file to be transmitted(e.g., file name and the number of data texts). Following the
heading text, it transmits the data text in the file. A heading text and data text comprise a
text. In actual text transmission, the text is divided into several blocks, then a header,
terminator, serial number, receiver station's ID, and CRC-16 (Cyclic Redundancy Check) are
added to each block. This procedure forms a transmission block. A set of transmission blocks
makes up one transmission message. Shown below is an example of a transmission message
formed with the Ir protocol.

Figure M-20. Transmission Message formed with Ir Protocol

In the above figure, DLE SOH, DLE STX and DLE ETX are text control characters as
described in [2] Control Characters. An ID denotes the ID number of the receiver station,
expressed by two bytes. A serial number is expressed by a five-digit decimal number, starting
from 00001 to 32767, and identifies data texts. For the CRC-16, refer to [6] CRC.

34864068.eps

Heading Text

Serial

Data Text 1

S
O
H

E
T
X

Heading Text

Data Text 1

Data Text 2

E
T
X

E
T
X

Number

Serial
Number

Data Text 2 Data Text Text

D
L
E

D
L
E

D
L
E

D
L
E

D
L
E

D
L
E

S
T
X

S
T
X

I

D

I

D

I

D

(5 bytes)

(2 bytes)

C
R
C

C
R
C

C
R
C

*

*

* *

*

*

Transmission
Message

Transmission
Block

Transmission
Block

Transmission
Block
M-24

Communications
Note: You can use the control characters for expressing IDs, serial numbers,
or text data.

Transmission Control Sequences
Following is a typical message transmission sequence supported by the Ir protocol. This
sequence example does not include transmission errors or negative responses.

Figure M-21. Ir Protocol Transmission Message

35864069.eps

Release of Data
Link
(Phase 3)

Data Transmission
(Phase 2)

Establishment
of Data Link
(Phase 1)

Sending
Station

Receiving
Station

DLE ENQ and IDM*
DLE ACK and IDs**

DLE ACK and IDs

DLE ACK and IDs

DLE ACK and IDs

DLE ACK and IDs

DLE ACK and IDs
DLE EOT and IDs

Heading Text
S
O
H

E
T
X

D
L
E

D
L
E

I

D

C
R
C

* *

D
L
E

D
L
E

D
L
E

I

D

I

D

I

D

*

*

*

E
T
X

D
L
E

*

E
T
X

D
L
E

*

E
T
X

D
L
E

*

C
R
C

C
R
C

C
R
C

S
T
X

S
T
X

S
T
X

Serial
Number

Serial
Number

Serial
Number

Data Text 1

Data Text n-1

Data Text n

*IDm: ID of sending station
**IDs: ID of receiving station
M-25

PDT 1100 Terminal Programmer’s Guide
Data transmission may accidentally involve various types of errors. The Ir protocol is
designed to recover from those errors as frequently as possible. What follows is the Ir
protocol for phases 1 through 3.

Phase 1: Establishment of Data Link

Normal Phase 1

The sending station transmits a sequence of DLE ENQ and IDm (sending station's ID) to the
receiving station. Upon receipt of a sequence of DLE ACK and IDs (receiving station's ID)
from the receiving station, the sending station shifts to phase 2.

Figure M-22. Phase 1 with repeated transmission of DLE ENQ and IDm Transmission

35864070.eps

Phase 1 with repeated transmission of DLE ENQ and IDm due to no response or invalid
response: If the sending station receives no response or any invalid response from the
receiving station in response to the sent sequence of DLE ENQ and IDm, it iterates sending
of the sequence at 0.5-second intervals up to 60 times. If the sending station receives a
sequence of DLE ACK and IDs before sending the sequence of DLE ENQ and IDm 60 times,
it shifts to phase 2.

Receiving
Station

Sending
Station

To phase 2.

DLE ENQ and IDm

DLE ACK and IDs

DLE ENQ and IDm

DLE ENQ and IDm

DLE ENQ and IDm

DLE ACK and IDs

Sending

Station

Receiving

Station

To phase 2.

0.5 second

0.5 second

Figure M-22. Normal Phases
M-26

Communications
Note: You may modify the number of iterations of a sequence of DLE ENQ
and IDm for the sending station. The default is 60 times at 0.5-second
intervals. For details, refer to the SET LINKUP TIME screen in
System Mode (p. 52) and the XFILE statement given on XFILE on
page 10-130.

Abnormal termination of phase 1 (Abort of phase 1): If the sending station receives no
sequence of DLE ACK and IDs from the receiving station after sending a sequence of DLE
ENQ and IDm 60 times in succession, it sends a sequence of DLE EOT and IDm to the
receiving station 0.5 seconds from the 60th sequence of DLE ENQ and IDm, then aborts the
message transmission.

Figure M-23. Abort of Phase 1

Note: The receiving station's default timeout is 30 seconds. You may modify
the timeout length on the SET LINKUP TIME screen in System Mode
or by using the XFILE statement (refer to XFILE on page 10-130).

35864071.eps

DLE ENQ and IDm (1)

0.5 second

0.5 second DLE ENQ and IDm (2)

DLE ENQ and IDm (3)

DLE ENQ and IDm (60)

DLE EOT and IDm

0.5 second

Abnormal
Termination

Receiving
Station

Sending
Station
M-27

PDT 1100 Terminal Programmer’s Guide
Phase 2: Data Transmission

Normal phase 2:The sending station first sends a transmission block containing the heading
text. Each time the sending station receives a sequence of DLE ACK and IDs from the
receiving station, it sends a transmission block containing the data texts as shown below.
When a sequence of DLE ACK and IDs is received in response to the last transmission block
(data text n), the sending station proceeds to Phase 3. If a transmission message contains no
data text, the sending station transmits the heading text only.

Figure M-24. Normal Phase 2

Phase 2 with suspension of data reception for erasure of the flash ROM: If the receiving PDT
1100 needs to erase the flash ROM for receiving downloaded files, it sends a sequence of
WACK and IDs to the sending station to suspend data transmission. When the sequence of
WACK and IDs are received, the sending station stops the data transmission until a response

35864072.eps

Sending
Station

Receiving
Station

Heading Text

Data Text 1

Data Text n-1

Data Text n

To phase 3.

DLE ACK and IDs

DLE ACK and IDs

DLE ACK and IDs

DLE ACK and IDs
M-28

Communications
comes from the receiving station. If no response comes within one minute, the sending station
sends a sequence of DLE EOT and IDs and aborts the current transmission.

35864073.eps

Sending
Station

Receiving
StationHeading Text

Data Text #1

WACK and IDs

DLE ACK and IDs

DLE ACK and IDs

Start Of Erasur

End Of Erasure

Figure M-25. Phase 2 with suspension of data reception
M-29

PDT 1100 Terminal Programmer’s Guide
Phase 2 with a sequence of DLE NAK and IDs

If the sending station receives a sequence of DLE NAK and IDs from the receiving station in
response to a transmission block containing text data m, it sends that transmission block
again immediately as shown below. If the sending station receives a sequence of DLE ACK
and IDs before receiving the sequence of DLE NAK and IDs 10 times in succession, it
continues the subsequent message transmission.

Figure M-26. Phase 2 with Repeated Transmission of DLE ENQ and IDs

If the sending station receives a sequence of DLE NAK and IDs 10 times in succession or it
fails to send a same transmission block, it proceeds to Phase 3 to abort the message
transmission abnormally, even if Phase 3 terminates normally.

Sending
Station

Receiving
StationData Text m

DLE ACK and IDs

Sending
Station

Receiving
Station

DLE ACK and IDs

DLE ACK and IDs

DLE ACK and IDs

DLE ACK and IDs

DLE ACK and IDs

Data Text m

Data Text m

Data Text m+1

Data Text m(1)

Data Text m(2)

Data Text m(10)

Occurrence
Of An Error

To phase 3.

Figure M-26. Phase 2 with a sequence of DLE NAK and IDs
M-30

Communications
Phase 2 with a sequence of DLE EOT and IDs: If the sending station receives a sequence of
DLE EOT and IDs anytime during phase 2, it shifts to phase 3 to terminate the message
transmission abnormally. Even if the phase 3 terminates normally, the transmission results in
an abnormal end.

Figure M-27. Phase 2 with repeated transmission of DLE ENQ and IDs

35864075.eps

Phase 2 with repeated transmission of DLE ENQ and IDs due to no response or
invalid response

If the sending station receives no response or an invalid response from the receiving station
after a transmission block is sent, it resends a sequence of DLE ENQ and IDs every 0.5
seconds up to 59 times. If the sending station receives a sequence of DLE ACK and IDs
during this time, it continues the subsequent message transmission.

Sending
Station

Receiving
Station

Occurrence
Of An Error

To phase 3.

Sending
Station

Receiving
Station

DLE ACK and IDs

Data Text m+1

Data Text m

DLE ENQ and IDs

DLE EOT and IDs

0.5 second

DLE ENQ and IDs0.5 second

Figure M-27. Phase 2 with a sequence of DLE EOT and IDs
M-31

PDT 1100 Terminal Programmer’s Guide
Abnormal termination of phase 2 (Abort of phase 2): If the sending station receives no
sequence of DLE ACK and IDs from the receiving station after sending a sequence of DLE
ENQ and IDs 59 times in succession, it sends a sequence of DLE EOT and IDs to the receiving
station 0.5 seconds after the 59th sequence of DLE ENQ and IDs and then aborts this
transmission.

Figure M-28. Normal Phase 3

Phase 3: Release of Data Link

Normal phase 3: The sending station transmits a sequence of DLE EOT and IDs to the
receiving station. When a sequence of DLE ACK and IDs is received from the receiving
station, the sending station terminates the message transmission normally and releases the
data link.

Sending
Station

Receiving
Station

DLE ENQ and IDs(1)

DLE EOT and IDs

0.5 second

DLE EOT and IDsSending
Station

Receiving
Station

DLE ENQ and IDs(2)

DLE ENQ and IDs(59)

0.5 second

0.5 second

DLE ACK and IDs

Abnormal
Termination

Normal
Termination

Figure M-28. Abort of Phase 2
M-32

Communications
Phase 3 with iterated transmission of DLE EOT and IDs due to no response or invalid
response: If the sending station receives no response or an invalid response from the receiving
station after a sequence of DLE EOT and IDs is sent, it resends the sequence every 0.5 seconds
up to 60 times. If the sending station receives a sequence of DLE ACK and IDs before sending
the sequence of DLE EOT and IDs 60 times, it terminates the message transmission normally
and releases the data link.

Figure M-29. Abort of Phase 3

35864077.eps

Sending
Station

Receiving
Station

DLE EOT and IDs (1)

0.5 second

DLE ACK and IDs

Abnormal
Termination

Normal
Termination

Abort of Phase 3: If the sending station receives no sequence of DLE ACK and IDs from
the receiving station within 0.5 seconds after the 60th sequence of DLE EOT and IDs, it
aborts the message transmission and releases the data link.

Sending
Station

Receiving
Station

DLE EOT and IDs (2)

DLE EOT and IDs (3)

DLE EOT and IDs (1)

DLE EOT and IDs (2)

DLE EOT and IDs (3)

DLE EOT and IDs (60)

0.5 second

0.5 second

0.5 second

0.5 second

Figure M-29. Phase 3 with Repeated Transmission of DLE EOT and IDs
M-33

PDT 1100 Terminal Programmer’s Guide
Phase 3 with timeout at the receiving station: If the receiving station receives no subsequent
text or normal sequence of DLE EOT and IDs within 30 seconds after sending a sequence of
DLE ACK and IDs, it sends a sequence of DLE EOT and IDs and aborts the transmission.

Figure M-30. Phase 3 with Timeout at the Receiving Station

Aborting Data Transmission
Pressing the C key aborts data transmission.

If the C key is pressed during downloading, the PDT 1100 transmits a sequence of DLE EOT
and IDs and aborts the file transmission. If it is pressed during uploading, the PDT 1100
transmits the current transmission block followed by a sequence of DLE EOT and IDs and
aborts the file transmission.

CRC
The Ir protocol supports CRC (Cyclic Redundancy Check) which uses the CRC-16
generating system to check data transmission. A CRC character is suffixed to a sequence of
DLE ETX of every transmission block.

35864078

DLE ACK and IDs

Abnormal
Termination

Sending
Station

Receiving
Station

DLE EOT and IDs

30 seconds

Data Text m
M-34

Communications
Operands for CRC-16

The CRC generates CRC-16 from all bytes of a transmission block excluding DLE SOH or
DLE STX characters (which are at the head of a transmission block), DLE character of DLE
ETX and DLE character of DLE DLE in the text.

CRC operation

The CRC system generates CRC-16 as follows:

1. It multiplies the polynomial formed by aligning all bits starting from the LSD of the
first byte to the MSD of the last byte in a transmission block in descending order, by
X 16.

2. Divide the polynomial by the generative polynomial X 16 + X 15 + X 2 + 1. The
remainder is the value of CRC-16. Figure 3-X shows a data text transmission block
and operands for CRC-16 generation.

Figure M-31. CRC-16 Data Text Transmission Block and Operands

ID
ID is a 2-digit hexadecimal designated in 0000h through FFFFh in (2 bytes). 0000h is
assigned to the host computer. Any of 0001h through FFFFh is assigned to the PDT 1100 as
follows.

! The system sets an ID when the PDT 1100 is initialized.

! You may set an arbitrary ID in System Mode or by using the OUT statement in
BASIC 3.0.

Text Format
Format text according to the standard of the Ir CRD 1100 protocol before transmission.
Following are two types of the standard text formats for program files and data files.

• •

35864079.eps

Serial
Data Text 1

E
T
XNumber

D
L
E

D
L
E

S
T
X

I

D

C
R
C

Operand

Operand
M-35

PDT 1100 Terminal Programmer’s Guide
Program Text Format

35864064.eps

Byte Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Program File Name
(12 bytes)

Number of Data
Texts Contained

(5 bytes)

P R O G 1 P D 3. 0 0 3 5 2Example of
Contents

The program file name is a

maximum of 12 characters and
consists of FILE NAME

and.EXTENSION. The FILE

NAME should be 1 to 8 characters.
The EXTENSION should be.PD3

(.FN3 and.EX3 may be available

for future functional expansion).

If the program file name is

less than 12 characters, the
lower blank bytes are filled

with space characters.

The number of data

texts is 0 to 32767. If

less than 5 digits, the
upper blank bytes are

filled with zeros (0).

35864064.eps

130
or

128
Figure M-32. Program Text Format: Heading Text

130

35864065.eps

1 2 3 4

Program Data
128 bytes if extension is .PD3;
130 bytes if it is .FN3 or .EX3.

0 D A0 0 0 0 0 0 0

Byte
Position

Example of
Contents

Object file (compiled from
a source program file
having one of the
extensions.PD3,.FN3, or
.EX3.)

If a program data field is
less than the maximum
digits, the lower blank bytes
filled with zeros (0).

35864065.eps
Figure M-33. Program Text Format: Data Text
M-36

Communications
Data Text Format

Figure M-33. Data Text Format: Heading Text

Figure M-34. Data Text Format: Data Text

Byte
Position

Example of
Contents

1 2 3 4 65 7 8 9 10 1211 13 14 15 16 17 18 19 20 21

Data File Name
(12 bytes)

Number of Data
Texts Contained

(5 bytes)

Number of Fields
(2 bytes) Length of

Data Field 1
(2 bytes)

Length of
Data Field n

(2 bytes)

M A S T E R . D A T 0 0 0 6295 n

The data file name is a maximum of 12 characters
in length and it consists of FILE NAME

and.EXTENSION. The FILE NAME should be 1 to

8 characters. The EXTENSION should be other
than.PD3,.FN3, and .EX3, and it may be omitted

(together with a period).

If the data name is less

than 12 characters, the

lower blank bytes are filled
with space characters.

The number of fields should be 1 to

16. If it is less than 2 digits, the upper

blank byte is filled with zero (0).

Every data field should be 1 to
254 digits. If it is less than 2

digits, the upper blank byte is

filled with zero (0).

0

22

The number of data

texts should be 0 to
32767. If it is less than

5 digits, the upper

blank bytes is filled
with zeros (0).

Example of
Contents

Data Field 1 Data Field 2 Data Field n

T 1 1 1 112 2 2 23 340 00 9 9 5S

Every data field should
be 1 to 99 digits If a data field is less than the

maximum digits, the lower

blank bytes are filled with

space characters.
M-37

PDT 1100 Terminal Programmer’s Guide
Note: The total length of all data fields plus the number of the character
count bytes (plus the number of the fields) should be 255 bytes or less.
When you transfer five 50 - digit (50-byte) fields, for example, the
total length of all data fields is 250 (50x 5) bytes and the number of
the character count bytes is 5. The total is 255, so the file can be
transferred.
M-38

Index
Numerics
00 . 2-16

A
abort data transmission M-16, M-34
Access Methods . 8-1
ACK . 11-9
Activating the alphabet input function

with OUT statement 7-4
Alphabet Input Function 7-3
AND Operator . 6-6
ANK 10-20, 11-13, 11-43, C-4
APLOAD . 10-2
Application Programs 1-3

Easy Pack . 1-3
User Programs 1-3

Arithmetic Operators 6-3
Array Integer Variables 5-4
Array Real Variables 5-5
Array String Variables 5-4
ASC . 11-3
Assigning a Character String to

a Function Key 7-8
assignment statement LET 10-70

B
BAR . 10-87
bar code buffer . 8-7
Bar Code Device . 8-6
BASIC 3.0 . . .1-3, 8-1, 8-11, 9-1, B-1, D-2, D-4

Overview . 1-3
BASIC 3.0 Compiler 2-2
BASIC 3.0 Interpreter F-2
Basic Program Elements 4-1
Basic Program Elements 4-1

Battery Backup of Memory F-2
BCC .M-3
BEEP . 10-5
Beep Settings . 10-6
BEEP Statement . 7-10
Bit Order .M-2
block check characterM-3
Block-Format User-Defined Functions 3-1
Block-Structured Statements 3-2
bullets .xiv

C
CALL . 10-9
CHAIN . 10-11
Character Sets . C-1
check digit . 8-8
CHKDGT$. 11-6
CHR$. 11-9
Classification of Variables 5-5
CLFILE . 10-13
CLOSE . 10-15
CLS . 10-17
comment . 4-2
COMMON . 10-18
Common Variables 5-5
Communications Device 8-8
Communications Parameters 8-9
communications specifications M-1
Comparison of Character Strings 6-8
Compilation and Program Execution 1-4
Compiler . 1-4

Functions . 2-3
Index-1

Book Title
Compiler and Interpreter 1-4
Compiling in Windows 2-6

Displaying the Compile Results 2-12
Executing the Compiler 2-10
Operating Procedure for the Compiler . 2-8
Output from the Compiler 2-10
Reading in the Initialization File 2-7
Selecting the file to be compiled 2-8
Specifying the Compiling Options 2-9
Starting the Compiler 2-7

Concatenation of Character Strings 6-8
Constants . 5-1
control characters M-6, M-22
Controlling and Monitoring the I/Os 7-11
Controlling by the OUT Statement 7-11
conventions

notational .xiv
COUNTRY$. 11-11
CR code 2-5, 4-5, 10-58, 10-108
CRC .M-34
CRC operation .M-35
Creating a source program 2-2
CSRLIN . 11-13
CURSOR . 10-20
cyclic redundancy check M-34

D
DATA . 10-22
Data File Management 8-3
Data Files and Device I/O Files 8-1
data link establishment phaseM-2
Data Retrieval . 8-5
data text .M-20
data text format .M-37
data transmission M-2, M-11, M-28
Data Types . 5-1
DATE$. 11-14
Declarative Statement

COMMON 10-18
DATA . 10-22
DEFREG . 10-24

declarative statement 10-115
DEF FN . 10-29

DEF FN (Single-line form) 10-29
DEF FN...END DEF 10-33
DEF FN...END DEF (Block form) 10-33
DEFREG .10-24
Developing Procedures 2-2
Development Environment 2-1

Required Hardware 2-1
Required Software 2-2

Development Environment and Procedures . 2-1
DIM .10-37
direct-connect interface 8-9, 10-95
Displaying the System Status 7-2
Downloading the user program 2-2
Drivers . 1-2

E
END . 10-40
EOR . 11-16
ERASE . 10-41
Error Codes and Error MessagesA-1
error control statement 10-118

ON ERROR GOTO 10-78
Error Trapping 9-1, 9-3
error-handling function 11-18, 11-19
Error/Event Trapping 9-1
Error-/Event-Handling Routines 3-1
establishment of data link M-10, M-26
ETX$. 11-20
Event Polling .9-1
Event (of Keystroke) Trapping 9-1
Executing a User Program 2-17
Executing the user program 2-3
Execution Errors .A-1
Expressions and Operators 6-1
Extension Programs 1-2

F
Fatal Errors .A-3
fatal errors .2-12
FIELD . 10-43
file I/O function

EOR .11-16
INPUT$.11-28
Index-2

Index
LOC . 11-35
LOF . 11-37
SEARCH . 11-45

file I/O Statement
OPEN "BAR" 10-87

file I/O statement
CLFILE . 10-13
CLOSE . 10-15
FIELD . 10-43
GET . 10-48
INPUT # . 10-58
KILL . 10-68
LINE INPUT # 10-74
OPEN . 10-84
OPEN "COM" 10-95
PRINT # . 10-106
PUT . 10-111
$INCLUDE 10-137

flow control statement
CALL . 10-9
CHAIN . 10-11
END . 10-40
FOR...NEXT 10-45
GOSUB . 10-50
GOTO . 10-52
IF...THEN...ELSE...END IF 10-53
ON...GOSUB and ON....GOTO . . . 10-80
RETURN . 10-120
SELECT...CASE...END SELECT . . 10-123
WHILE...WEND 10-128

FOR...NEXT . 10-45
Function Keys . 7-8

G
GET . 10-48
Global Variables and Local Variables 3-2
GOSUB . 10-50
GOTO . 10-52

H
Handling User Programs 3-4
handshaking . M-2
Hardware . 2-1

HEX$. 11-24
horizontal parity .M-3
horizontal parity checking M-17

I
ID . M-35
Identifiers . 4-7

Rules for Naming Identifiers 4-7
IF...THEN...ELSE...END IF 10-53
Included Files . 3-5
information, service xv
INKEY$. 11-25
INP . 11-26
INP Function 7-12, 9-2
INPUT . 10-55
Input from the Keyboard 7-3
INPUT # . 10-58
INPUT$. 11-28
INSTR . 11-30
integer constants . 5-1
Interpreter . 1-5
IR Protocol .M-21
IR protocol .M-4
Ir-Transfer Utility C 2-16
I/O Facilities . 7-1
I/O function

COUNTRY$ 11-11
CSRLIN . 11-13
DATE$. 11-14
ETX$. 11-20
INKEY$. 11-25
INP . 11-26
MARK$. 11-39
POS . 11-43
SOH$. 11-47
STX$. 11-50
TIMEA/TIMEB/TIMEC 11-54
TIME$. 11-52

I/O Ports . D-1
I/O statement

APLOAD . 10-2
BEEP . 10-5
CLS . 10-17
Index-3

Book Title
CURSOR . 10-20
INPUT . 10-55
KEY . 10-61
KEY ON and KEY OFF 10-66
LINE INPUT 10-72
LOCATE . 10-76
ON KEY...GOSUB 10-82
OUT . 10-99
POWER . 10-101
PRINT . 10-103
PRINT USING 10-108
READ . 10-113
RESTORE 10-117
SCREEN . 10-121
WAIT . 10-126
XFILE . 10-130

K
KEY . 10-61, 10-66
Key Number Assignment E-1
KEY ON and KEY OFF 10-66
KILL . 10-68

L
label . 4-1
LCD Backlight .H-3
LCD Backlight Function I-1
LCD Backlight Function On/Off Key 7-8
LEFT$. 11-33
LEN . 11-34
LET . 10-70
LF code . 10-74, 10-107
LINE INPUT . 10-72
LINE INPUT # . 10-74
LOC . 11-35
LOCATE . 10-76
LOF . 11-37
Logical Operators . 6-4
Low Battery WarningH-2

M
MARK$. 11-39

memory control statement
DIM .10-37
ERASE .10-41

memory management function 11-22
Memory Map . F-1
Memory Occupation 5-4
MID$. 11-41
Modulo Operation (MOD) 6-3
Monitoring by the INP Function 7-12
Monitoring by the WAIT Statement 7-13
multiple code .8-7

N
National Character SetsC-3
Nested Structure . 3-2
Non-Array Integer Variables 5-4
Non-Array Real Variables5-5
Non-Array String Variables 5-3
NOT Operator . 6-5
notational conventions xiv
NULL Character or String Assignment 7-8
Numeric Constants 5-1
numeric function .11-2
numeric operation function 11-32
Numeric Variables . 5-4

O
ON .10-82
ON ERROR GOTO 10-78
ON KEY...GO SUB10-82
ON...GOSUB and ON...GOTO 10-80
ON...GOSUB and ON....GOTO 10-80
OPEN . 10-84
OPEN "BAR" . 10-87
OPEN "COM

" . 10-95
OPEN "COM" .10-95
Operator Precedence 6-1
Operators .6-3
optical interface 8-9, 10-95
OR Operator .6-6
OUT . 10-99
OUT Statement .7-11
Index-4

Index
Overflow and Division by Zero 6-3

P
PDT 1100 set up . 2-16
POS . 11-43
POWER . 10-101
preter . 1-4
PRINT . 10-103
PRINT USING 10-108
PRINT # . 10-106
PRINT# . 10-106
Program Chaining . 3-4
Program Line Length and Maximum

Number of Lines 4-3
Program Structure . 3-1
program text format M-18, M-36
Programming NotesH-1
protocol functions 8-10, 8-11
PUT . 10-111

R
READ . 10-113
reading confirmation 8-8
real constants . 5-2
Register Variables . 5-5
Relational Operators 6-4
release of data link M-15, M-32
REM . 10-115
Required Hardware 2-1
Reserved Words . B-1
RESTORE . 10-117
RESUME . 10-118
RETURN . 10-120
Reversing Characters 7-1
RIGHT$. 11-44

S
SCREEN . 10-121
SEARCH . 11-45
SELECT...CASE...END SELECT 10-123
service information . xv
Set up . 2-16

Setting Character String Length of
Character Functions 5-6

Setting up the Compiler 2-6
Small Font Patterns C-4
Software . 2-2
software

structure . 1-1
SOH$. 11-47
Source Programs

Writing a source program 2-4
Space Characters . G-1
statement . 4-2
Statement Blocks . 3-1
Statement Reference 10-1
Statements

Declarative Statements 4-2
Executable Statements 4-2

String Constants . 5-1
string function . 11-4

ASC . 11-3
CHKDGT$. 11-6
CHR$. 11-9
HEX$. 11-24
INSTR . 11-30
LEFT$. 11-33
LEN . 11-34
MID$. 11-41
RIGHT$. 11-44
STR$. 11-49
VAL . 11-56

String Variables . 5-3
Structure of a Program Line 4-1
STR$. 11-49
STX$. 11-50
Subroutines . 3-1
symbol support center xv
Syntax Errors . A-5
syntax errors . 2-12
System Program

BASIC 3.0 Interpreter 1-2
System Programs . 1-2

Extension Programs 1-2
System Mode . 1-2
Index-5

Book Title
T
Terminal setup . 2-16
text control characters M-6, M-23
text format M-18, M-35
TIMEA/TIMEB/TIMEC 11-54
Timer and Beeper 7-10
Timer Functions . 7-10
TIME$. 11-52
Transmission CodeM-2
transmission control characters M-6, M-22
transmission control sequenceM-9
transmission control sequencesM-25
transmission messagesM-7
transmission messages formatM-24
transparency .M-22
Type Conversion . 5-7

Assignment of Real Expressions
to Integer Variables 5-8

File Numbers . 5-9
Operands for an Arithmetic

Operator MOD 5-8
Operands for Logical Operators AND,

OR, NOT, and XOR 5-8
Parameters for Functions 5-9

U
Usable Characters . 4-3
User Program

Execution . 2-17
User Programs in the Memory 3-4
user-created function definition

statement10-29
DEF FN...END DEF 10-33

User-defined Functions 5-6

V
VAL .11-56
Variables .5-3
vertical parity . M-2

W
WAIT . 10-126
WAIT Statement .7-13
WHILE WEND10-128
WHILE...WEND10-128
Work Drive designation 2-15
Work Variables . 5-5

X
XFILE . 10-130
XOR Operator . 6-7

Z
$INCLUDE .10-137
Index-6

Tell Us What You Think...

We’d like to know what you think about this Manual. Please take a moment
to fill out this questionaire and fax this form to: (631) 738-3318, or mail to:

Symbol Technologies, Inc.
One Symbol Plaza M/S B-4
Holtsville, NY 11742-1300
Attn: Technical Publications Manager

IMPORTANT: If you need product support, please call the appropriate cus-
tomer support number provided. Unfortunately, we cannot provide customer
support at the fax number above.

User’s Manual Title: ___
(please include revision level)

How familiar were you with this product before using this manual?

Did this manual meet your needs? If not, please explain. ________________
__

What topics need to be added to the index, if applicable? _______________
__

What topics do you feel need to be better discussed? Please be specific.

What can we do to further improve our manuals?_______________________

Very familiar Slightly familiar Not at all familiar
Thank you for your input—We value your comments.

	70-36099-01 Revision B — May 2001
	Symbol Technologies, Inc. One Symbol Plaza, Holtsville N.Y. 11742-1300
	Programmer’s Guide
	© 2001 by Symbol Technologies, Inc. All rights reserved.
	No part of this publication may be reproduced or used in any form, or by any electrical or mechan...
	The software is provided strictly on an “as is” basis. All software, including firmware, furnishe...
	Symbol reserves the right to make changes to any software or product to improve reliability, func...
	Symbol does not assume any product liability arising out of, or in connection with, the applicati...
	No license is granted, either expressly or by implication, estoppel, or otherwise under any Symbo...
	Symbol, Spectrum One, and Spectrum24 are registered trademarks of Symbol Technologies, Inc. Other...
	Symbol Technologies, Inc. One Symbol Plaza Holtsville, New York 11742-1300 http://www.symbol.com
	PDT 1100 Terminal Programmer’s Guide

	Contents
	About This Guide
	The PDT 1100 Programmer’s Guide provides general instructions for programming the PDT 1100 termin...
	Notational Conventions
	The following conventions are used in this document:

	Service Information
	If you have a problem with your equipment, contact the Symbol Support Centers. Before calling, ha...
	Call the Support Center from a phone near the scanning equipment so that the service person can t...
	If your problem cannot be solved over the phone, you may need to return your equipment for servic...
	Note:

	Symbol Support Centers
	For service information, warranty information or technical assistance contact or call the Symbol ...
	If you purchased your Symbol product from a Symbol Business Partner, contact that Business Partne...

	Related Publications
	Warranty
	Warranty Coverage and Procedure
	General

	Chapter 1 Software Overview
	Software Structure
	The structure of software for the PDT 1100 is shown in Figure 1-1.
	Figure 1-1. PDT 1100 Software Structure
	The PDT 1100 has flash ROM and RAM. In flash ROM reside the drivers, BASIC 3.0 Interpreter, Syste...

	Note:
	Unlike RAM, the flash ROM is limited in the following ways:

	System Programs
	Drivers
	The BASIC 3.0 Interpreter or System Mode calls a set of programs which controls the hardware. The...

	BASIC 3.0 Interpreter
	Interprets and executes user programs or Easy Pack.

	System Mode
	Sets up the execution environment for user programs or Easy Pack.

	Extension Programs
	Enable the following functions of the BASIC 3.0:
	These extension programs are stored in files having an FN3 extension, in each file per function. ...

	Application Programs
	User Programs
	User-written object programs which are ready to be executed.

	Easy Pack
	Application program used for bar code data collection.

	Overview of BASIC 3.0
	With BASIC 3.0, you can customize application programs to meet specific needs:

	BASIC 3.0
	Features
	BASIC 3.0 is an optimal programming language to make application programs for the PDT 1100 and to...
	Syntax Similar to Microsoft® BASIC
	BASIC 3.0 is based on the BASIC language which is the most widely used high-level language. The s...

	No Line Numbers Required
	Like Microsoft Quick BASIC, BASIC 3.0 requires no line number notation. You can write a branch st...

	MS-DOS Programming Environment
	Any MS-DOS personal computer can be used to develop programs with BASIC 3.0.

	Advantages of the Dedicated Compiler
	The dedicated compiler (referred to as the Compiler hereafter) checks the syntax of the edited so...
	The Compiler assigns variables to fixed addresses so the Interpreter does not have to allocate or...

	Program Compression by the Dedicated Compiler
	The Compiler compresses a source program into the intermediate language to produce an object prog...
	Note:

	Compilation and Program Execution
	Compiler and Interpreter
	BASIC 3.0 consists of the Compiler and the Interpreter.
	Compiler
	The Compiler development tool compiles a source program written on an MS-DOS personal computer to...
	The Compiler checks the syntax of a source program during compilation and outputs syntax errors, ...

	Interpreter
	The Interpreter, which resides in the memory of the PDT 1100, interprets and executes the user pr...

	Compiling and Interpreting Example
	For example, how will a short program consisting of only two statements, CLS and END, be compiled...
	Source Program Example:
	1. The Compiler compiles each of the CLS and END statements into a two-byte character string in t...
	2. The user downloads the four-byte string 8387, using Transfer Utility C. Upon receipt of the st...
	3. The Interpreter interprets the first 83h as a CLS statement and 87h as an END statement.

	Chapter 2 Development Environment and Procedures
	Overview of Development Environment
	Required Hardware
	Required Software

	Overview of Developing Procedures
	Developing Procedures
	Functions of the Compiler
	Developing Procedure Flow

	Writing of a Source Program
	Writing a Source Program Using Editor
	Rules for Writing a Source Program

	Compiling in Windows
	Setting up the Compiler
	Starting the Compiler
	Reading in the Initialization File
	Operating Procedure for the Compiler
	Screen Shown During Execution of the Compiler
	Output from the Compiler
	Generating a User Program
	Error Messages
	Compiling Options
	Designating the Work Drive and Directory

	Downloading
	Ir-Transfer Utility C & Ir-Transfer Utility E
	Setting up the PDT 1100

	Executing a User Program
	Starting
	Execution
	Termination

	Chapter 3 Program Structure
	Statement Blocks
	A statement block is a significant set of statements (also called “program routine”). The followi...
	Subroutines
	A subroutine is a statement block called from the main routine or other subroutines by the GOSUB ...
	Using the RETURN statement passes control from the called subroutine back to the statement immedi...

	Error-/Event-Handling Routines
	An error- or event-handling routine is a statement block to which program control passes when an ...
	The RESUME statement passes control from the error-handling routine back to the desired statement.
	The RETURN statement in the keyboard interrupt event-handling routine returns control to the stat...

	Block-Format User-Defined Functions
	A user-defined function comes in two formats: one-line format and block format, both of which can...
	The block-format user-defined function has the same structure as a statement block. Generally, it...
	Global Variables and Local Variables
	Global variables may be accessed by the same variable's name from any statement in a complete pro...

	Block-Structured Statements
	The statements listed below have the statement block structure and are useful for structured prog...
	Nested Structure
	Block-structured statements allow you to write nesting programs as shown below.
	Nesting subroutines as shown below is also possible.

	Jumping Into/Out of Statement Blocks
	It is not recommended to jump control from a main routine or subroutines into or out of the middl...
	X : To be avoided. An execution error may occur.
	z: Not recommended, although no execution error results. Nesting may cause an execution error.
	Note:

	Handling User Programs
	User Programs in the Memory
	The user area of the memory (RAM and flash ROM) in the PDT 1100 can store more than one user prog...
	If you have selected a user program as an execution program in the Setting menu of System Mode, t...

	Program Chaining
	Program chaining, caused by the CHAIN statement below, terminates a currently running user progra...
	To transfer the variables and their values used in the current calling user program to the chaine...
	The Interpreter writes these declared variable values into the “common variable area” in memory. ...
	In BASIC 3.0, the name, type, definition order, and number of COMMON-declared variables used in t...
	Since the COMMON statement is a declarative statement, no matter where it is placed in a source p...

	Included Files
	“Included files” are separate source programs which may be called by the INCLUDE metacommand.
	When INCLUDE metacommand is encountered in a source program, the Compiler fetches the included fi...
	Specify the name of an included file using the REM $INCLUDE or '$INCLUDE. In the included files, ...
	Storing definitions of variables, subroutines, user-defined functions, and other data to be share...
	If a compilation error occurs in an included file, it is indicated on the line where the included...

	Chapter 4 Basic Program Elements
	Structure of a Program Line
	Format of a Program Line
	A program line consists of the following elements:
	Labels
	A label is placed at the beginning of a program line to identify lines. Labels, which designate j...
	Write a label beginning in the first column of a program line. To write a statement following a l...
	Check and 500 are used as labels.
	For detailed information about labels, refer to Labels on page 4-6.

	Statements
	A statement is a combination of functions, variables, and operators according to the syntax. A gr...
	Executable statements
	These cause the Interpreter to process programs by instructing the operation to be executed.

	Declarative statements
	These manage the memory allocation for variables and handle comments. Declarative statements avai...
	You can describe multiple statements in one program line by separating them with a colon (:).

	Comments
	Comments make programs easier to understand. An apostrophe (') or REM can begin a comment.
	Apostrophe (')
	An apostrophe (') can begin in the first column of a program line to describe a comment. When fol...

	REM
	The REM cannot begin in the first column of a program line. When following any other statement, a...

	Program Line Length and Maximum Number of Lines
	Terminate a program line with a CR code by pressing the carriage return key. The allowable line l...
	In the samples below, “Ø” denotes a CR code entered by the carriage return key.
	The second method (using a comma and CR code) cannot be used for the PRINT, PRINT#, and PRINT USI...

	Usable Characters
	Following are characters which can be used for writing programs. Note that a double quote (") can...
	If used outside of a character string, symbols and control codes below have special meaning descr...
	Distinction between Uppercase and Lowercase Letters
	The Compiler makes no distinction between the uppercase and lowercase letters, except for those u...
	When used in a character string data, uppercase and lowercase letters are distinguished from each...

	Special Symbols and Control Codes
	Symbols and control codes used outside of a character string have the following special meaning:
	Table 4-1. Symbols and Control Codes (Continued)

	Labels
	A label can contain alphanumeric characters and a period (.).
	Rules for naming labels
	Note:

	Identifiers
	Identifiers for the names of variables should comprise the same alphanumerics as the labels.
	Rules for Naming Identifiers
	Examples of identifiers:

	Reserved Words
	“Reserved words” are keywords to be used in statements, functions, and operators. For the list of...

	Chapter 5 Data Types
	Constants
	A constant is a data item that does not change during program execution. Constants are classified...
	String Constants
	A “string constant” is a character string enclosed in double quotation marks ("). Its length shou...

	Numeric Constants
	Integer Constants
	In Decimal Notation
	An integer constant in decimals can be followed by a percent sign (%) or the % can be omitted.
	Syntax: sign decimalnumericstring%
	Where sign is either a plus (+) or a minus (–). The plus sign can be omitted.
	The valid range is from -32,768 to 32,767.
	Using a comma in an integer constant to mark every three digits causes a syntax error.

	In Hexadecimal Notation
	Integer constants in hexadecimals should be formatted as shown below.
	Syntax: &H hexnumericstring
	The valid range is from 0h to FFFFh.
	Using a period in a numeric string in hexadecimals to denote a decimal point causes a syntax error.

	Real Constants
	Real constants should be formatted as shown below.
	A lowercase “e” may be used instead of uppercase “E.”
	mantissa is a numeric string of up to of 10 significant digits. It can include a decimal point. U...

	Variables
	A variable is a symbolic name that refers to a unit of data storage. The contents of a variable c...
	Types of Variables According to Format
	Variables are classified into two types, string variables and numeric variables, each of which is...
	Declare array variables in DIM, COMMON, and DEFREG statements. The DIM statement should precede s...
	String Variables
	A string variable consists of 1 through 255 characters.
	Non-Array String Variables
	Format non-array string variables with an identifier followed by a dollar sign ($) as shown below.
	Syntax: identifier$
	Example: a$,bcd123$
	The default number of characters for a non-array string variable is 40.

	Array String Variables
	Format array string variables with an identifier followed by a dollar sign ($) and a pair of pare...
	Syntax: identifier$(subscript[,subscript])
	Example: a$(2),bcd123$(1,3)
	where a pair of parentheses indicates an array.
	The default number of characters for an array string variable is 20.

	Memory Occupation
	A string variable occupies the memory space by (the number of characters + one) bytes, where the ...

	Numeric Variables
	A numeric variable occupies 2 bytes or 6 bytes of the memory space for an integer variable or a r...
	Non-Array Integer Variables
	Format non-array integer variables with an identifier followed by a percentage sign (%) as shown ...
	Syntax: identifier%
	Example: a%,bcd%

	Array Integer Variables
	Format array integer variables with an identifier followed by a percentage sign (%) and a pair of...
	Syntax: identifier%(subscript[,subscript])
	Example: e%(10),fg%(2,3),h%(i%,j%)
	where a pair of parentheses indicates an array.

	Non-Array Real Variables
	Format non-array real variables with an identifier only as shown below.
	Syntax: identifier
	Example: a,bcd

	Array Real Variables
	Format array real variables with an identifier followed by a pair of parentheses () as shown below.
	Syntax: identifier(subscript[,subscript])
	Example: e(10),fg(2,3),h(i%,j%)
	where a pair of parentheses indicates an array.

	Classification of Variables
	Work Variables
	Optionally declare a work variable for general use using the DIM statement. The following example...
	At the start of a user program, the Interpreter initializes all work variables to zero (0) or a n...

	Common Variables
	A common variable is declared by the COMMON statement. It passes its value to the chained-to prog...

	Register Variables
	A register variable is a unique non-volatile variable supported exclusively by BASIC 3.0. It reta...
	Like other variables, register variables are classified into two types, string variables and nume...
	When starting a user program stored in the flash ROM for the first time, the Interpreter copies t...

	User-defined Functions
	User-defined functions are classified into three types: integer functions, real functions, and ch...
	Define a user-defined function with the DEF FN statement.
	Setting Character String Length of Character Functions
	A character function may return 1 through 255 characters. Note that the default character string ...
	If the returned value is more than 40 characters, set the actually required length. To define a f...

	Dummy Arguments and Real Arguments
	Dummy arguments define user-defined functions. In the example below, i% is a dummy argument.
	Real arguments are passed to user-defined functions when those functions are called. In the examp...

	Type Conversion
	BASIC 3.0 type conversion facility converts a value of one data type into another data type durin...
	The Interpreter converts a value of a real into an integer in the following cases:
	In assignments or operations from integer to real, the type-converted real has higher accuracy:
	Syntax: realvariable = integerexpression
	In the above case, the Interpreter applies the type conversion to the evaluated resultant of the ...
	Type Conversion Examples
	The following examples show the type conversion from real to integer.
	Assignment of Real Expressions to Integer Variables
	When assigning the value of the real expression (right side) to the integer variable (left side),...
	Syntax: integervariable = realexpression
	Example: b% = 123.45
	where b% becomes 123.

	Operands for an Arithmetic Operator MOD
	Before executing the MOD operation, the Interpreter converts operands into integers.
	Syntax: realexpression MOD realexpression
	Example: 10.5 MOD 3.4
	where the result becomes identical to 11 MOD 3.

	Operands for Logical Operators AND, OR, NOT, and XOR
	Before executing each logical operation, the Interpreter converts operands into integers.
	Syntax: NOT realexpression, realexpression {AND|OR|XOR} realexpression
	Example: 10.6 AND 12.45
	where the result is identical to 11 AND 12.

	Parameters for Functions
	If parameters i and j of the functions below are real expressions, for example, the Interpreter c...

	File Numbers
	The Interpreter also rounds off file numbers to integers.

	Chapter 6 Expressions and Operators
	Overview
	An expression is a combination of constants, variables, and other expressions which are connected...

	Operator Precedence
	When an expression contains more than one operator, BASIC 3.0 performs the operations in the stan...
	Precedence
	1. Parentheses ()
	2. Function operations
	3. Arithmetic operations
	4. Relational operations
	5. Logical operations
	6. String operations

	Operators
	Arithmetic Operators
	Arithmetic operators include a negative sign (-) and operators for multiplication (*), division (...
	Modulo Operation (MOD)
	The MOD operator executes the modulo operation; that is, it divides expression 1 by expression 2 ...
	where one or more spaces or tab codes precede and follow the MOD.
	If these expressions include real values, the MOD first rounds them off to integers and then exec...

	Overflow and Division by Zero
	Arithmetic overflow resulting from an operation or division by zero causes an execution error. Su...

	Relational Operators
	A relational operator compares two values, and returns true (–1) or false (0). Use the operation ...
	Relational operators include the following:
	If an expression contains both arithmetic and relational operators, the arithmetic operator has p...

	Logical Operators
	A logical operator combines multiple tests and manipulates Boolean operands, then returns the res...
	Following are the four types of logical operators available.
	One or more spaces or tab codes should precede and follow the NOT, AND, OR, and XOR operators.
	In the logical expressions (or operands), the logical operator first carries out the type convers...
	If an expression contains logical operators with arithmetic and relational operators, the logical...
	NOT Operator
	The NOT operator reverses data bits by evaluating each bit in an expression and setting the resul...
	Table 6-1. Truth Table for NOT

	For example, NOT 0 = -1 (true).
	The NOT operation for an integer has the returned value of negative 1's complement. The NOT X, fo...

	AND Operator
	The AND operator ANDs the same order bits in two expressions on either side of the operator, then...
	Table 6-2. Truth Table for AND

	OR Operator
	The OR operator ORs the same order bits in two expressions on either side of the operator, then s...
	Table 6-3. Truth Table for OR

	XOR Operator
	The XOR operator XORs the same order bits in two expressions on either side of the operator, then...
	Table 6-4. Truth Table for XOR

	Function Operators
	The following two types of functions are available in BASIC 3.0 and work as function operators:
	Built-in Functions
	Already built in BASIC 3.0, e.g., ABS and INT.

	User-Defined Functions
	Defined by DEF FN statements in single-line or block form.

	String Operators
	A character string operator may concatenate or compare character strings. Following are the types...
	Table 6-5. String Operators

	Concatenation of Character Strings
	The process of combining character strings is called concatenation and is executed with the plus ...

	Comparison of Character Strings
	The relational operators compare two character strings according to character codes assigned to i...
	SF

	Chapter 7 I/O Facilities
	Facilities for the LCD
	Registering User-defined Fonts
	The APLOAD or KPLOAD statement registers up to 32 user-defined fonts for the single-byte ANK mode...

	Setting National Characters
	The COUNTRY$ function displays currency symbols and special characters for the countries. Refer t...

	Reversing the Characters
	The SCREEN statement reverses characters, as listed below.
	Reversed display sample:
	Note:

	Displaying the System Status
	The PDT 1100 may display the system status (the shift state of the keys) at the right end of the ...
	Table 7-1. System Status Icon

	* The icon is 16 dots wide by 8 dots high.
	You may turn the system status indication on or off on the SET DISPLAY menu in System Mode. The d...
	Notes when the system status is displayed
	The following statements and functions cause different operations when the system status is displ...

	Notes when displaying the system status with OUT statement
	Specifying the system status indication with the OUT statement overwrites the system status on th...

	Notes when erasing the system status with the OUT statement
	Erasing the system status with the OUT statement displays the content of the VRAM area (assigned ...

	Input from the Keyboard
	Alphabet Input Function
	The alphabet input function allows you to enter letters, a space, and symbols from the PDT 1100 k...
	Three characters are assigned to each 0-9 numerical key and period key. For example, A, B, and C ...
	Figure 7-1. The PDT 1100 Keypad
	Activating the alphabet input function with OUT statement
	Use the OUT statement to activate or deactivate the alphabet input function by setting bit 0 of p...
	The default alphabet input function is “deactivated.”
	Entering alphabetic characters from the keypad
	1. Find the key that is assigned to the alphabetic character you want, and check the position of ...
	2. Designate the character position using the trigger switch and then pressing the key.
	3. Press the trigger switch to cycle through the shift guidance blocks Left, Center, and Right on...
	The shift guidance block appears on the top or bottom line, depending upon the current cursor pos...
	The shift guidance block appears only while the trigger switch is held down, therefore, press the...

	Notes
	In the example below, the character “A” may be entered with the alphabet input function or by pre...
	To prevent this, assign another character to the F1 key with the KEY statement and modify the jud...
	For details, refer to KEY on page 10-61 and ON KEY...GOSUB on page 10-82.
	Note:

	Alphabet Input Example
	Coding in a user program:
	Entering alphabet characters “ND” under the above user program:
	1. Press the trigger switch.
	2. Hold down the trigger switch.
	3. Without releasing the trigger switch, press the 5 key.
	4. Release the trigger switch.
	5. Hold down the trigger switch.
	6. Without releasing the trigger switch, press the 8 key.
	7. Release the trigger switch.
	8. Press the Enter key to complete the entry operation.

	Function Keys
	The following operations cause the pressed key to act as a function key:
	*Use a KEY statement to reassign a value.
	For the keyboard layouts, key numbers, and key assignments, refer to Appendix E, Key Number Assig...
	Assigning a Character String to a Function Key
	Assign a desired character string (up to two characters) or a single control code to a function k...
	where a backspace code is assigned to the function key numbered 2.
	NULL Character or String Assignment
	Assigning a NULL character or string to a function key causes an invalid entry if the function ke...

	Defining a Function Key as the LCD Backlight Function On/Off Key
	Define a particular function key as the backlight function on/off key and set the length of backl...
	This defines the function key numbered 5 and sets the on-time to 60.
	Note:

	Defining a Function Key as the Battery Voltage Display Key
	Define a particular function key as the battery voltage display key using the KEY statement, as s...
	This defines the function key numbered 5.

	Defining an M Key
	Define an M key as the SF key, trigger switch, or battery voltage display key, and assign a chara...
	This defines the M1 key as the SF key.
	This defines the M2 key as the trigger switch.

	Keystroke Trapping
	You can trap the pressing of a particular key using the KEY ON, KEY OFF, and ON KEY...GOSUB state...
	Note:
	For details about the keystroke trapping, refer to Chapter 9, Event Polling and Error/Event Trapp...

	Timer and Beeper
	Timer Functions
	The timer functions (TIMEA, TIMEB, and TIMEC) are available in BASIC 3.0 for accurate time measur...

	BEEP Statement
	The BEEP statement sounds a beeper and specifies the frequency of the beeper. The example below s...
	Specify the beeper frequency with value 0 (low pitched), 1 (medium-pitched), or 2 (high- pitched).
	Note:

	Controlling and Monitoring the I/Os
	Controlling by the OUT Statement
	The OUT statement controls the input and output devices (I/Os) below. (Refer to Appendix D, I/O P...
	2 The PDT 1100 cannot control the RS (RTS) signal. This signal is ignored if turned on.

	Monitoring by the INP Function
	The INP function monitors the input and output devices (I/Os) as listed below. (Refer to Appendix...
	Table 7-2. Input and Output Devices�

	Note:

	Monitoring by the WAIT Statement
	The WAIT statement monitors the input and output devices (I/Os) below. Unlike the INP function, t...
	Table 7-3. WAIT Statement and I/O Devices

	In a single WAIT statement, you can specify more than one I/O device if the same port number appl...
	This example sets the value of &h03 (00000011) to port 0, indicating that it keeps waiting until ...

	Chapter 8 Files
	File Overview
	Data Files and Device I/O Files
	BASIC 3.0 treats data files and bar code device I/Os and communications device I/Os as files, by ...
	Table 8-1. File Type and File Name

	Note:

	Access Methods
	To access data files or device I/O files, first use the OPEN statement to open those files. Input...

	Data Files
	Overview
	Calculate the memory capacity available for data files by subtracting the memory space occupied b...
	The FRE function checks the current occupation of the memory. The EOF function cannot be used for...

	Naming Files
	The name of a data file generally contains filename.extension. The filename can have one to eight...
	The extension can be omitted. In such a case, a period should be also omitted. The following exte...

	Structure of Data Files
	Record
	A data file is made up of a maximum of 32,767 records. A record is a set of data in a data file a...
	When transferring data files, the PDT 1100 protocol/PDT 1100 Ir protocol prefixes a character cou...

	Field
	A record is made up of one or more fields. Data within the fields are treated as character (ASCII...
	When a data file is transmitted according to the PDT 1100 protocol, the following conditions shou...

	Data File Management by Directory Information
	The Interpreter manages data files using the directory information stored in the system area of t...
	Number of Written Records
	The LOF function returns the number of records already written in a data file. If no record numbe...

	Maximum Number of Registrable Records
	You may declare the maximum number of records registrable in a data file using the RECORD option ...
	The above program allows you to write up to 50 records in the data file named work.DAT. If the st...
	The maximum number of registrable records can be optionally specified only when you make a new da...

	Programming for Data Files
	Input/Output for Numeric Data

	To write numeric data into a data file:
	Use the STR$ function to convert the value of a numeric expression into a string.
	To write -12.56 into a data file, for example, a field length of at least 6 bytes is required. Wh...

	To read data to be treated as a numeric from a data file:
	Use the VAL function to convert a string into a numeric value.
	Data Retrieval
	The SEARCH function not only helps you make programs for data retrieval efficiently but also make...

	Deletion of Data Files
	The CLFILE or KILL statement deletes the designated data file.
	CLFILE erases only the data stored in a data file without erasing its directory information, and ...
	KILL deletes the data stored in a data file together with its directory information. This stateme...

	Program Sample with the CLFILE Statement
	Program Sample with the KILL Statement
	Restrictions on Input/Output of Data Files
	No INPUT#, LINE INPUT#, or PRINT# statement or INPUT$ function can access data files. To access d...
	Note:

	Bar Code Device
	Opening the Bar Code Device by OPEN “BAR:” Statement
	The OPEN “BAR:” statement opens the bar code device. In this statement, you may specify the follo...
	Table 8-2. Bar Code Types Supported

	Specifying Options in the OPEN “BAR:” Statement
	You may also specify the options below for each bar code type in the OPEN “BAR:” statement.

	Bar Code Buffer
	The bar code buffer stores input bar code data. It is occupied by one operator entry job and can ...

	Programming for Bar Code Device
	Use the INPUT# or LINE INPUT# statement, or the INPUT$ function to read bar code data from the ba...
	Code Mark
	The MARK$ function allows you to check the code type and the length of the bar code data. This fu...

	Multiple Code Reading
	Activate the multiple code reading feature which reads more than one bar code type while identify...

	Read Mode of the Trigger Switch
	Use the OPEN “BAR:” statement to select the read mode of the trigger switch.
	Table 8-3. Trigger Switch

	To check whether the trigger switch is pressed or not, use the INP function or the WAIT statement...
	If the value of the trig% is 04h, the trigger switch is kept pressed; if 00h, it is released.

	Generation of Check Digit
	Specifying a check digit in the OPEN “BAR:” statement causes the Interpreter to check bar codes. ...

	Control of Reading Confirmation LED and Beeper
	When the PDT 1100 has read a bar code successfully, the reading confirmation LED illuminates gree...

	Communications Device
	Hardware Required for Data Communications
	The PDT 1100 uses an IR beam to communicate with a host computer having an IR port. To communicat...
	Note:

	Programming for Data Communications
	Setting the Communications Parameters
	Use the OPEN “COM:” statement to set the communications parameters.

	For Optical Interface
	Parameters other than the transmission speed are fixed (Character length = 8 bits, Parity = None,...

	For Direct-Connect Interface
	Overview of Communications Protocols
	The PDT 1100 supports the two communications protocols—PDT 1100 protocol, and PDT 1100 IR protocol.
	PDT 1100 Protocol
	The XFILE statement allows you to upload or download a data file. This file transmission uses the...

	Primary Station and Secondary Station
	Define the primary station and the secondary station as follows:

	Protocol Functions
	To modify a transmission header or terminator in a send data, use the following protocol functions:
	PDT 1100 IR Protocol
	The PDT 1100 also supports the PDT 1100 IR protocol which is used for file transmission via the o...

	Primary station and secondary station
	Define the primary station and the secondary station as follows:

	Protocol functions
	In the PDT 1100 Ir protocol, you cannot change the values of the headers and terminator with the ...
	File Transfer Tools
	For the MS-DOS personal computers and Windows version which are available for Transfer Utility an...
	Note:
	Ir-Transfer Utility C
	Ir-Transfer Utility C is optionally provided on diskette. It is available in two versions: MS- DO...
	For the MS-DOS personal computers and Windows versions which are available for Ir- Transfer Utili...

	Chapter 9 Event Polling and Error/Event Trapping
	Overview
	BASIC 3.0 supports event polling, error trapping and event trapping.
	Event Polling
	Causes programs to monitor the input devices for occurrence of events.

	Error Trapping
	Traps an execution error and handles it by interrupt. If an execution error occurs when this trap...

	Event (of Keystroke) Trapping
	Traps a particular keystroke (caused by pressing a specified function key) to handle it by interr...

	Event Polling
	Programming Sample
	The program below shows an event polling example which monitors the bar code reader and the keybo...
	Listed below are the I/O devices which event polling can monitor.
	Table 9-1. I/O Devices

	Monitoring with the INP Function
	Combining the INP function with the above functions enables more detailed programming for event p...

	Error Trapping
	If an execution error occurs during a program, error trapping causes an interrupt upon completion...
	Error message sample:
	This message indicates that an execution error occurred at address 38A4h and its error code is 34...
	Note:
	Programming for Trapping Errors
	To trap errors, use the ON ERROR GOTO statement to designate the error-handling routine (to which...
	If an execution error occurs in the main routine, the above program executes the error- handling ...
	Note:
	The RESUME statement may pass control from the error-handling routine back to any specified state...
	Table 9-2. RESUME Statement

	Event (of Keystroke) Trapping
	If the function key previously specified for keystroke trapping is pressed, event trapping cause ...
	Programming for Trapping Keystrokes
	To trap keystrokes, use both the ON KEY...GOSUB and KEY ON statements. The ON KEY...GOSUB stateme...
	The RETURN statement in the event-handling routine returns control to the statement immediately f...
	Table 9-3. Statement and Function (Continued)

	Chapter 10 Statement Reference
	Introduction
	APLOAD
	BEEP
	CALL
	CHAIN
	CLFILE
	CLOSE
	CLS
	COMMON
	CURSOR
	DATA
	DEFREG
	DEF FN (Single-line form)
	DEF FN...END DEF (Block form)
	DIM
	END
	ERASE
	FIELD
	FOR...NEXT
	GET
	GOSUB
	GOTO
	IF...THEN...ELSE...END IF
	INPUT
	INPUT #
	KEY
	KEY ON and KEY OFF
	KILL
	LET
	LINE INPUT
	LINE INPUT #
	LOCATE
	ON ERROR GOTO
	ON...GOSUB and ON...GOTO
	ON KEY...GOSUB
	OPEN
	OPEN “BAR:”
	OPEN “COM:”
	OUT
	POWER
	PRINT
	PRINT #
	PRINT USING
	PUT
	READ
	REM
	RESTORE
	RESUME
	RETURN
	SCREEN
	SELECT...CASE...END SELECT
	WAIT
	WHILE...WEND
	XFILE
	$INCLUDE
	Chapter 11 Function Reference
	Introduction
	This chapter provides detailed descriptions of the functions used to program the PDT 1100.

	ABS
	Description
	Returns the absolute value of a numeric expression.

	Syntax
	Notes
	ABS returns the absolute value of numericexpression. The absolute value is the magnitude of numer...

	ASC
	Description
	Returns the ASCII code value of a given character.

	Syntax
	Notes
	ASC returns the ASCII code value of the first character of stringexpression, which is an integer ...

	Reference

	BCC$
	Description
	Returns a block check character (BCC) of a data block.

	Syntax
	Notes
	BCC$ calculates a block check character (BCC) of datablock according to the block checking method...
	Table 11-1. Block Checking Method and Description

	Execution Error

	CHKDGT$
	Description
	Returns a check digit of bar code data.

	Syntax
	Notes
	CHKDGT$ calculates a check digit (CD) of barcodedata according to the calculation method specifie...
	CDtype is A, I, M or N, which specifies the bar code type and the corresponding calculation metho...
	CDtype may be in lowercase.
	When CDtype is A (EAN or UPC), this function identifies the EAN or UPC of barcodedata depending u...
	If the data length is a value other than 13, 8, and 7, this function returns a null string.
	When CDtype is I (ITF), the length of barcodedata must be an even number of two or more digits. I...
	When CDtype is M (Code 39), the length of barcodedata must be two or more digits not including st...
	When CDtype is N (NW-7), the length of barcodedata must be three digits or more including start a...

	Execution Error
	Reference

	CHR$
	Description
	Returns the character corresponding to a given ASCII code.

	Syntax
	Notes
	CHR$ converts a numerical ASCII code specified by characode into the equivalent single-byte chara...

	Execution Error
	Example
	Reference

	COUNTRY$
	Description
	Sets a national character set or returns a current country code.

	Syntax
	Syntax 1 (Setting a national character set)
	Syntax 2 (Returning a country code)

	Notes
	Syntax 1
	COUNTRY$ sets a national character set specified by countrycode. The national character set is as...

	Syntax 2
	COUNTRY$ returns a current country code as an uppercase alphabetic letter.

	CSRLIN
	Description
	Returns the current row number of the cursor.

	Syntax
	Notes
	CSRLIN returns the current row number of the cursor in the current screen mode selected by a SCRE...
	If the current screen mode is the single-byte ANK mode, this function returns a value from 1 to 6...

	Reference

	DATE$
	Description
	Returns the current system date or sets a specified system date.

	Syntax
	Syntax 1 (Retrieving the current system date)
	Syntax 2 (Setting the current system date)

	Notes
	Syntax 1
	DATE$ returns the current system date as an 8-byte string. The string has the format below.
	where yy is the lower two digits of the year from 00 to 99, mm is the month from 01 to 12, and dd...

	Syntax 2
	DATE$ sets the system date specified by “date”. The format of “date”is the same as that in syntax 1.

	Execution Error
	Reference

	EOF
	Description
	Tests whether the end of a device I/O file has been reached.

	Syntax
	Notes
	EOF tests for an end of a file designated by filenumber, and returns -1 (true) if no data remains...

	Execution Error
	Reference

	ERL
	Description
	Returns the current instruction location of the program where an execution error occurred.

	Syntax
	Notes
	ERL returns the current instruction location of the program where an execution error occurred mos...

	Reference

	ERR
	Description
	Returns the error code of the most recent execution error.

	Syntax
	Notes
	ERR returns the code of an execution error that invoked the error-handling routine.

	Reference

	ETX$
	Description
	Modifies the value of a terminator (ETX) for the PDT 1100 protocol; also returns the current valu...

	Syntax
	Syntax 1 (Changing the value of a terminator)
	Syntax 2 (Returning the current value of a terminator)

	Notes
	Syntax 1
	ETX$ modifies the value of a terminator (a text control character) which indicates the end of dat...

	Syntax 2
	ETX$ returns the current value of a terminator.

	Execution Error
	Reference

	FRE
	Description
	Returns the number of bytes available in a specified area of the memory.

	Syntax
	Notes
	FRE returns the number of bytes left unused in a memory area specified by areaspec listed below.

	Execution Error

	HEX$
	Description
	Converts a decimal number into the equivalent hexadecimal string.

	Syntax
	Notes
	HEX$ function converts a decimal number from -32768 to 32767 into the equivalent hexadecimal stri...
	Listed below are conversion examples.

	Execution Error

	INKEY$
	Description
	Returns a character read from the keyboard.

	Syntax
	Notes
	INKEY$ reads from the keyboard to see whether a key has been pressed, and returns one character r...

	Reference

	INP
	Description
	Returns a byte read from a specified input port.

	Syntax
	Notes
	INP reads one-byte data from an input port specified by portnumber and returns the value. (For th...

	Execution Error
	Reference

	INPUT$
	Description
	Returns a specified number of characters read from the keyboard or from a device file.

	Syntax
	Syntax 1 (Reading from the keyboard)
	Syntax 2 (Reading from a device file)

	Notes
	INPUT$ reads the number of characters specified by numcharas from the keyboard or from a device f...
	Syntax 1 (without specification of filenumber)
	INPUT$ reads a string or control codes from the keyboard.

	Syntax 2 (with specification of filenumber)
	INPUT$ reads from a device file (the bar code device file or any of the communications device fil...

	Execution Error
	Reference

	INSTR
	Description
	Searches a specified target string for a specified search string, and then returns the position w...

	Syntax
	Notes
	INSTR searches a target string specified by targetstring for a search string specified by searchs...

	Execution Error
	Reference

	INT
	Description
	Returns the largest whole number less than or equal to the value of a given numeric expression.

	Syntax
	Notes
	INT returns the largest whole number less than or equal to the value of numericexpression by stri...

	LEFT$
	Description
	Returns the specified number of leftmost characters from a given string expression.

	Syntax
	Notes
	LEFT$ extracts a portion of a string specified by stringexpression by the number of characters sp...

	Execution Error
	Reference

	LEN
	Description
	Returns the length (number of bytes) of a given string.

	Syntax
	Notes
	LEN returns the length of stringexpression, that is, the number of bytes in the range from 0 to 255.

	LOC
	Description
	Returns the current position within a specified file.

	Syntax
	Notes
	LOC returns the current position within a file (a data file, communications device file, or bar c...

	Execution Error
	Reference

	LOF
	Description
	Returns the length of a specified file.

	Syntax
	Notes
	LOF returns the length of a data file or communications device file specified by filenumber.

	Execution Error
	Reference

	MARK$
	Description
	Returns a bar code type and the number of digits of the bar code.

	Syntax
	Notes
	MARK$ returns a 3-byte string which consists of the first one byte representing a bar code type a...

	MID$
	Description
	Returns a portion of a given string expression from anywhere in the string.

	Syntax
	Notes
	Starting from a position specified by startposition, MID$ extracts a portion of a string specifie...
	Note:

	Execution Error
	Reference

	POS
	Description
	Returns the current column number of the cursor.

	Syntax
	Notes
	POS returns the current column number of the cursor in the current screen mode selected by a SCRE...
	This function returns an integer value from 1 to 17 (independently of the display font size selec...
	For the current row number of the cursor, refer to the CSRLIN function.

	Reference

	RIGHT$
	Description
	Returns the specified number of rightmost characters from a given string expression.

	Syntax
	Notes
	Starting at the right side of the string, RIGHT$ extracts a portion of a string specified by stri...

	Execution Error
	Reference

	SEARCH
	Description
	Searches a specified data file for specified data, and then returns the record number where the s...

	Syntax
	Notes
	SEARCH searches a target field specified by fieldvariable in a data file specified by filenumber ...

	Execution Error
	Reference

	SOH$
	Description
	Modifies the value of a header (SOH) for the PDT 1100 protocol; also returns the current value of...

	Syntax
	Syntax 1 (Changing the value of a header)
	Syntax 2 (Returning the current value of a header)

	Notes
	Syntax 1
	SOH$ modifies the value of a header (one of the text control characters) which indicates the star...

	Syntax 2
	SOH$ returns the current value of a header.

	Execution Error
	Reference

	STR$
	Description
	Converts the value of a numeric expression into a string.

	Syntax
	Notes
	STR$ converts the value of numericexpression into a string.

	Reference

	STX$
	Description
	Modifies the value of a header (STX) for the PDT 1100 protocol; also returns the current value of...

	Syntax
	Syntax 1 (Changing the value of a header)
	Syntax 2 (Returning the current value of a header)

	Notes
	Syntax 1
	STX$ modifies the value of a header (one of the text control characters) which indicates the star...

	Syntax 2
	STX$ returns the current value of a header.

	Execution Error
	Reference

	TIME$
	Description
	Returns the current system time or wake-up time, or sets a specified system time or wake-up time.

	Syntax
	Syntax 1 (Retrieving the current system time or the wake-up time)
	Syntax 2 (Setting the current system time or the wake-up time)

	Notes
	Syntax 1
	TIME$ returns the current system time as an 8-byte string. The string has the format below.
	where hh is the hour from 00 to 23 in 24-hour format, mm is the minute from 00 to 59, and ss is t...
	Example: CLS PRINT TIME$
	TIME$ returns the wake-up time as a 5-byte string. The string has the format below.

	Syntax 2
	TIME$ sets the system time specified by “time.” The format of “time” is the same as that in synta...
	Example: TIME$=“13:35:45”
	TIME$ sets the wake-up time specified by “time.” The format of “time” is the same as that in synt...

	Execution Error
	Reference

	TIMEA/TIMEB/TIMEC
	Description
	Returns the current value of a specified timer or sets a specified timer.

	Syntax
	Syntax 1 (Retrieving the current value of a specified timer)
	Syntax 2 (Setting a specified timer)

	Notes
	Syntax 1
	TIMEA, TIMEB, or TIMEC returns the current value of timer-A, -B, or -C, respectively, as a 2- byt...

	Syntax 2
	TIMEA, TIMEB, or TIMEC sets the count time specified by count.

	Execution Error

	VAL
	Description
	Converts a string into a numeric value.

	Syntax
	Notes
	VAL converts the string specified by stringexpression into a numeric value.

	Reference

	Appendix A Error Codes and Error Messages
	Introduction
	This Appendix specifies all error codes and their meanings

	Execution Errors
	Table A-1 lists the execution errors codes and their meanings.
	Table A-1. Execution Errors (Continued)

	Fatal Errors
	Table A-2 lists the fatal errors and their meanings.
	Table A-2. Fatal Errors (Continued)

	Syntax Errors
	Table A-3 lists the syntax errors and their meanings.
	Table A-3. Syntax Errors (Continued)
	Appendix B Reserved Words
	Table B-1 lists reserved words (keywords) of BASIC 3.0. These words must not be used as a variabl...
	Table B-1. Reserved Words (Continued)

	Appendix C Character Sets
	Character Set
	National Character Sets
	Display Mode and Letter Size
	Character Frame and Letter Size in Single-Byte ANK Mode
	Generating Small Font Patterns

	Appendix D I/O Ports
	Input Ports
	A user program uses the WAIT statement or INP function to monitor the hardware status through the...
	Table D-1. Input Port Assignments (Continued)
	1 BASIC 3.0 represents the bit order by the exponent of each binary digit in the byte. For exampl...
	2 Only when the trigger switch function is assigned to an M key (M1, M2, M3, or M4), a user progr...
	3 During the direct-connect interface operation, a user program regards RD signal as CS signal, w...
	If the direct-connect interface is closed, the PDT 1100 returns the value 0.
	4 Lower four bits (bit 3 to bit 0) in this byte represent the contrast level of the LCD in 0000 t...
	5 Do not use the WAIT statement to monitor the LCD contrast, message version , system status indi...
	6 In System Mode, the message version appears on the LCD.
	7 If the PDT 1100 is initiated by the wake-up function, this bit goes ON (1).
	8 The PDT 1100 can display the system status on the bottom line of the LCD.
	9 The PDT 1100 returns the re-read prevention enabled time length in units of 100 ms. If the retu...
	10 An 8-bit binary pattern (bits 7 to 0) on the input ports 10h to 24Fh (which read VRAM) represe...
	11 A user program returns the A/D converted value (0 to 255) of the battery voltage level (0 to 5...
	12 A user program returns the communications protocol type used for file transmission with the XF...
	13 A user program returns the PDT 1100's ID number required to use the PDT 1100 Ir protocol. The ...
	14 If the value of this bit is 0 (standard-size), characters are displayed as follows:
	If the value of this bit is 1 (small-size), characters will be displayed as follows:

	Output Ports
	A user program can use the OUT statement to control the hardware through the output ports. BASIC ...
	Table D-2. Output Port Assignments (Continued)
	1BASIC 3.0 represents the bit order by the exponent of each binary digit in the byte. For example...
	2 The reading confirmation LED is controllable only when the bar code device file is closed. If t...
	3 Lower four bits (bit 3 to bit 0) in this byte control the contrast level of the LCD in 0000 to ...
	4 The sleep time feature interrupts program execution if the PDT 1100 receives no input within th...
	5 To activate the wake-up function, set this bit to 1; to deactivate it, set it to 0.
	6 To make the TIME$ function return or set the system time, set 0 to this bit; to make the TIME$...
	7 To display the system status on the bottom line of the LCD, set this port to 1; to erase it, se...
	8 This byte sets the re-read prevention enabled time length in units of 100 ms. Specifying zero (...
	9 An 8-bit binary pattern (bits 7 to 0) on output ports 10h to 24Fh (stored in the VRAM) represen...
	10 Refer to APLINT.PD3 Program File on page H-7.
	11 If the backlight function is activated with the OUT statement, the KEY statement specification...
	12 You can set the time the power key must be held-down to power off the PDT 1100 from 0.1 to 25....
	13 Use the XFILE statement to set the communications protocol type for transmitting files. To tra...
	14 You may set the PDT 1100's ID number to be used for the PDT 1100 Ir protocol. The ID number is...
	15 For data transmission via the optical interface, this bit sets the output pulse width of IR be...
	16 If you set this bit to 0 (standard size), characters are displayed as follows:
	If the value of this bit is 1 (small), characters are displayed as follows:

	Appendix E Key Number Assignment on the Keyboard
	Key Number Assignment
	The keys on the PDT 1100 keyboard are assigned numbers as shown below.
	Figure E-1. Key Number Assignments
	Default Data Assignment
	The default data assignment is shown below.
	Figure E-2. Default Data Assignments
	System Program Area

	Appendix F Memory Area
	Memory Map
	Figure F-1 illustrates the PDT 1100 memory map.
	ROM
	Figure F-1. Memory Map
	The size and area allocation of the memory incorporated in the PDT 1100 differ depending upon the...
	ROM (Flash ROM)
	RAM
	In the system program area, the system programs (the drivers, BASIC 3.0 Interpreter, and System M...

	Memory Management
	The PDT 1100 manages the user area of the memory by a 4-kilobyte or 8-kilobyte segment called a “...

	Battery Backup of Memory
	The PDT 1100 backs up user programs and data files stored in the memory with dry batteries or a b...

	Memory Space Available for Variables
	Listed below are the maximum memory spaces available for work, common, and register variables.
	Each variable occupies the memory space listed below.
	An array variable occupies the memory space by [number of bytes per array element x number of arr...
	(196 KB)

	Appendix G Handling Space Characters in Downloading
	Space Characters as Padding Characters

	A data file can be downloaded with System Mode or an XFILE statement via a communications protoco...
	Figure G-1. Padding Characters Elimination
	Space Characters as Data

	Special considerations must be made when treating space characters in the tail of a data field as...
	Example 1

	After downloading a data file, fill the unused spaces in each field with space characters and the...
	Figure G-2. Space Character Substitution
	Example 2

	Before downloading a data file, substitute any character not used as effective data, e.g., an ast...
	Figure G-3. Asterisk Character Substitution
	Example 3

	When specifying a field data to be searched, do not include space characters in the tail of the d...
	Figure G-4. No character Substitution

	You can also use System Mode or an XFILE statement to specify the handling of space characters in...
	The figure below shows how the space characters in the tail of a data field are handled as data i...
	Appendix H Programming Notes
	Sleep Timer
	The sleep timer feature interrupts program execution if the PDT 1100 receives no input within the...

	Resume Function
	The resume function preserves the current status of a running application program (user program o...
	Note:

	The resume function does not work after execution of System Mode or after the following instructi...
	Before you run System Mode, store important information using register variables or other means, ...

	Low Battery Warning
	If the battery voltage of dry batteries (or the NiMH battery cartridge) drops below the specified...

	Selecting a Communications Device File
	The PDT 1100 supports both optical interface and direct-connect interface. Only one can be opened...
	If you designate “COM:”, the default interface selected on the SET COM menu in System Mode become...

	Prohibited Simultaneous Operations
	To save power at peak load, the beeper, the LASER diode and the LCD backlight do not work simulta...

	Controlling the LCD Backlight
	A KEY statement defines the backlight function on/off key and sets the length of backlight on- ti...

	Keyboard (Keypad)
	The keys on the PDT 1100 are not auto-repeat. The Shift key can be set to non-lock type or lock t...
	When keys are shifted, the shift-key icon appears at the right end of the bottom line of the LCD ...

	Beeper
	A BEEP statement sounds the beeper at a specified frequency (Hz). If frequency option is omitted,...
	When frequency is set to 0, 1, or 2 or the frequency option is omitted, adjust the beeper volume ...

	RS/CS Control
	The PDT 1100 supports only the SD (TXD) and RD (RXD) lines during both optical interface and dire...

	Supplemental Codes
	Specifying an S to the supplemental option of a readcode in an OPEN “BAR:” statement allows the P...

	Flash ROM
	The PDT 1100 incorporates a flash ROM and RAM where you can store user program files and data fil...
	Storing Files
	To store a file in flash ROM, download it from the DOWNLOAD menu in System Mode or use the XFILE ...

	Deleting Files
	Delete files stored in flash ROM using the KILL statement or the file deletion function (activate...
	Note:

	Specifying Files
	Include the drive name when specifying a file in user programs. The drive name is A: for RAM and ...
	This example opens the file named DATA1.DAT stored in flash ROM.

	Memory Areas Required for User Programs
	If you store a user program in flash ROM, the area for its register variables is also reserved in...

	Retained Contents of Flash ROM
	Files stored in RAM are backed up by the built-in rechargeable lithium battery. The files may be ...

	Wake-up Function
	The wake-up function allows you to turn on the PDT 1100 from “OFF” at the wake-up time (of the sy...
	1. Set bit 2 on port 8 to 1 to switch the TIME$ function to the setting of the wake-up time.
	2. Set the wake-up time using the TIME$ function.
	3. Set bit 0 on port 8 to 1 to activate the wake-up function.
	To confirm the wake-up time preset:
	1. Set bit 2 on port 8 to 1 to switch the TIME$ function to the setting of the wake-up time.
	2. Retrieve the wake-up time using the TIME$ function.
	If you set or retrieve the system time or wake-up time using the TIME$ function, the value of bit...

	LED and Beeper Control
	Using the OPEN “BAR:” statement to control whether the reading confirmation LED lights in green (...
	Controlling Reading Confirmation LED
	If the OPEN “BAR:” statement activates the reading confirmation LED (in green), the OUT instructi...

	Controlling the Beeper
	If the beeper is activated, it beeps once for 100 ms at the frequency of 4337 Hz (equivalent to s...

	APLINT.PD3 Program File
	If a program file named APLINT.PD3 is stored in the PDT 1100, the System Mode initiation sequence...
	To terminate the APLINT.PD3 file, use the END or POWER OFF statement. When terminating the file w...

	Modifying PW Key Depression
	Modify the time the PW key must be depressed for the unit to turn off from 0.1 to 25.5 seconds in...

	CODE128 Reading
	CODE128 bar codes are read in the following manner.
	The start/stop characters and check digits are not transmitted to the bar code buffer.
	When a code comprised only of special characters (FNC characters, CODE A, CODE B and CODE C chara...
	FNC characters are processed as explained below.
	1. FNC1 - A FNC1 placed in the first or second position after the start character is not transmit...
	2. FNC2 - If a FNC2 character is included in the code, the data is not temporally stored and all ...
	3. FNC3 - If a FNC3 character is included in the code, no read data is transmitted to the bar cod...
	4. FNC4 - In a FNC4 character, the data encoded by Code Set A or B is converted into Extended ASC...
	One FNC4 character converts one subsequent data character into Extended ASCII data. A pair of FNC...
	The GS character(s) converted from FNC1 is also excluded from the same conversion.

	Field Length Restriction
	When a data file is transmitted from PDT 1100 according to the communications protocol, the maxim...

	Appendix I Backlight Function
	Press the [M1] key while holding down the Shift key to activate or deactivate the backlight funct...
	For details about the KEY statement, refer to KEY on page 10-61.
	Press the [M1] key while holding down the Shift key.
	Or, press the backlight function on/ off key specified by KEY statement.
	Figure I-1. LCD Backlight Function
	You can control the backlight function using the OUT statement. Set port 6020h to 1 with the OUT ...

	Figure I-2. Setting Backlight Function via OUT Statement

	Appendix J Program Samples
	Writing a Function
	Following is a sample function for receiving bar code and key entry.
	If you use an invariant for f.no% or bar$, you don’t need to pass the value as an argument. The b...
	def fnbarkey$(f. no%, bar$, max%, esc$)
	while 1
	open “BAR:” as #f. no% code bar$
	wait 0, 3 ' Wait for completion of bar code reading or key press.
	if loc(#f. no%) then
	beep ' Beep when bar code reading is completed.
	fnbarkey$ = input$(max%, #f. no%)
	' For displaying:
	' rt$ = input$(max%, #f. no%) : print .rt$;
	' fnbarkey$ = .rt$
	close #f. no%
	exit def
	else
	close #f. no% ' Receive only key entry.
	.rt$ = “”
	.kb$ = input$(1)
	while .kb$<>“”
	if instr(esc$, .kb$) then ' Key designated in esc$?
	fnbarkey$ = .kb$ ' Then, return the character.
	exit def
	endif
	select .kb$
	case chr$(13)
	fnbarkey$ = .rt$
	exit def
	case chr$(8) ' BS key.
	if len(.rt$) then
	print chr$(8); ' Erase one character.
	.rt$ = left$(.rt$, len(.rt$)-1)
	endif
	case chr$(24) ' Clear key.
	while len(.rt$) ' Erase all characters entered.
	print chr$(8);
	.rt$ = left$(.rt$, len(.rt$)-1)
	wend
	case else
	if len(.rt$)<max% then
	' Check if only numeric data should be received.
	print .kb$; ' Echo back.
	.rt$ = .rt$ + .kb$
	else
	beep ' Exceeded number of characters error.
	endif
	end select
	if .rt$=“” then ' If input string is empty, go back to the initial state.
	.kb$ = “”
	else
	.kb$ = input$(1) ' Subsequent key entry.
	wend
	endif
	wend
	end def

	Testing the Written Function
	while 1 'Infinite loop
	a$ = fnbarkey$ (1, “A”, 15, “DL”) 'F4 and SFT/F4 as escape characters.
	print
	if a$<>“D” and a$<>“L” then
	print “Data=”; a$
	else
	print “ESC(“;a$;”) key push”
	endif
	wend
	end

	Appendix K Quick Reference for Statements and Functions
	Controlling Program Flow

	Handling Errors
	Defining and Allocating Variables

	Controlling the LCD Screen
	Controlling the Keyboard Input
	Beeping

	Manipulating System Date, Current Time, or Timers
	Communicating with I/Os

	Communicating with Bar Code Device
	Manipulating Data Files and User Program Files
	Communicating with Communications Devices
	Commenting a Program
	Manipulating Numeric Data
	Manipulating String Data

	Defining User-Created Functions
	Specifying Included Files
	Appendix L Unsupported Statements and Functions
	BASIC 3.0 does not support the following MS-BASIC statements and functions:

	Appendix M Communications
	Basic Communications Specifications
	Synchronization
	Optical Interface Communications Range
	Transmission Code and Bit Order
	Response Method
	Vertical Parity
	BCC for Horizontal Parity Checking
	IR Protocol
	Communications Parameters
	In System Mode

	Communications Protocols
	Protocol

	IR Protocol
	Overview

	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

