Allen-Bradley

DS/DD Series B
Enhanced Bar
Code Decoders

User Manual

(Bulletin 2755)

Because of the variety of uses for the products described in this publication, those responsible for the application and use of this control equipment must satisfy themselves that all necessary steps have been taken to assure that each application and use meets all performance and safety requirements, including any applicable laws, regulations, codes and standards.

The illustrations, charts, sample programs and layout examples shown in this guide are intended solely for purposes of example. Since there are many variables and requirements associated with any particular installation, Allen-Bradley does not assume responsibility or liability (to include intellectual property liability) for actual use based upon the examples shown in this publication.

Allen-Bradley publication SGI-1.1, Safety Guidelines for the Application, Installation, and Maintenance of Solid-State Control (available from your local Allen-Bradley office), describes some important differences between solid-state equipment and electromechanical devices that should be taken into consideration when applying products such as those described in this publication.

Reproduction of the contents of this copyrighted publication, in whole or in part, without written permission of Allen-Bradley Company, Inc., is prohibited.

Throughout this manual we use notes to make you aware of safety considerations:

ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage or economic loss.

Attention statements help you to:

- identify a hazard
- avoid the hazard
- recognize the consequences

Important: Identifies information that is critical for successful application and understanding of the product.
Using this Manual
Decoder Features
Chapter 1
Chapter Objectives 1-1
What the Package Includes 1-1
Contents of Manual 1-2
What You Need to Know 1-3
Terminology 1-3
Conventions Used 1-3
Related Publications 1-4
Chapter 2
Chapter Objectives 2-1
NEMA Type Enclosures 2-1
Scanner Ports 2-1
Power Supply 2-2
LED Indicators 2-3
LCD Display 2-4
AUX Port 2-4
Decoder Configuration 2-4
Manual Data Entry 2-4
Host Port 2-5
Power Connector and On/Off Switch 2-5
Memory Backup 2-5
Discrete I/O Modules 2-5
Decoder Options (NEMA Type 1 Decoders) 2-7
Power Cords 2-7
Decoder Options (NEMA Type 4 Decoders) 2-8
Power Cords 2-8
Input/Output Modules 2-9
Replacement Fuses (for decoders with I/O Module Board options) 2-9
I/O Module Board Options (available when ordering either the NEMA Type 1 or Type 4 decoder) 2-9
LCD Display 2-10
Scanners 2-11
Decoder Accessories 2-11
Configuration and Cable Group Selector 2-11
Cable Selection Guide 2-12
Package Detectors for Scanners 2-13
Communication Cable and Connector Kit 2-13
Overview of Decoder
Operations
Chapter 3
Chapter Objectives 3-1
Function of Decoder 3-1
Bar Code Symbologies 3-1
Configuration Options 3-1
Configuration Screens 3-2
Host Commands 3-2
Stand-alone Operation 3-2
Host Operation 3-3
Programmable Logic Controllers (PLC) 3-3
Host Computers 3-5
Types of Memory 3-5
Operating Memory 3-6
Storage Memory 3-6
Memory Contents at Startup 3-7
Decoder Operating Modes 3-8
Scanning Modes 3-8
Decode Modes 3-8
Sending Data to Host - Speed vs. Timing 3-9
Installing the Decoder
Chapter 4
Chapter Objectives 4-1
Power Requirements 4-1
Electrical Recommendations 4-1
Grounding 4-2
Replacing LED Label 4-2
Mounting the Decoder 4-3
Installing Power Cord 4-4
Quick Start for DS/DD Decoder Configuration and Scanner Setup 4-6
Connect AUX Terminal 4-6
Set Communication Parameters 4-6
Apply Power and Select Language 4-6
Select CRT Type 4-7
Select Operations 4-8
Set Symbology Parameters 4-9
Configure Scanner(s) 4-10
Customize As Required 4-15
Connecting the AUX Terminal 4-15
Connecting the Host Device 4-16
Installing I/O Modules 4-19
Connecting I/O Modules to External Devices 4-20
Wiring I/O Modules 4-20
Installing Conduit Hubs/NEMA Type 4 Decoder 4-22
Conduit Holes 4-22
Conduit Connections 4-22
Introduction to AUX
Terminal Configuration

Chapter 5

Chapter Objectives 5-1
Connect and Set Up AUX Terminal 5-1
AUX Terminal Selector 5-1
Getting Started 5-2
Configuration Functions 5-4
Editing Conventions 5-5
Highlight 5-6
Moving Around the Screen 5-6
Field Types 5-7
Select Field 5-7
Edit Field 5-7
Select/Edit Numeric Field 5-7
Changing Fields 5-7
Audible Beep 5-9
Help Line 5-9
Select Mode 5-9
Edit Mode 5-9
Command Line 5-10
Command Summary 5-10
Configuration: Symbology Chapter 6
Configure Symbology 6-1
Code 39 6-2
Code 39 Specific Lengths 6-2
Code 39 Check Character 6-3
Include Code 39 Check Character 6-3
Interleaved 2-of-5 6-3
Interleaved 2-of-5 Specific Lengths 6-3
Interleaved 2-of-5 Check Character 6-4
Include Interleaved 2-of-5 Check Character 6-4
Interleaved 2-of-5 Guard Bars 6-4
Codabar 6-5
Codabar Specific Lengths 6-5
Codabar Check Character 6-5
Include Codabar Check Character 6-5
Code 128 6-6
Code 128 Specific Lengths 6-6
Code 128 FNC1 Character 6-7
UPC-A 6-7
UPC-A Supplements 6-7
UPC-E 6-8
UPC-E Supplements 6-8
Expand UPC-E 6-9
EAN-8 6-9
EAN-8 Supplements 6-9
EAN-13 6-10
EAN-13 Supplements 6-10
Enable Pharma-Code Symbology (Pharma-Code Decoders Only) 6-10
Quiet Zone Ratio (All Decoders) 6-11
Space Tolerance (Pharma-Code Decoders Only) 6-12
Bar Tolerance (Pharma-Code Decoders Only) 6-12
Minimum Number of Bars (Pharma-Code Decoders Only) 6-13
Decode Direction (A or B) (Pharma-Code Decoders Only) 6-14
Wide to Narrow Bar Ratio (Pharma-Code Decoders Only) 6-14
Code Verification List (Pharma-Code Decoders Only) 6-15
Configuration: Scanner Control, Primary Match Table, Discrete I/O
Chapter 7
Scanner Control, Primary Match Code Table, Discrete I/O 7-1
Scanner A Control Parameters 7-1
Laser Light (Scanners A and B) 7-2
Decode Mode 7-2
No-Read Timer 7-4
Inter-Scan Timer 7-5
Capture Count 7-6
Symbols / Scan 7-7
Symbols/Package 7-8
Match Complete 7-8
Scanner B Control Parameters 7-8
Laser Light 7-9
Decode Mode 7-9
Trigger Timeout 7-11
Package Detect Input Parameters 7-11
Package Detect Input A Filter 7-11
Package Detect Input A Sense 7-12
Package Detect Input B Filter 7-12
Package Detect Input B Sense 7-13
Primary Match Table Parameters 7-13
Symbology (1-8) 7-14
Match Code String (1-8) 7-14
Discrete I/O Parameters 7-15
Output State 7-15
Source 7-16
Output Condition 7-16
Output Duration 7-21
Configuration: Extended
Match Table and Counters
Chapter 8
Extended Match Table 8-1
Screen Status 8-2
Status of Counter Set 8-3
Mode 8-3
Source 8-5
Symbology 8-5
Match Pattern String 8-6
Count 8-6
Loading 8-7
Output Duration 8-9
Configuration: AUX and LCD Display Parameters
Configuration: Host Message Replacement Rules
Chapter 9
AUX and LCD Display Parameters 9-1
Display Data 9-1
Message Format 9-2
Scroll LCD 9-3
Position: Bar Code Strings 9-4
Position: Decoder Performance 9-4
Position: Package Counter 9-4
Position: Symbols Not Read Counter 9-5
Position: Primary Counters 9-5
Displaying Host Messages 9-5
ASCII Command 9-6
PCCC Command 9-6
How Scrolling Affects the Display of Host Messages 9-7
LCD Display Examples 9-8
Adjusting Contrast of LCD Display 9-10
AUX Terminal Display Examples 9-10
Chapter 10
Introduction to Host Message Replacement Rules 10-1
Symbols vs. Host Message Fields 10-2
Introduction to Host Message Replacement Rules 10-2
Metacharacters 10-3
Processing Order 10-7
Configuration Parameters 10-8
Source 10-8
Symbology 10-9
Symbol Number 10-9
Find String Containing 10-11
Replace Entire String With 10-12
Minimum Field Length 10-12
Alignment 10-13
Fill Character 10-13
Host Message Field Number 10-13
Assembling a Host Message 10-14
Examples 10-15
Example 1: Sorting by Data Source 10-15
Example 2: Identifying the Source of Data 10-15
Example 3: Sorting by Symbology 10-16
Example 4: Sorting by Symbol Number 10-16
Example 5: Sorting Symbols by Data Identifiers 10-17
Example 6: Sorting by Unique Characters and/or Strings 10-18
Example 7: Stripping Unwanted Characters 10-18
Example 8: Stripping Unwanted Characters 10-19
Example 9: Substituting Characters Within a String 10-19
Configuration: Host Message Format
Chapter 11
Host Message Format 11-1
Introduction to Host Message Format 11-1
Bar Code Host Message Format 11-2
Host Message Parameters 11-4
Start Character 11-4
Source Identifier for AUX, A, and B 11-4
Header Message 11-5
Field Delimiter 11-5
Number of Fields in Message 11-5
Send Symbology 11-6
Send Package Count 11-6
Send Bar Code Strings 11-6
Send Decoder Performance 11-7
End Message 11-7
Default No-Read Message 11-7
No-Read Replacement Strings 11-8
Configuration: Host Communications
Configuration: AUXTerminal Data Entry
Chapter 12
Host Communications 12-1
Baud Rate 12-2
Bits/Char 12-2
Parity 12-2
Host Protocol 12-3
Device Address 12-3
ACK Character 12-4
NAK Character 12-4
Start Scan Character 12-5
Stop Scan Character 12-5
Large Buffer 12-6
Send Message to Host 12-6
Transmission Check 12-7
Chapter 13
Chapter Objectives 13-1
Supported Terminals 13-1
AUX Terminal Configuration 13-2
Enable Keyboard Entry 13-2
Confirm Entry 13-3
AUX Data Format 13-4
Rubout Character 13-4
Echo To Terminal 13-4
Size of Display 13-5
Default Prompt Message 13-5
Switching to Manual Data Entry Mode 13-5
Internal Selector 13-6
Internal Selector (AUX Terminal Jumper) 13-6
External Selector 13-6
Data Entry and Display Operations 13-7
Displaying Data at the AUX Terminal 13-7
Displaying Host Messages 13-8
Processing No-Reads 13-8
Using ASCII and PCCC Commands 13-10
ASCII Commands 13-10
Format of Manually Entered Data 13-11
PCCC Commands 13-11
Display and System Configuration
Chapter 14
Chapter Objectives 14-1
Connect and Set Up AUX Terminal 14-1
Display Bar Code Strings 14-2
Display Status and Primary Counters 14-3
Resetting the Counters 14-5
Restart System 14-5
Select Language 14-6
Save Configuration 14-6
ASCII Host Commands
Chapter 15
Chapter Objectives 15-1
Using RS-232/RS-422 15-1
Using DH485 15-1
Command Format 15-5
ASCII and Hexadecimal Equivalents - Start Command Sequence 15-5
Command Replies 15-6
CT - Configure Bar Code Symbology and Supplements 15-8
SL - Configure Specific Length for Bar Code Symbology 15-9
CC - Configure Code 39, I 2-of-5, Codabar Check Characters 15-11
CG - Configure Interleaved 2-of-5 Guard Bar 15-12
CQ - Configure Quiet Zone 15-13
CF - Configure Code 128 FNC1 Character 15-14
CV - Code Verification List 15-15
CP - Configure Pharma-Code Symbology 15-16
SC - Configure Scanner A Control 15-18
PB - Configure Scanner B Control 15-20
IF - Configure Scanner A Package Detect Filter and Sense 15-21
BF - Configure Scanner B Package Detect Filter and Sense 15-22
BL - Configure Scanner B Laser Mode 15-23
SW - Write Scanner Source to Match Code Table 15-24
AB - Auto-load Begin 15-25
AE - Autoload End 15-25
AL - Autoload 15-26
OS - Set Output Normally Open/Closed 15-28
OC - Set Output Condition and Output Duration 15-29
OH - Hold Output Open/Closed 15-31
MR - Read Primary Match Code Table Entry 15-33
MW - Write Primary Match Code Table Entry 15-34
CM - Clear Primary Output Counters 15-35
CO - Clear All Primary Output Counters 15-36
CA - Clear Extended Match Counters 15-36
SE - Set Extended Match Counters 15-37
RC - Read Extended Match Counters 15-38
SM - Set Extended Match Data 15-39
RP - Read All Extended Match Data 15-41
RA - Read All Extended Counters 15-43
RA - Read All Extended Counters (continued) 15-44
CS - Disable Extended Match Code Set 15-45
RS - Read Extended Match Set Status 15-46
DF - Enable Data Display on AUX Terminal and LCD 15-47
DP - Configure Data Display Positions for AUX Terminal and LCD 15-48
SD - Enable LCD Scrolling 15-49
SR - Set Search and Replace Rule for Host Message Fields 15-50
SF - Set No-Read Replacement Strings 15-52
HC - Configure Host Communications 15-53
HB - Configure Scanner B Start \& Stop CharactersÀ 15-55
MF - Configure Host Message Format 15-56
HF - Set the Number of Fields in Host Message 15-58
IX - Configure AUX Terminal Source Identifier 15-59
IM - Configure Scanner A Source Identifier 15-60
IB - Configure Scanner B Source Identifier 15-61
HM - Configure Header Message 15-62
NM - Configure Default No-Read String 15-63
AX - Configure AUX Terminal Data Entry Operations 15-64
TM - Display Text Message at AUX Terminal and LCD 15-66
PM - Default Prompt Message for AUX Terminal 15-68
PI - Read Decoder Performance Indicators 15-69
PR - Read Package Counter 15-70
NR - Read Symbols Not Read Counter 15-71
MC - Read Output Counter 15-72
PC - Clear Package Counter 15-73
NC - Clear Symbols Not Read Counter 15-73
RN - Save Configuration to Storage Memory and Restart 15-74
SA - Save Configuration to Storage Memory (No Restart) 15-74
DD - Set Configuration to Default Values 15-75
RD - Set Configuration to Factory Defaults and Restart 15-75
RE - Reset Decoder 15-76
ID - Version of Software 15-76
DM - Configure Bar Code Data Mask 15-77
PD - Configure Pad Data Character 15-77
PCCC Host Commands Chapter 16
Chapter Objectives 16-1
Protocol Options 16-1
PCCC Commands 16-1
Command Format 16-2
Command Reply Format 16-3
Unprotected Read Command 16-4
Read Current Bar Code Data 16-5
Read Counters and Performance Indicator 16-6
Read Last Host Message 16-7
Read Decoder Configuration Data 16-8
Unprotected Write Command 16-8
Modify Configuration Data 16-9
Execute Decoder Functions 16-9
Send Repeat Read Command 16-11
Cancel Repeat Read Command 16-12
Display Text Message on AUX Terminal / Enable AUX Terminal Keyboard.A 16-12
Hold Discrete Output Open or Closed 16-13
Diagnostic Link Commands 16-14
Diagnostic Loop 16-14
Read Diagnostic Counters 16-15
Reset Diagnostic Counters 16-16
Read Diagnostic Status 16-16
Maintenance and
Troubleshooting
Specifications
Chapter 17
Chapter Objectives 17-1
Replacing the Battery 17-1
Replacing Module Fuses 17-2
Troubleshooting 17-3
Chapter 18
Bar Code Decoders Catalog Numbers 2755-DD1_ 2755-DD4_ 2755-DS1 2755-DS4 18-1

Decoder Configuration Addresses

Appendix A
Decoder Function or Command Addresses A-10
Pharma-Code Configuration 0700H-0725H A-11
Series B Configuration Parameters $0900 \mathrm{H}-0901 \mathrm{H}$ A-12
Series B Configuration Parameters OEOOH-0EFFH A-12
Host Message Replacement Rules 1000H-143FH A-13
Host Message No Read Replacement Strings 2000H-21B9H A-14
Extended Count Values D800H-DA03H A-14
Extended Match Data 8000H-A03FH A-14
Extended Match Data 8000H-A03FH A-15
Appendix B
Appendix C
Appendix D
Appendix Objectives D-1
Connecting Terminal to AUX Port on NEMA Type 1 Decoder D-1
Connecting Terminal to AUX Port of NEMA Type 4 Decoder D-1
Lear Siegler ADM 3E Terminal D-2
DEC VT100 Terminal D-3
Allen-Bradley 1784-T45 or T47 Programming Terminal D-4
Allen-Bradley 1770-T1, -T2, -T3 Terminals D-5
2708-DH5 Attended Workstations D-6
Connecting to a Host
Protocol Selection
Output Module Applications
Appendix E
RS-232 Interface E-2
RS-422 Interface E-4
RS-485 Using DH485 Protocol E-6
Appendix F
Appendix G
DC Output Module Application G-1
AC Output Module Application G-2
Using a Diode to Protect Output Module G-2

Electrical Interfaces for AutoLoad Applications

ASCII Character Set

Custom Settings

European Union Directive Compliance

Appendix H
AutoLoad Input Module Application (powered internally) H-1
AutoLoad Input Module Application (powered externally) H-2
AutoLoad Activated by Aux Port Connector H-2

Appendix I
Entering Non-Printable ASCII Characters . I-2

Appendix J

Appendix K

Glossary

Index

Using this Manual

Chapter Objectives

What the Package Includes

This chapter gives an overview of the manual, including:

- what the package includes
- contents of manual
- what you need to know
- conventions and terminology
- warnings and cautions
- related publications

This manual and interchangeable LED indicator legends in six different languages are shipped with the following decoders:

Catalog Number	Description
2755-DS1A	Single-Head, NEMA Type 1
2755-DD1A	Dual-Head, NEMA Type 1
2755-DS1P	Single-Head, NEMA Type 1, with optional Pharma-Code capability
2755-DD1P	Dual-Head, NEMA Type 1, with optional Pharma-Code capability
2755-DS4A	Single-Head, NEMA Type 4
2755-DD4A	Dual-Head, NEMA Type 4
2755-DS4P	Single-Head, NEMA Type 4, with optional Pharma-Code capability
2755-DD4P	Dual-Head, NEMA Type 4, with optional Pharma-Code capability

The installation chapter shows how to replace the LED legend (if necessary).

The decoder is available in a variety of configurations for factory or customer installation. For example, the decoder is available with an optional LCD Display or I/O Module Board for use with single point I/O.

Contents of Manual

This manual describes how to install and use all versions of the decoder. The general contents of each chapter are:

Chapter	Title	Purpose
1	Using this Manual	Provides an overview of the manual.
2	Decoder Features	Describes the main features of the NEMA Type 1 and Type 4 decoders.
3	Overview of Decoder Operations	Gives an overview of decoder operations, including configuration options, host vs. stand-alone operation, and decoding capabilities.
4	Installing the Decoder and Quick Start	Describes how to install the decoder and supporting equipment.
5	Introduction to AUX Terminal Configuration	Provides an overview of the concepts which must be understood in order to use the decoder configuration software.
6	Configuration: Symbology	Explains how to use the configuration software to set symbology-related variables.
7	Configuration: Scanner Control, Primary Match Table, Discrete I/O	Explains how to use the configuration software to set up scanner(s), define match code strings, and control discrete I/O functions.
8	Configuration: Extended Match Table and Counters	Explains how to use the configuration software to set up and use the decoders advanced extended match code capabilities.
9	Configuration: Display Parameters	Explains how to use the configuration software to enable and format the display of various types of data on the AUX terminal or optional LCD screen.
10	Configuration: Host Message Replacement Rules	Explains how to use the configuration software to further control decoder operations and output with host message replacement rules.
11	Configuration: Host Message Format	Explains how to use the configuration software to format bar code data sent to the host.
12	Configuration: Host Communications	Explains how to use the configuration software to configure HOST port communications.
13	Configuration: AUX Terminal Data Entry	Explains how to use the AUX terminal for manual data entry and display functions.
14	Display \& System Configuration	Explains how to use the configuration software to display data and counters, and perform a number of system-level activities.
15	ASCII Host Commands	Defines ASCII commands you can send from a host device to configure and control decoder operations.
16	PCCC Host Commands	Defines PCCC commands you can send from a host device to configure and control decoder operations.
17	Maintenance and Troubleshooting	Provides information on troubleshooting and maintaining the decoder.
18	Specifications	Lists specifications of the decoder.
Appendices, Glossary, Index		

What You Need to Know

European Union Directive Compliance

Terminology

Conventions Used

No special knowledge is required to read this manual or use the decoder. However, if using the decoder to communicate with a programmable controller or host device, you should be familiar with communication devices, standards (RS-232, RS-422, RS-485) and terminology.

This manual defines commands a host device can send to the decoder and responses to those commands. However, the manual does not include programs which are required to generate the commands.

If this product is installed within the European Union or EEA regions and has the CE mark, the following regulations apply.

EMC Directive

This apparatus is tested to meet Council Directive 89/336 Electromagnetic Compatibility (EMC) using a technical construction file and the following standards, in whole or in part:

- EN 50081-2 EMC - Generic Emission Standard, Part 2 Industrial Environment
- EN 50082-2 EMC - Generic Immunity Standard, Part 2 Industrial Environment

The product described in this manual is intended for use in an industrial environment.

This manual contains many terms that are used within the bar code industry and terms that are unique to the decoder. Refer to the glossary at any time for definitions of these terms.

The following conventions are used in this manual:

- All configuration menus and screens are approximate renderings of what you see on the terminal screen, although Allen-Bradley reserves the right to make minor modifications to any menu or screen to help improve performance.
- A symbol or word in brackets represents a single key you press on the computer keyboard. For example: [Esc], [Enter], [Backspace].
On some computers, the [Enter] key is labelled [\downarrow] or [Return].
- The built-in configuration screens of the decoder have many configuration parameters which are referred to throughout the manual. Parameter names are italicized within text.
- Information which you can select or enter into the menus or screens appear in the text in bold type.
- We have prepared this manual assuming you are using a complete implementation of the product: a dual-head scanner with Pharma-Code capabilities and LCD screen.
You should apply its contents as appropriate to your own implementation. For instance, references to Scanner B will not apply to single-head decoders.
- We refer to all possible configurations of series 2755 decoders (NEMA Type 1 or Type 4, single or dual-head, with or without the optional LCD screen, or with or without Pharma-Code capabilities) as the decoder.

Related Publications
Other publications to which you may want to refer include:

- User's Manual for the 2755-L7 and -L9 Scan Heads Catalog No. 2755-ND002
- User's Manual for the 2755-L4F and -L4R Enhanced Medium Speed Scan Heads
Publication 2755-829
- User's manual for the 2755-LD4 and -LD8 High Performance Visible Laser Diode Scanners
Publication 2755-832
- Product Data for the 2755-NC16 Gun Adapter

Catalog No. 2755-2.37

- User's Manual for the 2760-RB Flexible Interface Module Catalog No. 2760-ND001
- User's Manual for the 2760-SFC1 Protocol Cartridge Catalog No. 2760-ND003
- User's Manual for the 2760-SFC2 Protocol Cartridge Catalog No. 2760-ND002
- User's Manual for the 1771-DA ASCII I/O Module Publication No. 1771-6.5.13
- User's Manual for the 1771-DB BASIC Module Publication No. 1771-6.5.34

Decoder Features

Chapter Objectives

NEMA Type Enclosures

Scanner Ports

This chapter describes features of the Dual-Head Bar Code Decoders, including available options and accessories. It covers:

- NEMA type enclosures
- scanner ports
- power supply
- LED indicators
- serial communication ports (HOST port and AUX port)
- LCD display
- discrete input/output modules

The 2755-DS1_ and -DD1_ decoders have NEMA Type 1 enclosures. The 2755-DS4_ and 2755-DD4_ decoders have NEMA Type 4 enclosures. All connections and ports on the NEMA Type 4 enclosure comply with NEMA 4 standards.

Although the installation varies for the NEMA Type 1 and Type 4 decoders, they have the same features and operate identically.

Single-head decoders have one port for connecting a scanner. That port is designated Scanner Port A. Dual-head decoders have two ports for connecting scanners. They are designated Scanner Port A and B.

Both ports support scanners from the 2755-L4/L5, -L7/L9, -LD4 and - LD8 ${ }^{\circledR}$ families with the appropriate cables. The scanners do not require a separate power supply. They receive power from the decoder through the cable. The NEMA Type 1 decoder also supports the 2755-G3 and -G6 Hand-Held Scanners and 2755-LD1 and -LD2 Scanners. ${ }^{(2)}$
${ }^{(1)}$ Catalog Numbers are incomplete. The 2755-L4/L5, -L7/L9, -LD4 and LD8 scanners are available in different configurations.
(2) The 2755-G3 and -G6 Hand-Held Scanners and 2755-LD1 and -LD2 Scanners require the 2755-NC16 Gun Adapter.

Dual-head scanners can operate in two modes:

- Independent Mode

Both scanners operate independently of one another, each using a separate trigger source (Scanner A and Scanner B).

- Coordinated Mode

Both scanners operate in a coordinated mode, each using the same trigger source (Scanner A).

Power Supply
An internal power supply provides power to both the laser scanner(s) and the decoder. The source voltage may range from 100 to 240 volts AC nominal (50 to 60 Hz). The power supply automatically adjusts to the input voltage.

Figure 2.1
NEMA Type 1 Decoder (Catalog No. 2755-DD1A)

LED Indicators

Seventeen front panel indicators provide a visual indication of the operating status of the dual-head decoders. There are fourteen front panel indicators on single-head decoders. Table 2.A defines the color and function of each LED.

Table 2.A
LED Indicators (NEMA Type 1 and Type 4 Decoders)

LED Label	Color	
Power	Green	The decoder is receiving power.
CPU Active	Green	The CPU is active and running. The LED turns off if a fault condition is detected.
Communications	Yellow	Data is transmitting to or from the AUX port or HOST port.
Laser On A	Red	Scanner A is activated to turn on its laser light source. (1)
Trigger Active A	Yellow	The decoder is in triggered mode and scanning has been triggered for Scanner A or Scanner B.
Valid Read A	Green	A valid read occurs from Scanner A.
Laser On B	Red	Scanner B is activated to turn on its laser light source. (1). (Dual-head versions only)
Trigger Active B	Yellow	The decoder is in triggered mode and scanning has been triggered for Scanner A or B. (Dual-head versions only)
Valid Read B	Green	A valid read occurs from Scanner B. (Dual-head versions only)
Discrete I/O (1-8)	Red	Input/output module in position 1,2, 3, 4, 5, 6, 7, or 8 is active.

(1) The LED will light even if the scanner is disconnected or the Laser On switch for the scanner is in the OFF position.

Figure 2.2
NEMA Type 4 Decoder (Catalog No. 2755-DD4A)

LCD Display

AUX Port

The decoders support an optional 2 line x 20 character per line alphanumeric LCD Display for viewing:

- bar code data
- output counter values
- decoder performance values

The format of the display data is under user control via the configuration screens or host commands.

The LCD Display can be factory installed or ordered as a separate component for customer installation.

The AUX port communicates with a standard ASCII terminal using the RS-232 interface. We refer to this terminal as the AUX terminal. The AUX port can switch between two modes of operations.

Decoder Configuration

The AUX terminal is used to configure and monitor decoder operations.

Manual Data Entry

The AUX terminal is used to:

- enter data at the keyboard when the unattended scanners cannot read a label
This feature is useful when labels are damaged or missing.
- display messages from the host
- display bar code data, output counters, and decoder status

The decoder features an AUX Terminal jumper on the main logic board to switch between configuration and manual data entry operations. Another way to switch between these two modes is to connect specific pins in the AUX port connector. The port and logic board jumpers are initially set for decoder configuration operations.

Important: The two operational modes described above are mutually exclusive. You can use the port for either decoder configuration or for manual data entry functions, but not both. Refer to Chapter 13 for additional information.

Host Port
Power Connector and On/Off Switch

Memory Backup

Discrete I/O Modules

The HOST port supports RS-232, RS-422, and RS-485 (using Allen-Bradley DH485 protocol) interfaces. The HOST port allows the exchange of data between the decoder and a host computer or Allen-Bradley PLC controller.

The NEMA Type 1 decoder uses an IEC 320 power entry connector.
The NEMA Type 4 decoder uses a standard 3-pin connector with a separate ON/OFF toggle switch (that is sealed to comply with NEMA Type 4 standards).

Power cord options are available for each decoder and are listed in the Decoder Options section.

The decoders are designed to retain configuration during short term power interruptions. Controlled discharge of an on-board capacitor supports configuration retention for 6 hours at an ambient temperature of $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$, or 50 hours at $30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right)$. The capacitor accumulates a charge when power is restored.

An optional battery (catalog number 1747-BA) may be used to retain the configuration without outside power for up to five years. When the optional battery is used, power interruptions (whether intentional or resulting from power supply "glitches") will have no affect on operating memory.

If the battery is not used, long term power loss (see above) will result in the loss of the Extended Match Code Table configuration, the Primary and Extended Match Code Counters, and the text examples contained in the Host Replacement Rules. Note that the Replacement Rules themselves will not be lost, but the test examples you have entered at the bottom of each rule page will be lost.

Storage memory configuration is transferred into operating memory on restart if power is lost for a period longer than the on-board capacitor (and, if installed, optional battery) can support. Refer to Chapter 3 for an explanation of decoder memory architecture.

The decoders support an optional I/O Module Board with eight positions for output modules. These I/O modules are used to control external AC or DC devices. Conditions that activate the outputs are under user control via the configuration screens or host commands.

All positions accept an output module. Position eight also accepts an input module. You can configure the input module (in position 8) to automatically load scanned bar code data into the match code table. This function is referred to as Autoload Input. Match code functions are described in detail in Chapters 7 and 8.

Each decoder has two conduit holes or optional connectors for wiring the I / O modules.

The I/O Module Board is available in several variations for factory or customer installation. You can order the decoder with the I/O Module Board only for customer installation of specific modules, or with 2 DC outputs and 1 DC input for "out of the box" applications.

The options available for the NEMA Type 1 and Type 4 decoders are:

- I/O board without modules
- I/O board with 2 DC output modules and 1 DC input module
- I/O board with 1 NEMA Type 4 connector and cable for installing up to 4 modules in positions 1-8.
- I/O board with 2 NEMA Type 4 connectors and cables for installing up to 8 modules in positions 1-8.
- I/O board with 2 DC output modules, 1 DC input module and 2 NEMA Type 4 connectors/cables for installing up to 8 modules in positions 1-8.

Each option is listed under Decoder Options in this chapter.

Decoder Options

 (NEMA Type 1 Decoders)Options available when ordering the NEMA Type 1 decoder are listed inside the decoder's cover as shown below. Note that on actual production labels:

- the base catalog number will appear in the first field following the words "Cat No."
- the series letter will appear in the field following "Ser."
- the revision letter will appear in the field following "Rev.".

Power Cords

Power cords available when ordering the NEMA Type 1 decoder are:

Option	Power Cord Description
Blank	120 VAC, IEC 320, terminated three prong, U.S. style power cord, 6 ft ((1.83 $\mathrm{m})(1)$
-0	No power cord (User must supply appropriate power cord)
-1	240 VAC, IEC 320, three wire (U.S. Color Code) unterminated power cord, 6 ft. $(1.83 \mathrm{~m})$
-2	240 VAC, IEC 320, three wire (European Harmonized) unterminated power cord, 2.5 m (8 ft. 2 in)②

${ }^{(1)}$ Supplied with decoder if alternate power cord is not specified in catalog number.
${ }^{(2)}$ The decoder is not UL listed/CSA approved when used with European
Harmonized power cords.

To order a replacement power cord for the NEMA Type 1 decoder, use the following replacement part numbers.

Replacement art No.	Power Cord Description
77121-801-01	120 VAC, IEC 320, terminated, 6 ft . three prong, U.S. style power cord, 6 ft . (1.83 m)
77121-801-02	240 VAC, IEC 320, three wire (U.S. Color Code) unterminated power cord, 6 ft . (1.83 m)
77121-801-03	240 VAC, IEC 320, three wire (European Harmonized) unterminated power cord, $2.5 \mathrm{~m}(8 \mathrm{ft} .2 \mathrm{in})(1)$
${ }^{(1)}$ The decoder is Harmonized	d UL listed/CSA approved when used with European er cords.

Decoder Options

 (NEMA Type 4 Decoders)Options available when ordering the NEMA Type 4 decoder are listed inside the decoder's cover. Note that on actual production labels:

- the base catalog number will appear in the first field following the words "Cat No."
- the series letter will appear in the field following "Ser."
- the revision letter will appear in the field following "Rev.".

Power Cords

Power cords available when ordering the NEMA Type 4 decoder include:

Option	Power Cord Description
Blank	$120 / 240$ VAC, three wire (US Color Code) unterminated power cord, $6 \mathrm{ft}.(1.83 \mathrm{~m})(1)$
-0	No power cord (User must supply appropriate power cord)
-3	240 VAC, three wire (European Harmonized) unterminated power cord, 6 ft. $(1.83 \mathrm{~m})(2)$

(1) Supplied with decoder if alternate power cord is not specified in catalog number.
(2) The decoder is not UL listed/CSA approved when used with European Harmonized power cords.

To order a replacement power cord for the NEMA Type 4 decoder, use the following replacement part numbers.

Replacement Number	Power Cord Description
$77121-801-04$	$120 / 240$ VAC, three wire (US Color Code) unterminated power cord
$71721-801-05$	240 VAC, three wire (European Harmonized) unterminated power cord(1)
(1) The decoder is not UL listed/CSA approved when used with European Harmonized power cords.	

Input/Output Modules

The optional I/O Module Board supports the following I/O modules:

Output Modules (function as a switch not a power source)			
Catalog Number	2755-OB5S	2755-OA5S	2755-OM5S
Nominal Line Voltage	-	120 VAC	240 VAC
Maximum Line Voltage	60 VDC	140 VAC	280 VAC
Minimum Line Voltage	3.0 VDC	12 VAC	24 VAC
Maximum Peak Off State Voltage	60 VDC	400 V peak	600 V peak
Maximum Peak Off State Leakage	1.0 mA	2.5 mA RMS	4.5 mA RMS
Static off-state dv/dt	-	200 V/usec	200 V/usec
Maximum On-State Current	0.5 A DC	0.5 A RMS	0.5 A RMS
Minimum On-State Current	10 mA DC	50 mA RMS	50 mA RMS
Maximum 1 Cycle Surge	-	4.0 A peak	4.0 A peak
Maximum 1 Second Surge	1.5 A DC	-	-
Peak On-State Voltage	1.5 V DC	1.6 V peak	1.6 V peak
Input Modules (require voltage source for activation)			
Catalog Number	2755-IB5S	2755-IA5S ${ }^{(1)}$	2755-IM5S ${ }^{(1)}$
Maximum Input Voltage	32 VDC	140V RMS/VDC	280V RMS/VDC
Minimum Input Voltage	3.3 VDC	90V RMS/VDC	180V RMS/VDC
Input Resistance	1 kohm	-	-
Maximum Input Current	32 mA DC @ 22 VDC	10mA RMS @ 140V RMS	8mA RMS @ 280V RMS
Drop Out Current	1.0 mA DC	2.5 mA RMS	1.5 mA RMS
Allowable Off-State Input Current	1.0 mA DC	3.0 mA RMS	2.0 mA RMS
Allowable Off-State Input Voltage	2.0 VDC	50 VRMS/VDC	120 VRMS/VDC

Replacement Fuses (for decoders with //O Module Board options)

Replacement Number	Description
$77104-899-01$	1.6 A plug-in fuse for output modules provide overload protection for decoder.

I/O Module Board Options (available when ordering either the NEMA Type
1 or Type 4 decoder)

Option	Module I/O Board	Output Modules			Input Module			I/O Connector/ Cables ${ }^{(1)}$
		Qty	Positions	Type	Qty	Position	Type	
-B1	Yes	0	-	-	0	-	-	None
-B2	Yes	2	1,2	3-60 VDC at 0.5 amps	1	8	3.3-32 VDC	None
-B5	Yes	0	-	-	0	-	-	1 set
-B6	Yes	0	-	-	0	-	-	2 sets
-B7	Yes	2	1, 2	3-60 VDC at 0.5 amps	1	8	3.3-32 VDC	2 sets

The I/O connector(s) wire to modules in positions 1-8 of the I/O board and comply with NEMA Type 4 standards. Six foot (1.83 meter) cables are supplied with each connector for wiring to the modules.

There are three I/O Module Board options available for customer installation in any 2755 decoder.

Catalog number 2755-NB0 includes a NEMA Type 4 connector and a 6 foot (1.83 meter) unterminated cable. Each connector and cable combination can connect to as many as four modules.

Catalog number 2755-NB1 includes an I/O Board (without modules).

Catalog number 2755-NB2 is a kit including two DC output modules (3 to 60 VDC at 0.5 amps), one input module (3.3 to 32 VDC), and the I/O board.

Catalog	$\begin{gathered} \text { Module } \\ \text { I/O Board } \end{gathered}$	Output Modules			Input Module			I/O Connector/ Cables ${ }^{(1)}$
Number		Qty	Positions	Type	Qty	Position	Type	
2755-NB0	No	0	-	-	0	-	-	1 set
2755-NB1	Yes	0	-	-	0	-	-	None
2755-NB2	Yes	2	1,2	3-60 VDC at 0.5 amps	1	8	3.3-32 VDC	None
${ }^{(1)}$ The I/O connector(s) wire to modules in positions $1-8$ of the I/O board and comply with NEMA Type 4 standards. Six foot (1.83 meter) cables are supplied with each connector for wiring to the modules.								

LCD Display

The optional 2 line by 20 character LCD backlit display is available when ordering the NEMA Type 1 or Type 4 decoder by specifying display option R1 in the catalog number.

The display is also available for customer installation as Catalog No. 2755-NR1.

Scanners

The following table provides a quick reference guide to the Allen-Bradley scanners that are available for use with the decoders.

Catalog No.	Description
2755-LD8 ${ }^{1}$	High Performance Visible Laser Diode Bar Code Scanner. 500 scan per second fixed mount scanners with read distances up to 50 inches (1.27 meters) depending on the symbol size and quality.
2755-LD4 ${ }^{1}$	High Performance Visible Laser Diode Bar Code Scanner. 200 scan per second fixed mount scanners with read distances up to 84 inches (2.13 meters) depending on the symbol size, quality, and scanner range selected.
2755-L9 (1)	Industrial NEMA Type 4 High Speed Bar Code Scanner. 800 scan per second raster and side scanning device with read distances up to 30 inches $(76 \mathrm{~cm})$ depending upon symbol size and quality.
2755-L7 ${ }^{1}$	Industrial NEMA Type 4 Bar Code Scanner. 350 scan per second raster and side scanning device with read distances up to 50 inches (1.27 meters) depending upon symbol size and quality.
$\begin{array}{r} \hline \text { 2755-L4F(1) } \\ \text {-L4R(1) } \end{array}$	Enhanced NEMA Type 12 Bar Code Scanner. 200 scan per second front or side scanning device with read distances up to 50 inches (1.27 meters) depending upon symbol size and quality.
2755-L5R(1)	Enhanced NEMA Type 12 Raster Scanner. 200 scan per second raster scanner with read distances up to 45 inches (1.14 meters) depending on symbol size and quality.
2755-G3(1)(2)	Hand-Held Laser Scanner. Non-contact scanners that can read bar code symbols at distances of 1 inch to 30 inches (2.5 to 76.2 cm).
2755-G6(1)(2)	Hand-Held Laser Scanner. Non-contact scanners that can read bar code symbols at distances of 8 to 66 inches (20.3 to 167.6 cm).
2755-LD1(1) ${ }^{\text {2 }}$	Standard Range Fixed Mount Laser Scanner. 36 scan per second "stop and scan" scanners that can read bar code symbols at distances from 1 inch to 30 inches (2.5 to 76.2 cm) depending upon symbol size and quality.
2755-LD2(1)2	Long Range Fixed Mount Laser Scanner. 36 scan per second "stop and scan" scanners that can read bar code symbols at distances from 8 to 66 inches (20.3 to 167.7 cm) depending upon symbol size and quality.

(1) Catalog Number is not complete. The scanners are available in a variety of configurations. Check compatibility of new scanners with your Allen-Bradley representative.
(2) These scanners require the $2755-\mathrm{NC} 16$ Gun Adapter to function with these decoders.

Decoder Accessories

This section lists the accessories that are available for the NEMA Type 1 and Type 4 decoders.

Configuration and Cable Group Selector

Use the chart below and the Cable Selection Guide table that follows it to determine which cables are appropriate to your own application.

To use the chart, simply identify the scanner you are using in the center column, then look to the left if you are using a NEMA Type 1 decoder, or to the right if you are using a NEMA Type 4 decoder. A cable group identification number appears over the line connecting your scanner with your decoder type. For example, if you are using an -LD4 scanner with a NEMA Type 4 decoder, you would select a Group II cable.

Cable Selection Guide

Group	Decoder / Scanner Combination	Description	Length	Catalog No.
\|	NEMA 1 to LD4 / LD8	Optional extension cable (there is a 10 ft (3.05 m) cable hard-wired to the scanner)	$15 \mathrm{ft}.(4.75 \mathrm{~m})$	2755-C15D1
			40 ft (12.19 m)	2755-C40D1
II	NEMA 4 to LD4 / LD84	Optional extension cable (there is a 10 ft (3.05 m) cable hard-wired to the scanner)	15 ft . (4.75 m)	2755-C15D4
			40 ft (12.19 m)	2755-C40D4
III	NEMA 1 to L7 / L9	Scanner Cable	10 ft . (3.05 m)	2755-CL10
			$25 \mathrm{ft}$. (7.62 m)	2755-CL25
			40 ft (12.19 m)	2755-CL40
			50 ft (15.24 m)	2755-CL50
IV	NEMA 4 to L7 / L9	Scanner Cable	10 ft . (3.05 m)	2755-CN10
			25 ft . (7.62 m)	2755-CN25
			40 ft (12.19 m)	2755-CN40
			50 ft (15.24 m)	2755-CN50
V	NEMA 1 to L4 / L5	Scanner Cable	$10 \mathrm{ft}$. (3.05 m)	2755-CK10
			25 ft . (7.62 m)	2755-CK25
VI	NEMA 4 to L4 / L5	Scanner Cable	10 ft . (3.05 m)	2755-CM10
			25 ft . (7.62 m)	2755-CM25
VII	NEMA 1 to G3 / G6①	Hand-Held Scanner Cable - Coiled	$8 \mathrm{ft} .(2.4 \mathrm{~m})$	2755-CG08
			15 ft (4.6 m)	2755-CG15
		Hand-Held Scanner Cable - Straight	20 ft . (6.1 m)	2755-CG20
	NEMA 1 to LD1 / LD2(1)	Scanner Cable - Straight with 9-pin connectors on each end.	$6 \mathrm{ft} .(1.83 \mathrm{~m})$	2755-CD06
	NEMA 1 to G3 / G6(1) or LD1 / LD2	Adapter that plugs directly into the scanner port of a NEMA 1 decoder and provides the circuitry necessary to connect the decoder to a handheld scanner cable.	N/A	2755-NC16

(1) These scanners require the 2755 -NC16 Gun Adapter to function with these decoders.

Package Detectors for Scanners

Scanner	Description	Catalog No.
L7 / L9	Optional, for Catalog No. 2755-L7, -L9 Scan Head. DC retroflective detector with an operating range up to 18 feet (5.49 meters). Mounts from front or rear, plus head rotation allows additional flexibility in selecting sending direc- tion.	$2755-\mathrm{NP3}$
	Optional, for Catalog No. 2755-L7, -L9 Scan Head. Polarized beam retroflective detector has a maximum operating distance of 10 feet (3.03 meters) or 8 feet (2.43 meters) with a 2 to 1 operating margin. Includes mounting brackets for single-hole or flat surface mounting.	2755-NP5
L4 / L5	Optional, for Catalog No. 2755-L4, -LL Scan Head. DC retroflective detector with an operating range up to 18 feet (5.49 meters). Mounts from front or rear, plus head rotation allows additional flexibility in selecting sending direc- tion.	2755-NP1
	Optional, for Catalog No. 2755-L4, -L5 Scan Head. Polarized beam retroflective detector has a maximum operating distance of 10 feet ((3.03 meters) or 8 feet (2.43 meters) with a 2 to 1 operating margin. Includes mounting brackets for single-hole or flat surface mounting.	2755-NP4

We recommend using Allen-Bradley Photoswitch ${ }^{\circledR}$ package detectors (PhotoSeries 6000 or 9000) with 2755-LD4 and -LD8 scanners. You must order a current sinking type sensor with the QD (Quick Disconnect) suffix that is capable of operating with $\mathrm{a}+12 \mathrm{~V}$ DC source (pin 1) and drawing not more than 100 mA and a sink capability of 5 mA at +12 V DC.

For example: Catalog Number 42SRU-6203-QD or Catalog Number 42GRU-9200-QD

Communication Cable and Connector Kit

A cable and connector kit is available for the AUX and HOST ports of the NEMA Type 4 decoder. We recommend using Catalog Number 2755-NC17 to make your own cable for RS-422 or RS-485. Pinouts can be found in Appendices D and E. Use Catalog Number 2755-CT1 only for RS-232. Order as separate components using the following catalog numbers.

Catalog Number	NEMA Type	Product	
$2755-$ NC17	4	Connector Kit	19-pin NEMA 4 Host or AUX port connectors. Used to make custom NEMA 4 communication cables.
$2755-$ CT1	4	Interface Cable	10 foot cable with NEMA Type 4 connector on one end for connecting to HOST or AUX port of NEMA Type 4 Decoder and 25-pin DB connector on other end for connecting to a host device or programming terminal (for RS-232 only).
$2755-$ CY1	4	Host Port Interface Cable	Multidrop interface cable for DH485 applications using NEMA Type 4 decoders.

Overview of Decoder Operations

Chapter Objectives

Function of Decoder

Bar Code Symbologies

Configuration Options

This chapter defines the function of the decoder and gives an overview of decoder operations, including:

- function of decoder
- supported bar code symbologies
- configuration options
- stand-alone vs. host operations
- types of memory
- decoder operating modes

The decoder acquires and decodes video information from one or two scanners. The decoder can then:

- send the decoded data to a host device (host computer, programmable logic controller), ASCII terminal, or LCD display
- compare the decoded data to previously stored data and use the results to operate up to eight discrete outputs (match code operation)

The decoder also maintains counters for package count, no-reads, and discrete output operations.

The decoder supports the following bar code symbologies:

- Code 39 (standard character set)
- Pharma-Code (available on DSzP and DDzP catalog numbers only)
- UPC-A and UPC-E including optional 2 or 5 digit supplements
- EAN-8 and EAN-13 including optional 2 or 5 digit supplements
- Code 128
- Codabar
- Interleaved 2-of-5

You can configure or monitor decoder operations using the built-in configuration screens or by sending commands from a host device, such as a PLC controller or computer. Both configuration options allow you to:

- select a bar code symbology for decoding operations
- define operating parameters for the scanner(s)
- set host message format for decoded bar code data
- set host communication parameters
- define up to 8 primary and 128 extended match codes
- specify up to eight discrete outputs and the conditions that will activate each output
- set display format for data on LCD display and/or AUX port terminal
- define operating parameters for AUX port ASCII terminal when used for manual data entry

Configuration Screens

The decoder has built-in menus and screens for configuration and monitoring operations. You access these menus by connecting one of several standard ASCII terminals (or a computer emulating one of those terminals) to the AUX port of the decoder. The process of configuring the decoder at the AUX port is called AUX terminal configuration.

The configuration menus support five different languages: English, French, German, Italian, and Spanish.

Host Commands

The decoder also supports a set of host commands for configuring the decoder and monitoring operations. Host commands are sent to the decoder from a PLC controller or computer and perform the same functions as the configuration software.

The HOST port accepts commands using the RS-232 and RS-422 interfaces and a variety of communication protocols, as well as the RS-485 interface using Allen-Bradley DH485 protocol. Appendix F lists the protocol options for each interface.

Stand-alone Operation

The decoder can operate as a stand-alone device or connected to a host device. As a stand-alone device, the decoder uses output modules to control external devices. The decoder sends discrete output signals to external control equipment based on the results of decoded data.

The discrete outputs can be controlled remotely by host commands or manually via the configuration screens.

Chapter 7 provides information on how to control the discrete I/O. Appendixes G and H show various examples of input and output module connections.

Host Operation

The decoder can also communicate directly with a host computer or PLC in a control or data collection application. The decoder communicates with and transmits bar code data to a host computer or PLC controller via the HOST port of the decoder.

Programmable Logic Controllers (PLC)

The decoder connects to an Allen-Bradley PLC Controller in the following ways (see Figure 3.1):

1. Flexible Interface Module (Catalog No. 2760-RB) which supports a:

- point-to-Point link using the RS-232, RS-422, or DH485 interface to the HOST port
- multi-drop link using the DH485 interface of the HOST port and the Flexible Interface Module.
Each port of the Module operates as a separate network, supporting up to 31 decoders
Use the Catalog No. 2760-SFC2 protocol cartridge with the Flexible Interface Module and configure the decoder for DH485 mode.

2. Catalog No. 1771-DB BASIC Module or 1771-DA ASCII I/O Module connects decoder directly to a PLC.
3. Programmable logic controllers from the Allen-Bradley PLC- $5^{\text {m }}$ family of products that support an RS-232 ASCII port.

Figure 3.1 PLC Controller Configurations

Host Computers

The decoder connects directly to other host computers using the RS-232 or RS-422 interface of the host device, or can be multi-dropped (with DH485) through a 1784-KR module.

Types of Memory

The Series B decoder has two types of memory:

- operating memory
- storage memory.

Figure 3.2 shows the relationship of the types of memory, and the text that follows summarizes their contents.

Figure 3.2 Memory Areas of Decoder

Operating Memory

The decoder uses configuration parameters as they exist in operating memory to perform all functions. Initially set to factory defaults, these parameters can be changed using the AUX terminal configuration and ASCII or PCCC host commands. With the exception of specific host communication parameters (See Chapter 12), all parameters take effect immediately when changed ${ }^{(1)}$

You can use the Default command to reset the operating memory to factory defaults. The Save command will copy the contents of operating memory into storage memory. When you issue a Recall, the decoder copies the Saved parameters from storage memory into operating memory.

The decoders are designed to retain configuration in operating memory even during short term power interruptions. Refer to Chapter 2 for information about memory backup.

Storage Memory

Within the decoder there is permanently stored a copy of the factory default configuration parameters. You cannot modify this copy, but can copy them into the operating memory at any time using the Default command.

In addition, the decoder can retain in storage memory a copy of the configuration parameters you have set. You can use the Save command to copy the operating memory into storage memory. The Recall command copies the contents of storage memory back into the operating memory. You will find this capability useful for troubleshooting custom configurations, for making temporary changes on-line, and for use with Autoload and Lot.

The Autoload parameter (in either the Primary or Extended Match Code Table) and the Lot parameter (in the Extended Match Code Table) allow the decoder to take scanned symbol data and load it into the match code table. The Restart command will reset these parameters to the originally Saved parameter so that new values can be loaded.

[^0]Storage memory can be thought of as programmable read only memory (PROM). The default parameters are stored as read only (EPROM), while the user changeable portion as retentive EEPROM. for the sake of simplicity and consistency with earlier versions of the DS/DD decoders, we will maintain the conventions that the Save and Recall commands will ask for confirmation to "SAVE CONFIGURATION CHANGES TO EEPROM . . . Y/N?" and "RESTORE CONFIGURATION FROM EEPROM . . . Y/N?"

Memory Contents at Startup

Until you have modified and saved your own configuration parameters, the decoder storage memory will contain only the permanent factory default configuration. The first time you start the decoder it will create a copy of those factory defaults in operating memory.

Even on decoders without the optional battery, once you have saved them to storage memory you will retain most of your configuration parameters even with an extended loss of power. When you restart the decoder it will read the saved configuration parameters rather than the factory defaults. Parameters and values not retained after extended power loss without a battery include:

- Extended Match Code Table Configuration, which will be lost and reset to factory defaults
- Primary Match Code Table counts, which will be lost and reset to zero
- Host Replacement Rule Examples (which are the test examples you have entered on the bottom half of the Host Message Replacement Rules screen). These examples will be lost and the example section of the screen will be cleared. Note that the rules themselves will be retained.

The long life of the optional battery makes it unlikely that any loss of configuration or data will occur during any conceivable power outage in battery-backed decoders.

This section gives a brief overview of the different operating modes of the decoder. You select these operating modes and parameters when configuring the decoder.

Scanning Modes

The decoder supports two scanning modes:

- Coordinated Mode

Scanner A and Scanner B are coordinated, using the same trigger source and set of configuration parameters.

- Independent Mode

Scanner A and Scanner B operate independently, each using a separate trigger source and set of configuration parameters.

Decode Modes

The decoder has three decode modes:

- Continuous Mode

In continuous mode, the decoder attempts to decode every scan. Additional scans are accumulated until the capture count is satisfied. When the symbols per package is satisfied, a valid read occurs. In Continuous Mode there is no concept of a No-Read. Damaged or missing symbols are ignored.
This mode is useful during initial setup to determine the optimum location of the scanner relative to the bar code labels.

- Continuous/Unique Mode

This mode is similar to continuous mode except the decoder compares a valid read to the previous valid read. If the valid reads are identical, the new data is discarded. In continuous/unique mode, the decoder defines a package as a valid read if it is different (unique) from the previous valid read. The Symbols Read counter and the Package counter increment with every valid read. In Continuous/Unique Mode there is no concept of a No-Read. Damaged or missing symbolssignals are ignored.

- Triggered Mode

In triggered mode, the decoder only attempts to decode data after receiving a trigger. The three trigger sources are:

- Host. The trigger source is a command generated by a host computer or programmable controller
- Package Detect. The trigger source is a package detector connected to the scanner
- Internal Timer. The trigger source is an internal timer that cycles the trigger on and off at a set time interval

Once triggered, the decoder continuously attempts to decode bar codes until one of the following conditions occurs:

- Number of symbols (bar codes) per package count is satisfied
- -Trigger off command (stop scan character) received from host device (Host Decode mode)
- -Package detect signal is no longer present (Package Detect mode)
- -No-read timer expires (Internal Timer mode)

Sending Data to Host - Speed vs. Timing

In the triggered mode, you can configure the decoder to send information to a host device and/or operate the discrete outputs:

- Immediately After Valid Package (for highest speed)

This is a package with valid bar code symbols that meets the symbols (bar codes) per package count.
The Immediately After Valid Package response mode sends decoded data to the discrete outputs and host immediately after the decode operation. This response mode is useful in high speed applications where maximum throughput is required.
or

- At End of Trigger (for predictable timing)

The At End of Trigger response mode sends decoded data to the discrete outputs and host when the:

- -Host sends the stop scan character (Host Decode mode)
- -Package detect signal expires (Package Detect mode)
- -No-read timer expires (Internal Timer mode)

This response mode is useful when timing of the discrete outputs or timing of host communications is critical.

No-read messages are always sent at the end of the trigger.

Installing the Decoder

Chapter Objectives

Power Requirements

Electrical Recommendations

This chapter presents recommendations and instructions on how to install and connect equipment to the NEMA Type 1 and Type 4 Single and Dual-Head Bar Code Decoders. The information is organized by task, and can serve as a useful quick start tutorial to guide you through system installation and setup. Topics covered include:

- meeting electrical and grounding requirements
- installing alternate language LED indicator labels
- mounting dimensions
- connecting power cord
- setting communication parameters
- selecting language
- selecting CRT type
- selecting operations to perform
- connecting and configuring scanners
- setting symbology parameters
- customizing setup
- connecting AUX terminal
- connecting host device
- installing and wiring optional I/O modules

Before Installation:

- verify that incoming power source is 100 to 240 volts AC nominal, 50 to 60 Hz
- protect power source with an external fuse or circuit breaker, rated at no more than 15 amps
- connect decoder to its own branch circuit (when possible) to reduce electrical noise

Install equipment using guidelines in publication NFPA 70E, Electrical Safety Requirements for Employee Workplaces. In addition:

- do not use signal wiring and power wiring in the same conduit
- route incoming power to the decoder using a separate path from the communication cables (if paths must cross, their intersection should be perpendicular)

When installing the decoder in a noise-polluted industrial environment, consider the effects of electromagnetic interference (EMI). Factors that minimize EMI include:

- proper grounding
- shielded cables
- correct routing of wires

Grounding

Grounding is an important safety measure in electrical installations. With solid-state systems, grounding also minimizes the effects of noise caused by electromagnetic interference (EMI).

An authoritative source on grounding requirements is the National Electrical Code published by the National Fire Protection Association of Boston, Massachusetts. Article 250 discusses the types and sizes of wire conductors and safe methods of grounding electrical equipment and components.

Replacing LED Label

The NEMA Type 1 and Type 4 decoders are shipped with LED indicator labels in six different languages: English, French, German, Italian, Japanese, and Spanish.

The decoders are shipped with the English label installed and a sheet of five alternate labels loosely packaged. If desired, replace the English label with another language label.

To replace the LED indicator label, loosen the two screws on the decoder cover and open. The LED label insert is on the inside the cover, between the LED board and cover. Remove the insert by pulling on the gray tab. Slide the desired label into position.

Figure 4.1 View of the front cover from inside

Mounting the Decoder

Figure 4.2 shows nominal mounting dimensions in inches (and cm) for the NEMA Type 1 and Type 4 decoders. The horizontal mounting orientation is shown here.

Figure 4.2 Mounting dimensions (for reference only)

Allow clearance of 6 inches above and below decoder for cables

You can mount the decoder horizontally or vertically. When mounting allow clearance:

- at hinged side of cover for cover to swing open
- of 6 inches (152 mm) above the decoder to connect cables to the scanner ports and communication ports
- of 6 inches (152 mm) below the decoder to wire I/O modules and to access the power entry/power switch

To mount the decoder, we recommend that you use four $1 / 4$ inch (M6) hex-head capscrews or bolts with flat and split lockwashers and nuts. Select a bolt that equals the thickness of the mounting surface, plus the thickness of the washers, plus at least $1 / 2$ inch $(12.7 \mathrm{~mm})$ to accommodate the mounting brackets of the decoder and the nut.

Installing Power Cord
The NEMA Type 1 decoder has a standard IEC 320 power entry connector.

Figure 4.3 shows the available power cord options for the NEMA Type 1 decoder. Unless an alternate power cord is ordered, the decoder is shipped with a 120 VAC terminated (3 prong) U.S. power cord.

Figure 4.3 Power cord options for NEMA Type 1 decoder

(1) 120 VAC, IEC 320 terminated (three prong) U.S. style power cord ($6 \mathrm{ft} . / 1.83 \mathrm{~m}$). ($8 \mathrm{ft} .2 \mathrm{in} . / 2.5 \mathrm{~m}$)

\triangle
ATTENTION: Disconnect incoming power and make sure the power switch on the decoder is in the off position before connecting power cord to power source.

The NEMA Type 4 decoder has a standard 3-pin power connector with a separate ON/OFF toggle switch.

Figure 4.4 shows the available power cord options for the NEMA Type 4 decoder. Unless an alternate power cord is ordered, the decoder is shipped with a 120/240 VAC, three wire (U.S. Color Code) unterminated power cord.

Figure 4.4 Power cord options for NEMA Type 4 Decoder used.

ATTENTION: Disconnect incoming power and make sure the power switch on the decoder is in the off position before connecting power cord to power source.

Quick Start for DS/DD Decoder Configuration and Scanner Setup

You will need a computer terminal or a personal computer with terminal emulation software (such as PROCOMM ${ }^{\circledR}$) and an RS-232 cable. Lists of compatible terminals appear in Figures 4.7 and 4.8. Wiring information appears in Appendix D. See Chapters 5 through 14 for more detail on using a terminal to configure the decoder and monitor operations.

Connect AUX Terminal

Connect your terminal's RS-232 serial port to the AUX port of the 2755-DS or -DD decoder ${ }^{\oplus}$ To make easy connection to the NEMA Type 4 decoders, a 3.03 meter (10 foot) cable is available (Cat. No. 2755-CT1).

Set Communication Parameters

Set the terminal's serial port parameters to 9600 Baud, 8 Data Bits, 1 Stop Bit, No Parity (Parity = None).

Apply Power and Select Language

Turn the decoder on. The decoder will send the Select Language screen to the terminal. If the screen does not appear, then press the ESC key on your terminal. The Communications LED on the decoder should light momentarily, and the decoder will resend the Select Language screen. If the LED does not light when you press ESC, verify the terminal's communications settings and all connections.

[^1] entry. For information on use of the AUX port for manual data entry, consult Ch:

SELECT LANGUAGE	CHOIX DU LANGUAGE	WAEHLE SPRACHE
1) English	1) Anglais	1) Englisch
2) French	2) Francais	2) Franzoesisch
3) German	3) Allemand	3) Deutsch
4) Italian	4) Italien	4) Italienisch
5) Spanish	5) Espagnol	5) Spanisch
Press 1,2,3,4 or 5	Appuyer 1,2,3,4 ou 5	Druecken Sie 1,2,3,4 oder 5
SELEZIONARE LINGUA	SELECCIONAR LENGUA	
1) Ingeles	1) Ingles	
2) Francese	2) Frances	
3) Tedesco	3) Aleman	
4) Italiano	4) Italiano	
5) Spagnolo	5) Castellano	

Note: When using the 2755 -CT1 cable to interface with a NEMA Type 4 decoder, it may be necessary to use a null modem adapter on some computers or terminals. You can identify such equipment by comparing the pinout supplied with your computer or terminal with the schematic supplied with your cable. You will need a null modem if pins 2 and 3 are reversed.

Choose a language from the Select Language screen by pressing the appropriate number on your keyboard. All of the screens that follow will now be displayed in the language you select.

Select CRT Type

After you have selected a language, the Select CRT Type screen will appear on your terminal. Select a terminal type from among those listed.

```
2755-DD1P/DD4P Bar Code Decoder
    Copyright 1992 Allen-Bradley Company, Inc.
    SELECT CRT TYPE
    1) Allen-Bradley 1770 Industrial Terminal
    2) Allen-Bradley T45 Portable Terminal
    3) Lear Siegler ADM 3E
    4) Digital UT100
    Press 1,2,3,4 or ESC
```

Note: If the next screen that appears is not properly formatted, or if strange characters appear, press the ESC key to return to the Select CRT Type screen. Review your CRT Type selection. If you are using terminal emulation, verify that your settings are correct.

Select Operations

After you have selected a CRT type, you will see the Select Operations menu.

```
2755-DD1P/DD4P Bar Code Decoder
    Copyright 1992 Allen-Bradley Company, Inc.
CONFIGURATIDN
    1) Symbolog
    2) Scanner Control, Primary Match Table, Discrete 1/O
    3) Extended Match Table and Counters
    4) Aux and LCD Display Format
    5) Host Message Replacement Rules
    6) Host Message Format
    7) Host Communications
    8) Aux Terminal Data Entry
Display
    A) Bar Code Strings
    B) Status and Primary Counters
```

System
C) Reset Status and Primary Counters
D) Reset Extended Match Counters
E) Restart System
F) Select Language
G) Save Conf iguration

Press 1...8, A...G or ESC

Press " 1 " to proceed to the Symbology configuration screen. A Caution screen will appear. This screen allows you to disable the decoder's optional output modules during configuration. It will appear each time you select a configuration screen from the Select Operations menu while the outputs are enabled. More information on this subject appears in Chapter 5. For now, press any key except ESC to continue configuration.

Note: Restarting the decoder by selecting "E" from the Select Operations menu after configuration will reactivate the output modules.

At the Symbology configuration screen, we suggest resetting the decoder to assure that you are starting from a default configuration. To do so:

1. Press ESC to activate the command line at the bottom of the screen.
2. Use the arrow keys to move the highlight to the "DEFAULT" option.
3. Press ENTER (or RETURN on some keyboards).
4. Confirm your intention to reset the decoder to its default configuration by answering yes to the confirmation prompt (press " Y " in English).

Set Symbology Parameters

Enable the symbology (or symbologies) you would like to read by using the arrow keys to move the highlight to the appropriate position. Toggle through the available selections by pressing the space bar. Press ENTER to accept each change.

Note: For best performance, enable only those symbologies you intend to read. You can find additional information on selecting symbologies in Chapter 6.

Configure Scanner(s)

Once all your symbology selections have been made, press ESC to activate the command line at the bottom of the screen. Press ENTER to select the highlighted "Next Page".

COMMAND -- Exit:ESC Select:RETURN Next:SPACE

FILXT PAAGE THIS PAGE RECALL SAUE DEFAULT

The Scanner Control screen will appear.

While your actual operation will vary depending on your application, you will want to follow the same basic steps during initial scanner setup. Those steps include:

1. Select the scanner based on the narrow element width (the narrowest bar or space) and desired reading distance

Refer to Bar Code Site Survey (Pub. No. 2755-939) to verify all important aspects of your own application. Consult the scanner's Product Data Sheet or User Manual for read ranges.
2. Turn the decoder off and connect the scanner to the decoder
3. Even if your application will use a host computer, external display, discrete I/O (input or output devices), or package detect, do not attach those devices at this time.

Figure 4.5 shows the scanners you can connect to Scanner Port A and B of the NEMA Type 1 decoder and the cables available for each scanner. Figure 4.6 shows the scanners you can connect to Scanner Port A and B of the NEMA Type 4 decoder and the cables available for each scanner. Each shows the optional package detectors connected to each scanner.

Refer to the appropriate manuals for scanner mounting instructions.

Figure 4.5 Connecting scanners to NEMA Type 1 decoder

Figure 4.6 Connecting scanners to NEMA Type 4 decoder

4. Turn the decoder on and place a sample symbol at the desired read position. The symbol should not be moving at this time.
5. Monitor the decoder's performance while viewing the Status and Primary Counters screen. Decoder performance is a measure of the percentage of good reads compared to the total number of read attempts. The manual you received with your scanner will instruct you on the proper implementation of pitch, tilt, and skew. When properly scanning a good quality label, your decoder performance should be at or only slightly below 100 percent.

To get to the Status and Primary Counters screen, press ESC twice. The first ESC brings up the Command Line:

COMMAND -- Exit:ESC Select:RETURN Next:SPACE
FIEXI PAAGE THIS PAGE RECALL SAUE DEFAULT

The second ESC brings up the Prompt Line asking if you want to save your changes to EEPROM:

Note: EEPROM is a form of retentive memory that will retain your settings even if power to the decoder is lost.

Press " Y " to approve the save. When your are finished you will be at the Select Operation menu. Press "B" to open the Status and Primary Counters screen.

```
2755-DD1P/DD4P Bar Code Decoder
            Copyright }1992\mathrm{ Allen-Bradley Company, Inc.
CONFIGURATION
    1) Symbology
    2) Scammer Control, Primary Match Table, Discrete I/O
    3) Extended Match Table and Counters
    4) Aux and LCD Display Format
    5) Host Message Replacement Rules
    6) Host Message Format
    7) Host Communications
    8) Aux Terminal Data Entry
```


Display

A) Bar Code Strings
B) Status and Primary Counters
C) Reset Status and Primary Counters DJ Reset Extended Match Counters E) Restart System
F) Select Language
G) Save Conf iguration

Press 1...8, A...G or ESC
6. Adjust the position of the scanner to maximize decoder performance.
7. Fix the scanner in this optimized position.

Customize As Required

Your system is now ready to customize for best performance in your particular application. The software screens used to do that have been structured to "walk you through" the configuration process. We recommend stepping through the screens in the order they appear, using this manual as a reference.

If your application requires a host device or I/O modules, the next two sections, "Connecting Host Device" and "Installing I/O Modules" will help guide you through the hardware configuration required to use them.

Connecting the AUX Terminal

(1) Construct your own cable using the pinouts in Appendix D .

The AUX port supports a terminal for either configuring the decoder or for manual data entry.

The AUX port on the NEMA Type 1 decoder is configured as shown below, and communicates over an RS-232 serial communication line. It has a 25 -pin D shell (female) connector. Figure 4.7 shows terminals you can connect to the AUX port of the NEMA Type 1 decoder.

Figure 4.7 Connecting terminal to AUX port of NEMA Type 1 decoder

(1) Use the Cat. No. 2755-CT1 communication cable or construct your own cable using the Cat. No. 2755-NC17 Connector Kit and pinouts shown in Appendix D.

The AUX port on the NEMA Type 4 decoder has a 19-pin (male) connector and communicates over an RS-232 serial communication line. Figure 4.8 shows terminals you can connect to the AUX port of the NEMA Type 4 decoder.

Figure 4.8 Connecting terminal to AUX port of NEMA Type 4 decoder

Connecting the Host Device

The HOST port allows the exchange of data between a host computer and the decoder. A host computer can configure the decoder, remotely control the decoder, receive messages and data from the decoder, and exchange messages with the AUX terminal.

The HOST port on the NEMA Type 1 decoder is configured as shown below, and communicates over an RS-232, RS-422, or RS-485 communication line. It has a 25 -pin (female) D shell connector. Figure 4.9 shows host devices you can connect to the HOST port of the NEMA Type 1 decoder.

Figure 4.9 Connecting device to HOST port of NEMA Type 1 decoder

Pin	Abbreviation	Function
1	GND	Chassis Ground
2	TD	RS-232 Transmit Data (from decoder to host).
3	RD	RS-232 Receive Data (from host).
4	RTS	RS-232 Request to Send
5	CTS	RS-232 Clear to Send
6	DSR	RS-232 Data Set Ready
7	SIG GND	RS-232 Signal Common
9	SHLD	RS-485 Shield Ground
12	485 TERM	RS-485 Line Termination. Jumpers to 13.
13	485 A/TERM	RS-485 Line Termination. Jumpers to 12.
14	TxB+	RS-422(B) or RS-485(B) Transmit Data (from decoder to host).
15	TxA-	RS-422(A) or RS-485(A) Transmit Data (from decoder to host).
16	RxA '-	RS-422 Receive Data (from host).
17	RxB '+	RS-422 Receive Data (from host).
18	422 A/TERM	RS-422 Line Termination. Jumpers to 19.
19	422 TERM	RS-422 Line Termination. Jumpers to 18.
20	DTR	RS-232 Data Terminal Ready

The HOST port on the NEMA Type 4 decoder has a 19-pin (male) connector and communicates over an RS-232, RS-422, or RS-485 communication line. Figure 4.10 shows host devices you can connect to the HOST port of the NEMA Type 4 decoder.

Figure 4.10 Connecting device to HOST port of NEMA Type 4 decoder

(1) Use the Cat. No. 2755-CT1 communication cable or construct your own cable using the Cat. No. 2755-NC17 Connector Kit and the pinouts in Appendix E. Use 2755-CY1 for multidrop
HOST Port (male) Connector applications.

Pin	Abbreviation	Function
A	GND	Chassis Ground
B	RD	RS-232 Receive Data (from host).
C	TD	RS-232 Transmit Data (from decoder to host).
D	SIG GND	RS-232 Signal Common
E	DTR	RS-232 Data Terminal Ready
F	RTS	RS-232 Request to Send
H	DSR	RS-232 Data Set Ready
J	CTS	RS-232 Clear to Send
L	SHLD	RS-485 Shield Ground
M	485 TERM	RS-485 Line Termination. Jumpers to N.
N	485 A/TERM	RS-485 Line Termination. Jumpers to M.
P	TxB+	RS-422 Transmit Data (from decoder to host).
R	TxA-	RS-422 Transmit Data (from decoder to host).
S	RxA'-	RS-422 Receive Data (from host).
T	RxB'+	RS-422 Receive Data (from host).
U	422 A/TERM	RS-422 Line Termination. Jumpers to V.
V	422 TERM	RS-422 Line Termination. Jumpers to U.

See Appendix E for specific details on connecting to a host device using the different communication interfaces.

This section shows how to install input and output modules on the optional I/O Module Board. The board has eight positions (MOD1-MOD8) for I/O modules. All eight positions accept output modules. The MOD8 position alternately accepts an input module for the match code AutoLoad function.

The Accessories section in Chapter 2 provides a complete list of modules supported by the I/O board.

Figure 4.11 shows two output modules installed in the MOD1 and MOD2 positions and one input module in the MOD8 position. A screw holds each module into position on the I/O board.

Figure $4.11 \mathrm{I} / \mathrm{O}$ module board (with optional I/O modules installed

To install a module on the I/O board:

1. Verify that power is disconnected from decoder and module connectors.
2. Loosen the two screws which secure the cover of the decoder and open.
3. Carefully align module pins over sockets in board. Plug module into MOD position on I/O board.
4. Note: The module pins must puncture the silicon seal of the I/O board sockets.
5. Tighten the hold-down screw to secure module in position.

To remove a module, verify that the power is off, loosen the hold-down screw, and pull out module.

Connecting I/O Modules to External Devices

The bottom of the decoder has two holes for I/O module field wiring. The $7 / 8$ inch holes accept standard $1 / 2$ inch conduit fittings or NEMA 4 Conduit Hubs, or the $2755-$ NB0 NEMA 4 Connector Kit. The NEMA 4 connector can be used with either NEMA 1 or NEMA 4 decoders. Figure 4.12 shows the location of the holes in the bottom of the enclosure.

Figure 4.12 Connecting I/O to external devices

See the next section for details on how to install conduit hubs in the I/O module field wiring holes. Use the 2755-NB0 Connector Kit or the 1490-N1 conduit hubs in the NEMA Type 4 decoder to maintain the environmental rating.

Wiring I/O Modules

Figure 4.13 shows how the factory installed NEMA Type 4 Connectors are pre-wired to the I/O module locations. Below each output module is a terminal block connector which accepts up to 12 gauge wire.

To wire each output module:

1. Strip $1 / 4$ inch of the insulation from wires (removing wire particles).
2. Loosen terminal screws on pull-apart connector. For easier installation, remove connector from the I/O board by gently lifting the connector.
3. Insert wires into connector. Note polarity on module connectors when using DC modules.
4. Tighten terminal screws on connector to secure the wires.
5. Replace pull-apart connector if removed from I/O board.

Figure 4.13 Wiring I/O modules

Use the Bulletin 1490-N1 conduit hub with the NEMA Type 4 decoder to maintain environmentally sealed connections at conduit entrances. The NEMA Type 1 and Type 4 decoders accept Catalog Number 1490-N1 conduit hubs (for a $7 / 8$ inch hole size and $1 / 2$ inch conduit).

Conduit Holes

The conduit hubs install in the two output module field wiring holes in the bottom of the enclosure. Each hole size is $7 / 8$ inch and accepts $1 / 2$ inch conduit.

Conduit Connections

\triangle
ATTENTION: To guard against enclosure damage, align the conduit so as to prevent unnecessary stress on the enclosure walls.

You can connect conduit to the conduit connector (hub) before or after the conduit connector is secured into the prepared hole using the connector locknut. Tighten connector locknut securely to provide bonding to equipment enclosure.

ATTENTION: To complete the bonding between grounding bushings and the enclosure, bonding must be provided in accordance with all applicable codes.

Chapter 5

Introduction to AUX Terminal Configuration

Chapter Objectives

Connect and Set Up AUX Terminal

This chapter describes the basic concepts you'll need to understand before attempting to use the built-in configuration menus and screens of the Dual-Head Bar Code Decoders to:

- select bar code symbology and supplements
- configure scanner operations
- reset decoder status and counters
- configure AUX port terminal and LCD display
- display bar code values
- configure host communications and host message format
- restart decoder

To use the built-in configuration menus and screens, you must first connect a terminal to the RS-232 AUX port of the decoder.
Supported terminals include:

- Allen-Bradley Industrial Terminal (Catalog No. 1770-T1, -T2, -T3)
- Allen-Bradley 1784-T45 Laptop Terminal (Catalog No. 1784-T45)
- DEC VT100
- Lear Siegler ADM 3E
- computer or terminal that emulates one of the above

Appendix D provides details on how to connect and setup each terminal. The AUX port communication parameters are fixed at:

- 8 Data Bits
- 1 Stop Bit
- 9600 Baud Rate
- Parity None
- XON/XOFF Flow Control (Decoder responds to XON/XOFF, but does not generate XON/XOFF characters to the terminal.)

AUX Terminal Selector

The AUX terminal can be used to either configure the decoder or for manual data entry and display functions. The AUX port terminal is factory set for configuration functions.

Getting Started

After connecting the terminal to the decoder and setting the communication parameters, you can start using the configuration menus.

1. Power on the terminal or computer and load communications software (if required).
2. Power on the decoder. The POWER and CPU ACTIVE indicators light.
3. The Select Language screen displays:

SELECT LAMGUAGE	CHOIX DU LANGUAGE	WAEHLE SPRACHE
1) English	1) Anglais	1) Englisch
2) French	2) Francais	2) Franzoesisch
3) German	3) Allemand	3) Deutsch
4) Italian	4) Italien	4) Italienisch
5) Spanish	5) Espagnol	5) Spanisch
Press 1,2,3,4 or 5	Appuyer 1,2,3,4 ou 5	Druecken Sie 1,2,3,4 oder 5
SELEZIONARE LINGUA	SELECCIOMAR LEMYGA	
1) Ingeles	1) Ingles	
2) Francese	2) Frances	
3) Tedesco	3) Aleman	
4) Italiano	4) Italiano	
5) Spagnolo	5) Castellano	
Prenere 1,2,3,4○5	Pulsar 1,2,3,4 ○ 5	

If the Select Language screen does not appear, press [Esc]. If the Select Language screen still does not appear, check your communication parameters to be certain they match those listed earlier in this chapter. Also, be sure the COM port selected in your communications software matches the COM port to which the decoder is connected. See Appendix D for information on selecting a COM port.

Important: If you are unable to access the configuration screens, the AUX port may be set for manual data entry mode. See Chapter 13 for details on how to switch to configuration mode.
4. Press the number key that corresponds to the language you want to use. All subsequent screens will display in the selected language.
5. After selecting a language, the Select CRT Type screen displays.

```
2755-DD1P/DD4P Bar Code Decoder
        Copyright }1992\mathrm{ Allen-Bradley Company, Inc.
    SELECT CRT TYPE
    1) Allen-Bradley 1770 Industrial Terminal
    2) Allen-Bradley T45 Portable Terminal
    3) Lear Siegler ADM 3E
    4) Digital UT100
```

 Press 1,2,3,4 or ESC
 6. Press the number key that corresponds to the terminal you are using, or press [Esc] to return to the previous screen.
7. After selecting the terminal type, the Select Operation screen will appear.
```
2755-DD1P/DD4P
    Bar Code Decoder
    Copyright 1992 Allen-Bradley Company, Inc.
CONFIGURATION
    1) Symbology
    2) Scanner Control, Primary Match Table, Discrete I/O
    3) Extended Match Table and Counters
    4) Aux and LCD Display Format
    5) Host Message Replacement Rules
    6) Host Message Format
    7) Host Communications
    8) Aux Terminal Data Entry
```

Display

```
Display
    A) Bar Code Strings
    B) Status and Primary Counters
```

System
C) Reset Status and Primary Counters
D) Reset Extended Match Counters
E) Restart System
F) Select Language
G) Save Conf iguration

Press 1...8, A...G or ESC

This menu displays all of the operations you can perform including Configuration functions, Display functions, and System functions.

Select an operation by pressing a number key from [1] to [8] or [A] to [G]. Press [Esc] to return to the previous screen.

Each operation is described in the sections that follow.

Configuration Functions

The eight numbered options on the Select Operation menu access configuration functions:

1. Symbology
2. Scanner Control, Primary Match Table, Discrete I/O
3. Extended Match Table and Counters
4. Aux and LCD Display Format
5. Host Message Replacement Rules
6. Host Message Format
7. Host Communications
8. Aux Terminal Data Entry
9. If you select one of these options while the discrete outputs are enabled, the following caution message displays.

Caution

> Changing Configuration Parameters may cause the discrete outputs
> to switch unexpectedly. To conf igure the decoder with the outputs
> DISABLED, press any key except the ESC key, make changes, SAUE and
> RESTART the decoder. If outputs are to remain ENABLED during
> conf iguration, press the ESC key to view conf iguration screens.

The message informs you that configuration changes could change the state of the discrete outputs.

ATTENTION: If your application uses discrete outputs, we recommend that you disable the outputs during configuration to prevent unwanted state changes.

To proceed with configuration while the outputs are enabled, press the [Esc] key. To disable the outputs during configuration, press any other key.

Note: The outputs remain disabled until you restart the system with function E) Restart System.

After responding to the caution message, the selected configuration screen is displayed.

\triangle
ATTENTION: When controlling outputs locally using configuration screens, suspend host communications to prevent outputs from unintentionally changing state.

Editing Conventions

This section provides some helpful hints on using and editing the configuration screens including:

- highlight
- moving around the screen
- data fields
- editing data fields
- audible beep
- prompt line and command line

For example purposes, let's look at one of the configuration screens while going over editing conventions.

Highlight

Highlight

Each screen displays a group of configuration parameters and settings. The cursor displays as a highlighted (reverse video) box indicating the current selection. The above screen shows the Laser Light setting of Triggered as the current selection.

Moving Around the Screen

Use the arrow keys to move the highlight or selection cursor around the configuration screen.
\uparrow Moves the highlight or selection cursor up one field.
\downarrow Moves the highlight or selection cursor down one field. The [Return] key is equivalent to the $[\downarrow$] key when moving around the screen.
\rightarrow Moves the highlight or selection cursor to the right one field.
\leftarrow Moves the highlight or selection cursor to the left one field.
Note: The Allen-Bradley 1770 Industrial Terminals do not have arrow keys. Use Ctrl-U for up, Ctrl-D for down, Ctrl-L for left, Ctrl-R for right.

Field Types

Each configuration parameter has a field associated with it that shows the current setting. You can change the value or setting in any field. There are two main types of fields: select fields and edit fields. A third type, select/edit numeric field, is a hybrid of the other two.

Select Field

LASER LIGHT: triggered

Select fields have a fixed group of settings from which you can choose. For example, the Laser Light Mode is a select field and the available settings are On, Triggered, or Off. An example is shown on the left.

Edit Field

HEADER STRING:
Edit fields are data entry fields which allow you to enter strings of characters. The length of the highlighted box determines the size of the field. An example is shown on the left. The three types of edit fields are:

- ASCII character (decimal value 0 to 255)

ASCII fields display the decimal value followed by the ASCII character equivalent, for example: $013=$ CR. You can enter:

- a decimal value; the software displays the ASCII equivalent character
- an ASCII (non-numeric) character such as T; the software displays the decimal equivalent
- a [Return] when the field is empty; the software displays NONE which means an ASCII value is not defined. The decimal value of 255 is interpreted as NONE
- numeric values
- text strings (including non-printable characters, see Appendix I)

Select/Edit Numeric Field

A select/edit numeric field, as its name implies, behaves as both a select field and edit field. That is, you can either enter a numeric value from the keyboard, or use the space bar to move through a list of available values.

Changing Fields

To change the contents of a select field, edit field, or select/edit field use these keys:
[Space] Advances through available settings in a select or select/edit field or opens an edit field for changes.

Pressing [Space] in an edit field clears the contents of the field and places you in edit mode. In edit mode, the field is highlighted (displays in reverse video) while you enter text.
[Backspace] Deletes the previous character in edit mode. Moves backwards through the available settings in a select or select/edit field. This key is labeled [Delete] or [Rubout] on some computers. This key is not valid in an edit field until the field is open.
[Tab] Opens edit field and puts the cursor in the first position without affecting the field contents. If pressed when field is already open, moves the cursor one place to the right. This allows you to change the contents of edit fields without first clearing their contents with the space bar. Opens select and select/edit fields and selects next value.

In a select or select edit field, pressing the asterisk ${ }^{(*)}$ will set the field to its default value.

An asterisk in an unopened edit text field will open the field and enter an asterisk in the first position. When pressed in an edit text field that is already open, the asterisk will behave like any other printable character.

Note: Most fields may be set to their default value by pressing the [Space] key and then [Enter]. Otherwise, press " * " (an asterisk) followed by [Enter].
[Return] In open fields, accepts the field selection or entry and closes the field. You must press [Return] to close an open field before you can use the arrow keys to move to another field. Moves the cursor to the next field if applied to a closed field. This key is labeled [$\lrcorner \mathrm{J}$] or [Enter] on some computers.
[Esc] Cancels the selection change or edits (before pressing [Return]) and restores the field to its initial contents.

Audible Beep

The terminal beeps when you enter invalid data into an edit field, for example, entering a letter into a numeric field. Some numeric fields have a range of minimum/maximum values. If you enter a value outside the range, the terminal beeps.

Help Line

The help line at the bottom of the screen displays keys that are active in the current mode of operation.

When first accessing a configuration screen, this help line displays:

Commands: ESC	Change: SPACE	Cursor Control:ARROLS

The help line indicates that you can press:

- [Esc] to access the command line
- [Space] to change the contents of a select field or edit field
- arrow keys to move around the configuration screen

Select Mode

When pressing [Space] in a select field, the help line looks like this:

SELECT - Cancel:ESC Next:SPACE Preuious:BACKSPACE Enter:RETURN

In select mode, you can press:

- [Esc] to cancel the select operation and close the field.

The field is restored to its initial contents.

- [Space] to toggle through the available selections
- [Backspace] to return to the previous screen
- [Return] to accept the selection and close the field

Edit Mode

When pressing [Space] in an edit field, the help line looks like this:

In edit mode, you can press:

- [Esc] to cancel the edit operation and close the field.

The field is restored to its initial contents.

- [Return] to accept the entered data and close the field
- [Backspace] while editing to erase the last character

Command Line

Press [Esc] while in any configuration screen to access the command line.

NIDXI PAGE THIS PAGE RECALL SAUE DEFAULT

The command line displays with NEXT PAGE highlighted.
The following keys are active in the command line:
[Esc] Exits configuration mode and returns to the Select Operation menu.
[Return] Accepts the highlighted command and performs the operation.
[Space] Toggles through options in the command line.
$[\rightarrow][\leftarrow] \quad$ Moves highlight one command to the right or left.

Command Summary
NEXT PAGE Displays the next configuration screen. The screens display in the order below:

Note: You can also access these screens in any order from the Select Operation menu.

THIS PAGE

RECALL Copies storage memory to operating memory. All parameter changes take immediate effect, with the following exceptions:

- Host communications parameters: baud rate, bits/character, parity, host protocol, device address, ACK character, and NAK character. These parameters will take effect only after a Restart.
- Autoload (Primary and Extended Match Code Table). Requires a Restart before scanned data will be autoloaded into the table.

The following message prompts you to confirm the recall:

Press [N$]$ or [Esc] to cancel the operation and return to the Select Operation menu. Press [Y] to recall the values from storage memory. The recalled configuration will then control decoder operations.

SAVE Saves the configuration currently in operating memory to storage memory. The Save command does not alter the current operation of the decoder. The following message prompts you to confirm the save operation.

Press [N] or [Esc] to cancel the operation and return to the Select Operation menu. Press [Y] to save the configuration to storage memory.

DEFAULT Copies the factory default configuration parameters into operating memory. All parameters take effect immediately, with the following exceptions:

- Host communications parameters: baud rate, bits/character, parity, host protocol, device address, ACK character, and NAK character. These parameters will take effect only after a Restart.

When you select Default, the following confirmation message will appear:

SBT DWRFULT COHFTGUBATION ... (YTH)?

Press [N] or [Esc] to cancel the operation and return to the Select Operation menu. Press [Y] to restore the factory defaults in storage memory to operating memory. This operation has no effect on any configuration parameters previously saved to storage memory with the Save command. The factory defaults are listed in Appendix B.

ATTENTION: It is good practice to save your configuration once the required host communications parameters have been set. Doing so assures you will retain those parameter settings even after lengthy periods without power.

Configuration: Symbology

Configure Symbology

Option 1 on the Select Operation menu accesses the Symbology configuration screen. Use this function to select symbologies for decoding and to define the operating parameters to use during decoding. The screen is displayed with the first field highlighted.

The default settings are displayed the first time you access this screen. Make changes appropriate for your application. If the factory defaults are satisfactory, you can return to the Select Operation menu by pressing [Esc] twice.

The parameters on this screen:

- Enable symbologies for decoding
- Enable specific length checking, which serves two purposes:
- provides data integrity for variable length symbologies by protecting against short reads. The decoder will only decode bar code symbols that contain the exact number of characters specified in the length fields. Especially useful for Interleaved 2 of 5 when check characters are not being used.
- optimizes operations by allowing the decoder to select scans for decoding from several labels with different lengths. For example, the decoder can select the 6 character code from a carton that has 14,6 , and 4 character codes
- Enable supplements for UPC/EAN symbologies
- Enable verification of guard bars with Interleaved 2-of-5 symbols
- Adjust and set the quiet zone ratio (if necessary)
- Configure parameters for Pharma-Code labels.

The decoder will auto discriminate between multiple symbologies. For optimum performance, enable only those symbologies and code lengths you intend to use.

The following pages define each symbology parameter along with the field type and possible values. The default value is shown in bold letters.

Code 39

Field Type	Options
Select	No Yes

Enables/disables decoding of Code 39 bar code labels. The default of Yes (except on Pharma-Code decoders) enables decoding of this symbology. Select No to disable decoding.

Code 39 Specific Lengths

Field Type	Options
Edit Numeric	0 through 64 (0)

Sets length checking for Code 39 bar code labels. The default is 0 , which means the decoder does not check lengths.

You can specify up to 8 code lengths (maximum of 64 characters). The code length includes the check character, but not the start and stop characters. If you specify a code length other than 0 , the decoder will only decode labels with the number of characters specified.

Important: Enter specific lengths starting with the leftmost blank field. Specific lengths entered to the right of a blank field are ignored.

Code 39 Check Character

Field Type	Options
Select	No Yes

Controls whether the decoder is required to compute and verify a code check character for Code 39 bar codes. The code check character ensures that the data is read correctly. The default is No, which means the decoder treats all decoded characters as data.

The Code 39 check character is computed as a Modulus 43 sum of all characters value as specified in the AIM specification USS-39.

Include Code 39 Check Character

Field Type	Options
Select	No Yes

Controls whether the code 39 check character computed by the decoder is included in the message sent to the host. The default is No, which means the Code 39 check character is not sent to the host.

Interleaved 2-of-5

Field Type	Options
Select	No Yes

Enables/disables decoding of Interleaved 2-of-5 bar code labels. The default of No disables decoding of this symbology. Select Yes to enable decoding.

Interleaved 2-of-5 Specific Lengths

Field Type	Options
Edit Numeric	Even numbers
	2 through 64 (0)

Sets length checking for Interleaved 2-of-5 bar code labels. The default is 0 , which means the decoder does not check lengths.

You can specify up to 8 code lengths (maximum of 64 characters). Only even numbers (2-64) are allowed. The code length includes the check character, but not the start and stop characters. If you specify a code length other than 0 , the decoder will only decode labels with the number of characters specified.

We recommend that you enter specific lengths for Interleaved 2-of-5 labels. Otherwise, a partial scan of symbols could result in a valid shorter read.

The decoder will ignore 2 character Interleaved 2-of-5 labels unless you enter a specific length of 2 .

Interleaved 2-of-5 Check Character

Field Type	Options
Select	No Yes

Controls whether the decoder is required to compute and verify a code check character for Interleaved 2 of 5 bar codes. The code check character ensures that the data is read correctly. The default is No, which means the decoder treats all decoded characters as data.

The Interleaved 2 of 5 character is computed as a Modulus 10 sum of all characters value as specified in the AIM specification USS-I $2 / 5$.

Include Interleaved 2-of-5 Check Character

Field Type	Options
Select	No Yes

Controls whether the Interleaved 2 of 5 check character computed by the decoder is included in the message sent to the host. The default is No, which means the Interleaved 2 of 5 check character is not sent.

Interleaved 2-of-5 Guard Bars

Field Type	Options
Select	No Yes

Controls verification of the presence of guard bars on Interleaved 2 -of- 5 symbols. The default of No results in no verification. Select Yes to activate guard bar verification.

Codabar

Field Type	Options
Select	No Yes

Enables/disables decoding of Codabar labels. The default of No disables decoding of this symbology. Select Yes to enable decoding.

Codabar Specific Lengths

Field Type	Options
Edit Numeric	0 through 64 (0)

Sets length checking for Codabar labels. The default is 0 , which means the decoder does not check lengths.

You can specify up to 8 code lengths (maximum of 64 characters). The code length includes the check character and the start and stop characters. If you specify a code length other than 0 , the decoder will only decode labels with the number of characters specified.

Codabar Check Character

Field Type	Options
Select	No Yes

Controls whether the decoder is required to compute and verify a code check character for Codabar bar codes. The code check character ensures that the data is read correctly. The default is No, which means the decoder treats all decoded characters as data.

The Codabar character is computed as a Modulus 16 sum of all characters value as specified in the AIM specification USS-Codabar.

Include Codabar Check Character

Field Type	Options
Select	No
Yes	

Controls whether the Codabar check character computed by the decoder is included in the message sent to the host. The default is No, which means the Codabar check character is not sent.

Code 128

Field Type	Options
Select	No Yes

Enables/disables decoding of Code 128 labels. The default of No disables decoding of this symbology. Select Yes to enable decoding.

Code 128 Specific Lengths

Field Type	Options
Edit Numeric	0 through $64(0)$

Sets length checking for Code 128 labels. The default is 0 , which means the decoder does not check lengths.

You can specify up to 8 code lengths (maximum of 64 characters). The code length does not include the check character or the start and stop characters. ${ }^{\oplus}$ If you specify a code length other than 0 , the decoder will only decode labels with the number of characters specified.

The decoder uses the specific length parameter in three ways:

- The decoder discards decoded symbols with lengths that do not match the specific length parameter
This allows you to filter out all decoded symbols except those that have a specific length that appears in the specific length table.
- The decoder uses it to determine if the number of bar to space transitions that occur during a scan is appropriate for the symbologies and specific length values
Scans that occur in the absence of a symbol or part of a symbol are not valid, and therefore result in extra processing overhead for the decoder. The decoder discards these scans before the microprocessor sees them.
- Once the microprocessor sees a scan, it uses the specific length parameter to search within the symbol for a valid number of bar to space transitions
(1) The decoder will ignore Code 128 FNC2, FNC3, and FNC4 characters regardless of the Code 128 FN Character setting. FNC2, FNC3, and FNC4 are also ignored by the specific length parameter.

This check differs from the one above, because instead of looking at the number of transitions in the entire scan, this search only considers the number of transitions contained within the symbol. The decoder rejects the scan if the number of transitions does not correspond to a selected specific length. It attempts to decode all scans if no specific length is specified.

Code 128 FNC1 Character

Field Type	Options
Edit	Valid ASCII $0=$ None

Instructs the decoder to substitute any valid ASCII character for the Code 128 FNC1 (Function 1) character. The default is 0 (None), which means no substitution will take place.

The substitution will take place at the time of decoding, and before any rules or match operations are applied. Users frequently substitute the ASCII 29 character (CTRL]) for the FNC1 character.

UPC-A

Field Type	Options
Select	No Yes

Enables/disables decoding of UPC-A labels. The default of No disables decoding of this symbology. Select Yes to enable decoding.

UPC-A Supplements

Field Type	Options
	None
Select	2
	5
	2 or 5
	Auto

Enables/disables decoding of UPC-A supplementary codes. The default of None disables decoding of supplements for this symbology. Options are:

None	Disables decoding of supplementary codes.
2	Enables decoding of 2 character supplementary codes.
5	Enables decoding of 5 character supplementary codes.
2 or 5	Enables decoding of 2 or 5 character supplementary codes.
Auto	Enables decoder to auto discriminate supplementary codes (None, 2 or 5) on label(1)
(1) The A suppl critic trigg produ	to Selection allows you to mix labels without supplements with labels containing 2 or 5 digit ments. The supplements are often a different size than the primary symbol. Therefore, it is that both the primary symbol and the supplement be present when the decoder is ed. If the decoder does not detect the supplement, the primary symbol is sufficient to a valid scan. The Auto selection is not recommended when the Decode Mode is set to ous.

If you select 2,5 , or 2 or 5 , the decoder must decode both the primary label and the supplement to produce a valid scan

UPC-E

Field Type	Options
Select	No Yes

Enables/disables decoding of UPC-E labels. The default of No disables decoding of this symbology. Select Yes to enable decoding.

UPC-E Supplements

Field Type	Options
	None
Select	2
	2
	2 or 5
	Auto

Enables/disables decoding of UPC-E supplementary codes. The default of None disables decoding of supplements for this symbology. Options are:

None	Disables decoding of supplementary codes.
2	Enables decoding of 2 character supplementary codes.
5	Enables decoding of 5 character supplementary codes.
2 or 5	Enables decoding of 2 or 5 character supplementary codes.
Auto	Enables decoder to auto discriminate supplementary codes (None, 2 or 5) on label(1)

(1) The Auto Selection allows you to mix labels without supplements with labels containing 2 or 5 digit supplements. The supplements are often a different size than the primary symbol. Therefore, it is critical that both the primary symbol and the supplement be present when the decoder is triggered. If the decoder does not detect the supplement, the primary symbol is sufficient to produce a valid scan. The Auto selection is not recommended when the Decode Mode is set to Continuous.

If you select 2,5 , or 2 or 5 , the decoder must decode both the primary label and the supplement to produce a valid scan.

Expand UPC-E

Field Type	Options
Select	No Yes

Controls whether the UPC-E bar code is transmitted in a 12 digit (expanded) format. The default is No, which means do not send the expanded form but the 6 digit (compressed) form.

EAN-8

Field Type	Options
Select	No Yes

Enables/disables decoding of EAN-8 labels. The default of No disables decoding of this symbology. Select Yes to enable decoding.

EAN-8 Supplements

Field Type	Options
	None
Select	2
	2 or 5
	Auto

Enables/disables decoding of EAN-8 supplementary codes. The default of None disables decoding of supplements for this symbology. Options are:

None	Disables decoding of supplementary codes.
2	Enables decoding of 2 character supplementary codes.
5	Enables decoding of 5 character supplementary codes.
2 or 5	Enables decoding of 2 or 5 character supplementary codes.
Auto	Enables decoder to auto discriminate supplementary codes (None, 2 or 5) on label(1)

(1) The Auto Selection allows you to mix labels without supplements with labels containing 2 or 5 digit supplements. The supplements are often a different size than the primary symbol. Therefore, it is critical that both the primary symbol and the supplement be present when the decoder is triggered. If the decoder does not detect the supplement, the primary symbol is sufficient to produce a valid scan. The Auto selection is not recommended when the Decode Mode is set to Continuous.

If you select 2 , 5 , or 2 or 5 , the decoder must decode both the primary label and the supplement to produce a valid scan.

EAN-13

Field Type	Options
Select	No Yes

Enables/disables decoding of EAN-8 labels. The default of No disables decoding of this symbology. Select Yes to enable decoding.

EAN-13 Supplements

Field Type	Options
	None
Select	2
	5
	2 or 5
	Auto

Enables/disables decoding of EAN-13 supplementary codes. The default of None disables decoding of supplements for this symbology. Options are:

None Disables decoding of supplementary codes.
2 Enables decoding of 2 character supplementary codes.
5 Enables decoding of 5 character supplementary codes.
2 or 5 Enables decoding of 2 or 5 character supplementary codes.
Auto Enables decoder to auto discriminate supplementary codes (None, 2 or 5) on label(1)
(1) The Auto Selection allows you to mix labels without supplements with labels containing 2 or 5 digit supplements. The supplements are often a different size than the primary symbol. Therefore, it is critical that both the primary symbol and the supplement be present when the decoder is triggered. If the decoder does not detect the supplement, the primary symbol is sufficient to produce a valid scan. The Auto selection is not recommended when the Decode Mode is set to Continuous.

If you select 2,5 , or 2 or 5 , the decoder must decode both the primary label and the supplement to produce a valid scan.

Enable Pharma-Code Symbology (Pharma-Code Decoders Only)

Enables decoding of Pharma-Code symbols. The default of Yes enables decoding for this symbology. Select $N o$ to disable decoding

Note: We recommend starting with the default settings for all Pharma-Code parameters except Minimum Number of Bars and Decode Direction, which must be determined by your application. The complex interrelationships among other Pharma-Code options make them best suited for use only by experienced Pharma-Code users in unusual instances when the default values do not provide acceptable results.

Quiet Zone Ratio (All Decoders)

Field Type	Options
Edit Numeric	4 through $10(5)$

Specifies the ratio of the width of the clear space before the first bar to the width of the first bar, or the width of the clear space after the last bar to the width of the last bar; whichever is smaller. Valid quiet zone ratio values are 4 to 10 . The default is 5 . The default value for this parameter has been optimized for most applications, and it is unlikely you will ever have a reason to change it.

$\begin{array}{ll}\text { For this example: If scan direction is } \mathbf{A} & \frac{\text { Clear Space Width }}{\text { 1st Bar Width (Wide Bar) }}=5 \\ & \text { If scan direction is B } \\ \frac{\text { Clear Space Width }}{\text { 1st Bar Width (Narrow Bar) }}=10\end{array}$

The decoder uses the quiet zone to determine the necessary clear space on both sides of the symbol. A symbol not preceded by an adequate quiet zone is ignored. ${ }^{(1)}$ The quiet zone after the bars and spaces of a symbol indicates the end of data. If you specify a quiet zone ratio that is too small, the decoder may interpret a space within the symbol as the end of the symbol, resulting in no-reads or misreads. A general rule to use is:
$\frac{\text { Maximum Space Width in Symbol }}{\text { Minimum Narrow Bar Width } \leq \text { Quiet Zone Ratio } \leq \frac{\text { Width of the Smallest Quiet Zone }}{\text { Maximum Wide Bar Width }}}$
(1) If the Quiet Zone is found to be inadequate, the decoder will examine the symbol further to attempt a We recommend, however, that all labels be printed within specified limits.

A typical quiet zone value for the Pharma-Code symbology is 5 .

Space Tolerance (Pharma-Code Decoders Only)

Field Type	Options
Edit	5 through $40(15)$ Ignore

Defines the percent difference (in width) between the narrowest and widest space elements of the Pharma-Code symbol. Space tolerance is expressed mathematically as:
$\frac{\text { (Widest Space - Narrowest Space) }}{\left[\frac{(\text { Widest Space + Narrowest Space) }}{2}\right]} \quad$ X $100 \%=\%$ Space Tolerance

Select a value that is greater than the worst case tolerance to prevent no-reads.

Valid percent values are 5 to 40 , or Ignore. If set to Ignore any amount of space tolerance is allowed within the symbol. The default value is $15(15 \%)$. The default value for this parameter has been optimized for most applications, and it is unlikely you will ever have a reason to change it.

The decoder will reject a symbol if two spaces within the symbol differ in width by more than the space tolerance value. Select Ignore to prevent the decoder from rejecting a symbol based on width differences between spaces.

Bar Tolerance (Pharma-Code Decoders Only)

Field Type	Options
Edit	5 through $40(15)$ Ignore

Defines the percent difference (in width) between two bars of a symbol that have the same nominal width but the largest width difference. There are two bar tolerances since Pharma-Code symbols have wide and narrow bars. Bar tolerance is expressed mathematically as:

Select a value that is greater than the worst case tolerance to prevent no-reads.

Valid bar tolerance values are 5 to 40, or Ignore. The Ignore value allows any amount of tolerance between bars of the same nominal width. The default value is $15(15 \%)$. The default value for this parameter has been optimized for most applications, and it is unlikely you will ever have a reason to change it.

The decoder will reject a symbol if the width of two bars of the same nominal width differs by more than the bar tolerance value. Select Ignore to prevent the decoder from rejecting a symbol based on width differences between bars of the same nominal width.

Minimum Number of Bars (Pharma-Code Decoders Only)

Field Type	Options
Edit	3 through $12(5)$

Specifies the least number of bars that must be present within a Pharma-Code symbol for the decoder to perform a decode. Possible values are 3 to 12 . The default is 5 .

If the Code Verification List contains values, the decoder will ignore the minimum bar setting and decode only those symbols that have values in the list.

If the Code Verification List has no values, the decoder will reject all symbols that contain fewer bars than the minimum bar setting.

Decode Direction (Scanner A or B) (Pharma-Code Decoders Only)

Field Type	Options
Select	Forward Reverse

Sets the direction the decoder uses to decode a scanned label. Direction values are either Forward or Reverse. The default is Forward.

The decoder uses the decode direction to determine the least significant bar of a symbol. The examples below show how a Pharma-Code label is decoded depending on the direction.

Example 1: The decode direction is set to forward. The decode direction fixes the position of the least significant bar (regardless of scan direction). The decoded value is 94 .

Example 2: The decode direction is set to reverse. The decode direction fixes the position of the least significant bar. The decoded value is 125 .

Wide to Narrow Bar Ratio (Pharma-Code Decoders Only)

Field Type	Options
Edit	2 through 4 (2)
	Midrange

Specifies the minimum ratio of the widest bar to the narrowest bar within a symbol.

Valid settings are 2 to 4 , or midrange. The default is 2 . The default value for this parameter has been optimized for most applications, and it is unlikely you will ever have a reason to change it.

If the setting is 2 to 4 , the decoder will reject symbols whose wide to narrow bar ratio is less than the parameter setting.

The midrange value is half the sum of the widths of the narrowest and widest bar in the symbol. If the setting is midrange, the decoder will not reject symbols based on the wide to narrow bar ratio setting. Instead, all bars greater than or equal to the midrange are wide bars and all bars less than the midrange are narrow bars. Select midrange to prevent the decoder from rejecting a symbol based on the wide to narrow bar ratio.

Note: When set to midrange, the decoder will reject any symbol that contains bars that exactly equal the midrange width.

Code Verification List (Pharma-Code Decoders Only)

Field Type	Options
Edit	7 through 8190 Blank

Defines a list of numeric values the decoder uses to validate decoded Pharma-Code Symbols.

Because the orientation of a Pharma-Code label determines its value, you can use the Code Verification List to enhance data security when the value of the symbol is known. The decoder compares the value of the decoded symbol to all entries in the Code Verification List. If the value is in the list, a valid read occurs. If the value is not in the list, the decode is discarded. If all fields are left blank, the list is ignored and the decoder processes reads normally. This prevents inaccurate reads resulting from incorrect label orientation, decode configuration errors, or misreads due to poor label quality.

Note: If any value appears in the table, then only symbols that match an entry in the table will match.

The Code Verification List holds up to 16 values. Each field is numbered from 1 to 16 . You can enter a value from 7 to 8190 in each field or leave the field blank. The default value for each field is blank.

Note: The Code Verification List is independent of the Match Code Table (described in the User Manual).

Configuration: Scanner Control, Primary Match Table, Discrete I/O

Scanner Control, Primary Match Code Table, Discrete I/O

Option 2 on the Select Operation configuration screens. Use this function to configure scanner control, match codes, and discrete I/O operations. The screen displays with the first field highlighted.

The factory defaults are displayed the first time you access this screen. Make changes appropriate for your application. If the factory defaults are satisfactory, you can return to the Select Operation menu by pressing [Esc] twice.

The parameters are grouped by function on the screen. The following pages describe each group of parameters.

Scanner A Control Parameters

These parameters control the operation of Scanner A. Each parameter is defined below. The options for each parameter are summarized in a table, and explained more fully in the text. The default setting for each parameter is displayed in bold letters in the table.

Laser Light (Scanners A and B)

Field Type	Options
Select	On Triggered Off

Determines whether the Scanner A laser is on continuously, turns on and off with the trigger, or is off regardless of the trigger. Use triggered mode with slower package rates to extend the life of your laser.

This parameter also affects Scanner B when it is set to operate in coordinated mode with Scanner A. See Scanning Mode under Scanner B Control.

On The scanner scans continuously.
Triggered The scanner scans only when receiving a trigger from a package detector, host, or internal timer. The scanner continues scanning until an end trigger condition occurs.

Off Turns the scanner laser off. Use this setting as a safety precaution during decoder maintenance or troubleshooting.

Important: It is important that you understand the following terms before proceeding.

- valid scan
- valid symbol
- valid read
- valid package
- no-read

See Glossary for definitions.

Decode Mode

Field Type	Options
	Continuous
Select	Continuous/Unique
	Package Detect Host Internal Timer

Determines how the decoder starts and stops decoding. This parameter affects Scanner A, or Scanner A and B when both are operating in coordinated mode. (See Scanning Mode under Scanner B Control.)

Continuous The decoder continuously attempts to decode every scan from the scanner. There is no start and stop control.

The continuous mode of operation is useful during initial setup to determine the optimum location of the scanner relative to the bar code labels. (Use a Symbols Per Package value of 1 for setup.)

The no-read condition does not exist in this mode.
Continuous/Unique The decoder continuously attempts to decode every scan from the scanner. The decoder discards valid reads that are identical to the previous valid read. The decoder does not process data (send to host or activate appropriate match codes) until a new valid read is decoded.

A valid package in continuous/unique mode is a valid read that is different from the previous valid package.

The no-read condition does not exist in this mode.
Host
A start scan command from a host device triggers the decoder to start decoding.

Note: Refer to the section on host communications for additional information on the start and stop scan commands.

Package Detect A package detect signal triggers decoding on and off. The package detect is typically an external presence sensor or the trigger of a hand-held laser scanner.

The package detect signals the arrival and departure of a package.

Internal Timer This mode uses the No-Read Timer as a trigger source. A set time interval triggers decoding on and off. The No-Read Timer determines the time interval.

Figure 7.1 Internal timer trigger

$X=Y=$ No-Read Timer value (in milliseconds)
Minimum value $=10 \mathrm{msec}$
Maximum value $=9999 \mathrm{msec}^{(1)}$
Resolution $=5 \mathrm{msec}$

A no-read occurs if the timer expires before a valid package occurs.

The Internal Timer decode mode is useful during initial setup to simulate the package detect signal.

Note: When Scanner B is operating independently from Scanner A, its decode mode is always either Package Detect or Host.

No-Read Timer

Field Type	Options
Edit	10 through 9999 or 0

Specifies the length of time the decoder will try to decode a label when triggered by a host command or package detector. The timer starts when the decoder is triggered. If a valid package does not occur within the specified time (Symbols/Package setting is not satisfied), a no-read occurs.

The default of 0 disables the timer. To set the timer, enter a number between 10 and $9999 .{ }^{\circ}$ Select a value that allows the decoder enough time to read an entire package or a no-read will occur.

Note: When the decode mode is set to internal timer, the no-read timer functions as a trigger source. The trigger remains on until the no-read timer expires. See Internal Timer under Decode Mode.

[^2]Inter-Scan Timer

Field Type	Options
Edit	10 through 9999 or 0

Disables decoding for a set time interval after a valid read. The default is 0 , which disables the timer. The Inter-Scan Timer is valid in both continuous and triggered modes of operations.

You can use the Inter-Scan Timer to:

- provide a delay between decodes to enable multiple labels, that are not necessarily unique, to be read within the same package
- enable multiple decodes of the same label for verification purposes

The Inter-Scan Timer accepts a value between 10 and 9999. ${ }^{\odot}$
Important: To ensure that package labels are read before the No-Read Timer expires, set the Inter-Scan Timer to a value that is less than the No-Read Timer setting.

A valid read starts the timer. See Figure 5.2. The decoder decodes a scan within Field \#1, which starts the Inter-Scan Timer and immediately stops decoding. The decoder waits for the timer to expire (or timeout) to resume decoding.

Use the following equations to create a delay between decodes:

Equation 1: Minimum Inter-Scan Timer Value

$\frac{\text { W (cm or inches) } \times 1000(\mathrm{msec} / \mathrm{sec})}{\text { Line Speed (cm/sec or inches } / \mathrm{sec} \text {) }}=$ Approximate Inter-Scan Timer Value (msec)
Equation 2: Maximum Inter-Scan Timer Value
$\frac{S(\mathrm{~cm} \text { or inches) } \times 1000(\mathrm{msec} / \mathrm{sec})}{\text { Line Speed (cm/sec or inches } / \mathrm{sec} \text {) }}=$ Approximate Inter-Scan Timer Value (msec)

You may have to experiment with several settings since factors such as label quality determine when the first read occurs.

[^3]Figure 7.2 Inter-scan timer

The label orientation must be such that distance D is $\leq \mathrm{S}$ for the scanner to scan all of Field \#2. The line speed must be constant.

Set the Inter-Scan Timer to a value between the minimum and maximum values to prevent additional decodes of Field \#1, while allowing all of Field \#2 to be scanned.

To allow multiple reads of a single symbol for verification purposes, set the Inter-Scan Timer to a value that is less than equation 1.

Capture Count

Field Type	Options
Select/Edit	1 through 8, or V

Specifies the number of identical valid scans that must be decoded before a read is considered valid. The default is 2 , which means the capture count is not satisfied until two sequential, identical, valid scans are decoded. A capture count of 2 is appropriate for most applications.

To specify a different capture count, select a value between 1 and 8 , or V. V (for Verify) requires that each symbol in a bar code must match an entry in the primary match code table to produce a valid read.

The "V" capture count is useful in high speed verification applications, where the value of the symbol is known. By loading the expected value into a match code table, the decoder only needs to acquire one valid scan matching the expected values to produce a valid read.

The decoder interprets a scanned label in one of three ways.

- Valid Scan

Sufficient valid symbols have been decoded to satisfy the Symbols/Scan parameter.

- Undecodable Scan

The scanned data does not correspond to a valid pattern within the selected symbologies.

- Misread or Substitution Error

Smudges, stray marks, voids, or print errors (resulting in wider or narrower bars and spaces) may result in a pattern that is valid within an enabled symbology that is not representative of the intended data.

The capture count reduces misreads by requiring the decoder to read labels multiple times before producing a valid read.

Symbologies that are not self-checking (do not use start and stop characters or check characters) are more susceptible to misreads. For example, Interleaved 2-of-5 without check characters is not self-checking.

Setting the capture count too high may result in excessive no-reads, particularly when the number of scans crossing the label in a trigger period is low (5-10). Set the capture count to a value no greater than half the number of expected scans crossing the label in a trigger period.

Symbols / Scan

Field Type	Options
Select/Edit	$1-6$, Any
	1

Specifies the number of bar code symbols that must be present in a scan for a valid read. The default is l.

On a single scan (movement of laser beam from one side to another), the decoder can decode up to 6 successive bar code symbols. Valid settings for this parameter include $1,2,3,4,5,6$ or Any.

If you select Any, the decoder looks for up to 6 symbols. The decoder will ignore any damaged symbols it encounters.

Select Any for those applications where the number of symbols varies or cannot be controlled. For all other applications specify a number.

Important: If you select Any and the decoder is operating in a triggered mode, the symbols within each label must be unique. The decoder interprets identical symbols as duplicates and ignores the second symbol.

Symbols/Package

Field Type	Options
Select/Edit	$1-16$
	1

Specifies the number of valid symbols that must be decoded to produce a valid package. The default is 1 . You can enter a numeric value between 1 and 16 .

If the Symbols/Package setting is satisfied, a valid read occurs. If the Symbols/Package setting is not satisfied, a no-read occurs for that package as well as for each symbol not read.

Match Complete

Field Type	Options
Select/Edit	$1-16$
	1

Specifies the number of times that symbols on a package must match entries in the match code table before a Match Complete condition occurs. You can enter a value from 1 to 16 . The default is 1 , which means at least one symbol on a package must match an entry in the match code table.

Match Complete is one of ten output conditions that can activate an output. See the Output Condition parameter.

Note: The match complete count does not have to equal the Symbols/Package setting. However, the match complete count must be less than or equal to the Symbols/Package setting for a match complete condition to occur.

Scanner B Control Parameters

These parameters control the operation of Scanner B. Each parameter is defined below. The options for each parameter are summarized in a table, and explained more fully in the text. The default setting for each parameter is displayed in bold letters in the table.

Laser Light

Refer to Laser Light under Scanner A Parameters earlier in this section for information on Scanner B laser light control.

Decode Mode

Field Type	Options
}{}	Coordinated 1
	Package Detect
	Host

Sets the decode mode for Scanner B. The options are Coordinated 1, Coordinated 2, Package Detect, and Host. The default is Coordinated 1 .

If you set the scanning mode to either Coordinated mode, Scanner B operates in concert with Scanner A, and both scanners use the trigger specified for Scanner A. The Trigger Timeout parameters is not used when Scanner B operates in coordinated mode.

If you use one of the independent decode modes (either Host or Package Detect), Scanner B will operate independently of Scanner A and use its own trigger source. If the Decode Mode is package detect; decoding is triggered by the Scanner B package detect signal. If the Decode Mode is host, decoding is initiated by the Scanner B Start Character and concluded by the Scanner B Stop Character.

In the Coordinated modes, the Symbols/Package setting can be satisfied by either or both scanner(s). For example, the Symbols/Package setting is 2 . Scanner A can decode one valid symbol and Scanner B can decode one valid symbol to produce a valid read, or both symbols can be read from either scanner. The difference between the two coordinated modes is in how each defines what constitutes a unique decoding event within a package.

- In Coordinated 1 mode (source dependent), the decoder always considers the source of the data as well as its content. Data will be treated as unique if it originates from different scanners, or if the value or symbology is different.
- In Coordinated 2 mode (source independent), the decoder will consider data to be unique only when its value or its symbology is different. Identical data originating from different scanners will be treated as a single decode (and the second decode is ignored).

In Independent Package Detect mode, the Symbols/Package setting must be satisfied by each scanner individually. For example, the Symbols/Package setting is 2 . Scanner A must decode two symbols to produce a valid read, or scanner B must decode two symbols to produce a valid read. If both scanners are triggered from their respective package detects, and Scanner A decodes only one symbol and Scanner B decodes only one symbol, two packages will be sent to the host with a no-read indicated in each.

In Independent Host Command mode, the decoder starts and stops decoding symbols as instructed by a host computer. For example, the Symbols/Package setting is 2 . Scanner A must decode two symbols to produce a valid read, or scanner B must decode two symbols to produce a valid read. If both scanners are triggered using their respective Start Scan and Stop Scan characters, and Scanner A decodes only one symbol and Scanner B decodes only one symbol, two packages will be sent to the host with a no-read indicated in each.

The following example illustrates the difference between Coordinated 1 and Coordinated 2 modes, and how the Symbols/Package setting affects scanner operation in both the Coordinated and the Independent modes.

	Symbols/Package $=2$			
	Coordinated 1 Mode		Coordinated 2 Mode	Independent Modes
Example \#1	Scanner A reads 1234	Scanner B reads ABCD		
	ScnA/1234/ABCD//		ScnA/1234/ABCD//	ScnA/1234/No-Read// ScnB/ABDC/No-Read//
Example \#2	Scanner A reads 1234	Scanner B reads 1234		
	ScnA/1234/1234//		ScnA/1234/No-Read//	ScnA /1234/No-Read// ScnB /1234/No-Read//
Example \#3	Scanner A reads 1234	Scanner A reads ABCD		
	ScnA/1234/ABCD//		ScnA/1234/ABCD//	ScnA /1234/ABCD// ScnB/No-Read/No-Read/l
		In this example the field delimiter is the "/", source identifiers are ScnA and ScnB for scanner A and B respectively, and the default no-read message is "No-Read".		

Trigger Timeout

Field Type	Options
Edit	10 through 9999 or 0

Determines the length of time (in milliseconds) the Scanner B laser remains on after receiving a start trigger. The trigger timeout determines a no-read condition for Scanner B. The default is 0 , which disables the timer.

To set the trigger timeout, enter a number between 10 and 9999 . ${ }^{(}$ The timer has an accuracy of ± 5 milliseconds. Select a value that allows enough time for the decoder to read an entire package or a no-read will occur.

When Scanner B is triggered, the timer starts. If a package is not processed successfully within the elapsed time Symbols/Package setting is not satisfied), a no-read occurs.

Note: The Trigger Timeout acts like the No-Read Timer if the Scanning Mode is independent; it is not used if the Scanning Mode is set to coordinated.

Package Detect Input Parameters

These parameters control the package detect input for Scanner A and B. Each parameter is defined below. The options for each parameter are summarized in a table, and explained more fully in the text. The default setting for each parameter is displayed in bold letters in the table.

Package Detect Input A Filter

Field Type	Options
Select	Yes
	No

Enables or disables the debounce filter for the package detect signal on Scanner A. The default is No which disables the filter. When disabled, the decoder recognizes any signal greater than 1 millisecond as a start trigger.

[^4]If the filter is enabled, the decoder starts a timer whenever it senses a package detect signal longer than 1 millisecond. This timer delays the decoder's reaction to the package detect for between 10 and 15 milliseconds to allow any "bounce" in the signal level to settle. If the package detect signal is still present when the timer expires, the decoder will begin to process the package. Package detect signals shorter than 10 milliseconds will be ignored by the decoder when the filter is used. Because of timer resolution, package detects between 10 and 15 milliseconds may be ignored.

The filter likewise reacts to the loss of the package detect signal. When the signal is lost for a minimum of 1 millisecond, the filter will maintain the trigger for 10 to 15 milliseconds. The resultant trigger period length will be equal to the package detect period ± 5 milliseconds.

Note: This parameter also applies to Scanner B when operating in coordinated mode. In coordinated mode, Scanner A and B are triggered by the same package detect signal (Package Detect Input A Filter and Package Input A Sense).

Package Detect Input A Sense

Field Type	Options
Select	Lo $=$ Package $\mathrm{Hi}=$ Package

Determines whether a package on Scanner Port A is detected when the voltage at the package detect input is high or low. The default is $L O=$ Package .

Note: This parameter applies to Scanner B when operating in coordinated mode. In coordinated mode, Scanner A and B are triggered by the same package detect signal (Package Detect Input A Filter and Package Input A Sense).

Package Detect Input B Filter

Field Type	Options
Select	Yes
	No

Enables or disables the debounce filter for the package detect signal on Scanner B. The default is No which disables the filter. When disabled, the decoder recognizes any signal greater than 1 millisecond as a start trigger.

If the filter is enabled, the decoder starts a timer whenever it senses a package detect signal longer than 1 millisecond. This timer delays the decoder's reaction to the package detect for between 10 and 15 milliseconds to allow any "bounce" in the signal level to settle. If the package detect signal is still present when the timer expires, the decoder will begin to process the package. Package detect signals shorter than 10 milliseconds will be ignored by the decoder when the filter is used. Because of timer resolution, package detects between 10 and 15 milliseconds may be ignored.

The filter likewise reacts to the loss of the package detect signal. When the signal is lost for a minimum of 1 millisecond, the filter will maintain the trigger for 10 to 15 milliseconds. The resultant trigger period length will be equal to the package detect period ± 5 milliseconds.

Note: This parameter applies only when Scanner B is operating in independent mode. (See Scanning Mode under Scanner B Control.)

Package Detect Input B Sense

Field Type	Options
Select	Lo $=$ Package $\mathrm{Hi}=$ Package

Determines whether a package on Scanner B is detected when the voltage at the package detect input is high or low. The default is $L O=$ Package.

Note: This parameter applies only to Scanner B and only when Scanner B is operating in an independent mode. (See Scanning Mode under Scanner B Control.)

Primary Match Table Parameters

These parameters define match code entries in the primary match code table. You can define up to eight entries here (and another 128 entries in the extended match code table described later). Each table entry has two parameters:

- symbology of match code string
- match code string

Each parameter is defined below. The options for each parameter are summarized in a table, and explained more fully in the text. The default setting for each parameter is displayed in bold letters in the table.

Symbology (1-8)

Field Type	Options
	Code 39
	Interleaved 2-of-5
	Codabar
	UPC-A
Select	UPC-E
	EAN-8
	EAN-13
	Code 128
	Pharma-Code(1)
	Any

(1) Applies only to decoders equipped with the optional Pharma-Code capabilities.

Selects the symbology of the match code string (1-8). You can select any one of the symbologies for each primary match code string.

Note: Any is the default symbology for all entries in the match code tables.

Match Code String (1-8)

Field Type	Options
Edit Text	0 to 32 characters Blank

Defines the characters for a specified match code string (1-8). The default is nothing (blank), which means a match code string is not defined.

You can enter up to 32 characters for each match code string (including non-printable control characters). Enter the characters as they will be transmitted to the host. Do not include check digits if you disabled the Include Check Character parameter for the selected symbology.

The string accepts the question mark ("?") as a single character wild card. A position containing a ? will match any single ASCII character in the same position of the decoded data.

Note: The Primary and Extended Match Code tables interpret a question mark differently than do the Host Replacement rules. The question mark functions as a generic wildcard when used in the primary match code table, and as a metacharacter in the Host Message Replacement Rules. (See Chapter 10.)

Discrete I/O Parameters

These parameters define conditions that control the discrete outputs. Each output is defined by four parameters:

- normal state of an output ($\mathrm{O}=$ opened or $\mathrm{C}=$ closed)
- source of the event (Scanner A or B)
- condition that activates an output
- duration of pulsed output
- send Host Message parameter

The discrete outputs can be controlled locally via the configuration screens or remotely using host commands. The discrete I/O system can:

- indicate the success or failure of the decoder to read bar code data from a package
- indicate the results of a compare operation between decoded bar code data and match code data
- provide external control of the outputs using host commands
- indicate a buffer full condition (no data lost)
- indicate a buffer overflow condition
- load bar code data into the match code table using an external switch along with an input module

ATTENTION: When controlling outputs locally using configuration screens, suspend host communications to prevent outputs from unintentionally changing state.

Each discrete I/O parameter is defined below. The options for each parameter are shown, with the default setting in bold letters.

Output State

Field Type	Options
Select	O Normally Open $\mathrm{C}=$ Normally Closed

Defines the normal state of each discrete output (or input). The default is $O=$ Normally Opened. To change the state of the output to $\mathrm{C}=$ Normally Closed, select C.

ATTENTION: Outputs are initially open (off) when power is first applied to the decoder, and again when the decoder is powered off.

If a fault condition is detected, the outputs open and the CPU ACTIVE indicator light turns off.

Source

Field Type	Options
Select	A (Default for DS)
	B
$A \mid B=A$ or B (Default for DD)	
	$A-B=$ Precedent determined

Specifies from which scanner(s) an event can originate and meet the primary match pattern requirements. For single head decoders, Scanner A is the default value. For dual head decoders, the default value is $A \mid B$, which means that the decoder will accept input from either A or B to create a match. Other options include Scanner B, or precedent determined $(A-B)$.

When set to A-B, the decoder will use the first input from either Scanner A or Scanner B to establish a precedent for all following inputs. If, for example, the first input comes via Scanner B, then only data from Scanner B will be matched from that point on.

Output Condition

Field Type	Options
	None
	Read Package
	No-Read Package
	Match-Complete
Select	Match-Entry
	Read and No-Match
	No-Read or No-Match
	Auto Load at Startup
	Buffer Full
	Buffer Overflow
	Auto Load (INPUT)(1)

(1) Applies only to module position 8.

Defines the condition that will activate a specified output. The default is None, which means a condition is not defined for the output.

The available output conditions appear below. Select the output condition appropriate for your application.

None The factory default setting for each output is None, which means an output condition is not defined.

You can hold an output open or closed by setting the condition to None and then changing the Output State to normally open or normally closed.

Match-Entry Activates the specified output when bar code data matches the string to the left of the output. Used for verification of specific label information.

The corresponding output counter increments each time a match entry occurs.

In the following example, Output 1 (normally open contact) will activate (close) for 100 milliseconds if decoded data matches 123456 .

Match-Complete Activates the specified output when bar code data from a valid package matches the number of entries in the primary match code table as set by the Match Complete parameter.

The match-complete condition is used to verify that multiple symbols with different information appear on the same package.

Read (Package) Activates the specified output when bar code data results in a valid package.

The read (package) condition is used to verify the presence of a good label.

The corresponding output counter increments once for each package read.

No-Read (Package) Activates the specified output when a no-read occurs for the last processed package.

The no-read condition is used to detect missing or damaged labels.

A no-read occurs when end of trigger occurs without a valid package

The corresponding output counter increments once for each package not read.

NOTE: The no-read condition does not exist in continuous mode.

Read and No-Match Activates the specified output when a valid read occurs but the bar code data does not match any entry in the primary match code table.

The read and no-match condition is used to detect when incorrect labels have been used.

The corresponding output counter increments each time a read and no-match condition occurs.

No-Read or No-Match Activates the specified output when either a no-read or a no-match condition occurs. (The bar code data does not match any entry in the primary match code table.)

Like the read and no-match condition, this condition is used to detect incorrect or missing labels.

The corresponding output counter increments each time a no-read or no-match condition occurs.

Buffer Full The specified output signals that the bar code data buffer is full and cannot process additional bar code data. The output turns off when the buffer full condition is cleared. This is not a pulsed output. The output will actuate whenever the Buffer Full condition exists, and turn off when Host Communications resume.

Often, the decoder can decode data faster than the host can receive it. Use this condition as an indicator to control the package rate to keep pace with host transmissions.

The corresponding output counter increments each time the buffer full condition occurs.

Buffer Overflow The specified output signals that bar code data has been lost because of a buffer overflow condition. The output turns off when the buffer overflow condition is cleared.

The buffer overflow condition may occur:

- if host communications is suspended
- if an XOFF is sent to the decoder via either the Host or AUX Port

The performance indicator displays 999 until the buffer overflow condition is cleared.

The corresponding output counter increments each time the buffer overflow condition occurs.

AutoLoad
Configures the specified output to load bar code data from the first valid package(s) into the match code table.

After configuring one or more outputs for AutoLoad, you can activate AutoLoad in one of three ways:

1. Restart system (using Select Operation menu or host command). Refer to the examples for additional information.
2. Configure Output 8 for AutoLoad (INPUT) and apply the appropriate input voltage to the input module in I/O location 8. See AutoLoad (INPUT) and Appendix H.
3. Connect a normally opened (N.O.) contact to specific pins in the AUX connector as shown in Appendix H. The AutoLoad function activates when the contacts close.

Note: This method does not require an I/O Module Board with an installed input module.

Note: The first Autoload does not increment the counter.

After activating the AutoLoad function, and if the Symbology parameter is set to Any, then bar code fields (32 characters maximum) are sequentially loaded into the match code table until one of the following occurs:

- Symbols/Package setting is satisfied. If the number of outputs configured for AutoLoad is greater than the symbols/package setting, the Autoload function will fill entries until the symbols/package setting is satisfied. See AutoLoad (INPUT), below, for an explanation of how to load match code data into the table where the number of match codes is greater than the value of the Symbols/Package parameter.
- All entries (configured for AutoLoad) are filled.

NOTE: If the Symbology parameter is set to anything other than Any, then only symbols of the currently selected symbology will be AutoLoaded.

If an invalid operation occurs (decoder is unable to decode a symbol in a package), it will wait for the next package.

For each match code entry, the decoder:

- if Symbology is Any, the decoder changes the setting of the Symbology parameter to match the symbology of the first symbol read
- loads the match code string
- changes output condition to Match-Entry

If the bar code data contains the "\%" character, the decoder displays $\% \%$ in the match code table, but records a single $\%$ in the data. Use the "\%" character to enter any non-printable character. For example, $\% \mathrm{M}$ represents CTRL-M, or carriage return. See Appendix I.

\triangle
ATTENTION: It is good practice to save your configuration once the required AutoLoad parameters have been set. Doing so assures you will retain key AutoLoad parameters even after lengthy periods without power.

AutoLoad (INPUT) Configures discrete input/output 8 for AutoLoad (INPUT). This function requires an input module in position 8 of the I/O Module Board, or connection of the appropriate pins on the AUX port. (Appendix H shows how to wire the input module in I/O location 8 to a normally open contact.)

Important: AutoLoad (INPUT) requires that you configure one or more of the other outputs (1-7) for AutoLoad.

You can restore the AutoLoad condition to outputs configured (and saved) for Autoload by applying the appropriate input voltage to module 8. Refer to Chapter 4 for more information.

The AutoLoad (INPUT) condition serves two functions:

1. Activates AutoLoad Activates the AutoLoad function without restarting the system (via the Select Operation menu or host command). Refer to the examples for more information
2. AutoLoads Multiple Packages Loads multiple packages into the match code table as long as AutoLoad (INPUT) is held active. If the number of outputs configured for AutoLoad exceeds the Symbols/Package setting, multiple packages can be loaded until all table entries are filled. Do not use in Continuous Decode mode unless your intention is to load multiple versions of the same package.

When Output 8 is configured for AutoLoad (INPUT), the decoder will not load data into entry 8 of the match table.

AutoLoad (INPUT) is useful in product verification applications, where you need to load new match codes into the decoder regularly or when multiple packages must be used to fill the table. A switch or push button can be used to enter new product label data in the match code table.

Output Duration

Field Type	Options
Edit	10 to 9999
	0

Specifies the length of time (in milliseconds) that an output is activated. Enter a value between 10 and $9999 .{ }^{\bullet}$ The default of 0 disables the timer.

Important: The pulsed outputs will not operate unless you specify an output duration.

The LED indicator for an output lights only when the output is in its closed state. Therefore, the LED for a normally open output lights when the output is closed. The LED for a normally closed output lights when the output is in its closed state and turns off when the output is opened.

[^5]Figure 7.3 AutoLoad using System Restart

AutoLoad Configuration at System Restart
(Saved configuration)

Notes: AutoLoad is set for Outputs 1, 2, and 3 and applies to match code entries 1, 2, and 3. Symbols/package parameter is set to 3.

After System Restart

Commands:ESC Change:SPACE Cursor Control:ARROLS

Notes: Bar code data loaded into match code table for entries 1,2 and 3 .
Output condition changes from AutoLoad to Match Entry for Outputs 1, 2, and 3.
The AutoLoad condition for outputs 1, 2, and 3 is still saved.

Commands:ESC Change:SPACE Cursor Control:ARROWS

[^6]| Figure 7.4 AutoLoad using AutoLoad (INPUT) | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AutoLoad Configuration at AutoLoad (Input)
 (Saved Configuration)
 Output duration must be set for outputs and LEDs to operate. | | | | | | | |
| 1) Amy | $- \text { MAT }$ | CODE TABLE | - | DISCRETE
 AlB Auto Load | $1 / 0[$ | | 1 |
| 2) Any | | | | A!B Auto Load | | 100 | |
| 3) Any | | | | AIB futo Load | | 100 | |
| 4) Any | | | | AIB None | | 0 | |
| 5) Any | | | | AlB None | | 0 | |
| 6) Any | | | | AlB None | | 0 | |
| 7) Any | | | | Aib None | | 0 | |
| 8) Amy | | | | A!B Auto Load | (INPUT) | 0 | |
| | Commands: ESC | Change : SPACE | Cursor C | Control : ARROUS | | | |

Notes: AutoLoad is set for outputs 1,2 , and 3 and applies to match code entries 1,2 , and 3.
Output 8 is set to AutoLoad (INPUT), which activates the AutoLoad function for entries 1, 2, and 3 when an input signal is momentarily applied.
Symbols per package parameter is set to 1 .

First Valid Package Read
After AutoLoad

Notes: Bar code data loaded into match code table entry 1.
Output condition changes from AutoLoad to Match Entry for Output 1.
The output condition for outputs 2 and 3 does not change from AutoLoad since Symbols/Package setting has been satisfied.

AutoLoad Configuration after Next AutoLoad (INPUT)
No new data scanned

Commands:ESC Change:SPACE Cursor Control:ARROWS
Notes: Table is restored to saved configuration.
Output condition changes from Match Entry to AutoLoad for Output 1.

Ready to Autoload next symbol read into match code table

Figure 7.5 Loading multiple packages using AutoLoad (INPUT)

	AutoLoad Configuration at AutoLoad (Input) (Saved Configuration)	Output duration must be
set for outputs and LEDs to operate.		

Commands:ESC Change:SPACE Cursor Control:ARROWS

Notes: AutoLoad is set for Outputs 1, 2, and 3 and applies to match code entries 1, 2, and 3. Output 8 is set to AutoLoad (INPUT) and activates the AutoLoad function for entries 1, 2, and 3 when an input signal is applied. In this example, the input signal is applied until all three symbols are read. Symbols/package parameter is set to 1 .

AutoLoad (INPUT) Activated and Held

Commands:ESC Change:SPACE Cursor Control:ARROWS
Notes: Bar code data loaded into match code table entry 1.
Output condition changes from AutoLoad to Match Entry for Output 1.
The condition for Outputs 2 and 3 does not change since Symbols/Package has been met.

AutoLoad (INPUT) Held Active
MATCH CODE TABLE-____-_DISCRETE I/O [Enabled]-

Commands:ESC Change:SPACE Cursor Control:ARROWS
Notes: Bar code data from next package loaded into table entry 2.
Output condition changes from AutoLoad to Match Entry for output 2.
The condition for Output 3 does not change since the Symbols/Package setting has been met.

Figure 7.5 (continued)

Commands:ESC Change:SPACE Cursor Control:ARROWS

Notes: Bar code data from three packages now loaded into table.
Conditions for Outputs 1, 2, and 3 show Match Entry.
After all the table entries are loaded, AutoLoad (INPUT) must be disabled and re-enabled to load additional packages.
Notes. Bar cod dable.

AutoLoad Configuration after AutoLoad (INPUT) Activated Again
No new data scanned

Commands:ESC Change:SPACE Cursor Control:ARROWS
Notes: Table is restored to previously saved configuration.
Data cleared from match code table for entries 1, 2, and 3.
Output conditions change from Match Entry to AutoLoad for Outputs 1, 2, and 3

Ready to Autoload next symbol read into match code table

Configuration: Extended Match Table and Counters

Extended Match Table

You can use the screen illustrated below to set up match code entries in the Extended Match Code Table. You can define up to 128 entries here that provide added flexibility in response to incoming data over the Primary Match Codes described in the previous chapter.

Using Extended Match Codes you can compare all incoming data against table entries that you create to meet your own unique needs. The decoder can then count valid matches, and optionally fire one or more outputs.

Extended Match Codes provide a way to gather extremely detailed information based on decoder activity, and to exercise an additional level of control over decoder output activities.

The Extended Match Codes differ from the Primary Match Codes in a number of ways:

- Extended Match Code counters appear on the same screen from which they are controlled (the primary counters appear on a separate Status and Primary Counters screen)
- Extended Match Codes can activate multiple outputs, the duration of which are defined in the Primary Match Code Table (Primary Match Codes can each fire only a single output).

This screen displays the extended match code table in eight sets of sixteen entries. Set one includes entries 1 through 16 , set 2 includes 17 through 32 , and so on. The entry numbers (1 through 128) appear on the left side of the screen.

Each parameter is defined below. The options for each parameter are summarized in a table, and explained more fully in the text. The default setting for each parameter is displayed in bold letters in the table.

Screen Status

Field Type	Options
Select	Auto Refresh
	Next Set
	Previous Set

This parameter can be used to control three different functions relating to the extended match codes:

- It determines whether the display is refreshed regularly Selecting the default Auto Refresh setting will result in all displayed counters being updated every second.
- It permits resetting the value of extended match code table counters to zero

Selecting Reset All Counts zeroes all extended counters, whether they are among the currently displayed set or not. Selecting Reset Set Only zeroes only those counters in the currently displayed set. The system will ask you to confirm either reset command before it takes any action.

- It provides a means to move through all eight sets as necessary Selecting Next Set displays the next set of sixteen extended match code entries. Selecting Previous Set displays the previous set of sixteen extended match code entries.
Both commands treat all eight sets as a closed loop. If you select Next Set while displaying set 8 , the system will display set 1 . If you select Previous Set while displaying set 1, the system will display set 8 .
Once you've selected either Next Set or Previous Set, you can continue to scroll through all sets by repeatedly pressing [Return]. Note, however, that there may be a slight delay while the system prepares and formats each new set for display. If you hold down the [Return] key in an effort to speed up paging, you are likely to pass your intended destination.
It is not necessary to assign extended match code values in sequence. One could, for example, assign match patterns to entries $1,2,5,7$, 12 , and 16 in set 1 , nothing in set 2 , and 33 through 35 in set 3 . The details of each application will determine the strategy used in assigning (or not assigning) extended match code patterns.

Status of Counter Set

Field Type	Options
Select	Enabled Disabled

This parameter activates or deactivates the counters within the particular set of extended match code values currently displayed. The default value is Enabled, which means that any extended match code table entry in the currently displayed set to which a match pattern has been assigned will be enabled. Selecting Disabled turns off all entries in the currently displayed set. Keep in mind that this parameter affects only the currently displayed set.

Use the Screen Status parameter described above to move among sets within the table. Note that when moving from one screen to another the "Set" identifier changes to reflect the number of the set currently displayed.

The ability to turn individual sets of extended match code table entries on and off at will provides a potentially useful additional level of process control and flexibility.

Mode

Field Type	Options
Select	$A=$ Autoload
	$D=$ Disabled
	$L=$ Lot

The Mode parameter controls the operational status of individual entries in the extended match code table. The default setting is Disabled. Other choices include:

- Autoload, which configures the specified extended match code table entry to match the bar code data from the first valid package(s) into the extended match code table
Once a pattern is entered, the Mode parameter changes to Match Entry.
If the bar code data contains the "\%" character, the decoder displays $\% \%$ in the match code table, but records a single $\%$ in the data. Use the "\%" character to enter any non-printable character. For example, $\% \mathrm{M}$ represents CTRL-M, or carriage return. See Appendix I.
- Match Entry, which activates the specified output when bar code data matches the string in that row ${ }^{\text {© }}$

[^7]Used for verification of specific label information. The corresponding output counter increments each time a match entry occurs.

- Lot, which is an advanced capability available only in the extended match code table, and not in the primary match code table
When Lot is selected, the decoder will change the Mode parameter to Match Entry, M, place into the extended match code table entry the value of the first Interleaved 2-of-5 label it reads, and increment the counter. If Any had been selected as the Symbology, it will change to I 2-of-5. Every time the system encounters a matching I 2 -of- 5 label it will then:
- Increment the counter
- Activate appropriate outputs. ${ }^{\text {© }}$

This will continue until the decoder encounters a Code 39 label with the same value, at which point the system will:

- Reset the Mode to Disable
- Change the Symbology to Code 39
- Increment the counter a final time
- Activate appropriate outputs a final time. ${ }^{\text {© }}$

You can use multiple Lot entries, and have them running independently of one another. The Lot parameter provides a level of process monitoring and control sophistication required in only a few applications, but highly valuable where needed to generate statistical information.
For example, suppose extended match code table entry 1 is set up for lot mode, with activation of output 4. If the first Interleaved 2 -of- 5 symbol read by the decoder has a value of 123456 , then the mode becomes Match Entry, and 123456 becomes the match string.
Subsequent I 2 of 5 symbols with the same value will each increment the counter in row 1 , and activate output 4 . The first Code 39 symbol read that has the value 123456 will "close" the lot, and change the Symbology value from I 2 of 5 to Code 39, change M to D for the Mode, activate output 4 for the last time, and increment the counter a final time. This "closed" lot will not increment the counter or activate outputs for any I 2 of 5 or Code 39 symbols once the lot is closed. Instead, it will open a new lot if one is available.

Source

Field Type	Options
Select	A (Default for DS)
	B
	$A \mid B=A$ or B (Default for DD)
	$A-B=$ Precedent determined

Specifies from which scanner(s) an event can originate and meet the extended match pattern requirements. For single head decoders, Scanner A is the default value. For dual head decoders, the default value is $A \mid B$, which means that the decoder will accept input from either A or B to create a match. Other options include Scanner B, or precedent determined $(A-B)$.

When set to $A-B$, the decoder will use the first input from either Scanner A or Scanner B to establish a precedent for all following inputs. If, for example, the first input comes via Scanner B, then only data from Scanner B will be matched from that point on.

Symbology

Field Type	Options
Select	Code 39
	Interleaved 2-of-5
	Codabar
	UPC-E
	EAN-8
	EAN-13
	Code 128
	Pharma-Code(1)
	Any

(1) Applies only to decoders equipped with the optional Pharma-Code capabilities.

Selects the symbology of the match code string. You can select any one of the symbologies for each extended match code string.

Note: Any is the default value in the Symbology field for all entries in the match code tables.

Match Pattern String

Field Type	Options
Edit Text	0 to 32 characters Blank

Defines the characters for a specified match code string (1-128). The default is no characters (Blank), which means a match code string is not defined.

You can enter up to 32 characters for each match code string (including non-printable control characters). Enter the characters as they will be transmitted to the host. Do not include check digits if you disabled the Include Check Character parameter for the selected symbology.

The string accepts the question mark (?) as a single character wild card. A position containing a ? will match any single ASCII character in the same position of the decoded data.

Note: The Extended Match Code tables interpret a question mark differently than do the Host Replacement rules. The question mark functions as a generic wildcard when used in the Extended Match Code Table, and as a metacharacter in the Host Message Replacement Rules.

The decoder compares all decoded data with the specified entries in the match code table. If the decoded data matches any of the 128 strings, a match condition occurs.

Count

Field Type	Options
Edit Numeric	0 through 999999
	0

This field displays the current value of the extended match count for each table entry. The count automatically increments when the pattern, source, and symbology values all match a given extended match pattern. You can edit this field to set a specific start value when desired.

Loading

Field Type	Options
Edit Numeric	0 through 9, X
	0

In the most general sense, loading provides a means to distribute the response to incoming data among the eight discrete outputs. Loading instructs the decoder to respond to a match by activating the discrete corresponding to the next column number in which a nonzero value appears.

The default value of 0 disables loading for a given discrete. Values include 0 through 9 , and X.

Activation occurs from left to right in a "round-robin" fashion. During operation, a "greater than" symbol (>) will appear on the terminal screen to indicate the next discrete scheduled to fire. Any output set to " X " will fire every time a match is successful, in addition to the appropriate "round-robin" output.

Note: The duration of Extended Match Code Table outputs are established in the Primary Match Code Table. See below.

Given a situation where discretes 5,6 , and 8 are activated with loading values of 1,3 , and 1 , the table below shows what would happen during three complete cycles (15 total matches). In the example below, a bold horizontal line marks the beginning of each new cycle.

Match \#	Internal Status of Counters								On Terminal Display ${ }^{(1)}$							
	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8
0	0	0	0	0	1	3	0	1	\bullet	-	-	-	>1	3	-	1
1	0	0	0	0	0	3	0	1	-	-	-	-	1	>3	-	1
2	0	0	0	0	0	2	0	1	-	\bullet	-	-	1	3	-	>1
3	0	0	0	0	0	2	0	0	-	-	-	-	1	>3	-	1
4	0	0	0	0	0	1	0	0	\bullet	\bullet	-	-	1	>3	-	1
5	0	0	0	0	1	3	0	1	-	-	-	-	>1	3	-	1
6	0	0	0	0	0	3	0	1	\bullet	-	-	-	1	>3	-	1
7	0	0	0	0	0	2	0	1	-	\bullet	-	-	1	3	-	>1
8	0	0	0	0	0	2	0	0	\bullet	-	\bullet	-	1	>3	-	1
9	0	0	0	0	0	1	0	0	\bullet	\bullet	-	\bullet	1	>3	-	1
10	0	0	0	0	1	3	0	1	\bullet	\bullet	\bullet	-	>1	3	-	1
11	0	0	0	0	0	3	0	1	-	\bullet	-	-	1	>3	-	1
12	0	0	0	0	0	2	0	1	-	\bullet	-	-	1	3	-	>1
13	0	0	0	0	0	2	0	0	\bullet	\bullet	-	-	1	>3	\bullet	1
14	0	0	0	0	0	1	0	0	\bullet	\bullet	-	\bullet	1	>3	-	1

(1) Tinted cells in this table show location of indicator arrow ("greater than" symbol). Cells are not highlighted on screen.

Note that the numbers displayed on the terminal during processing do not change as loading progresses. Only the "greater than" symbol changes, moving as necessary to indicate the next scheduled discrete activation.

Note also that the value in each vertical (output) column has meaning only in relation to the other values on the same horizontal (match entry) row. To find the percentage of cases in which a given loading value will fire, simply divide that value by the sum the values for that match, then multiply by 100 .

$$
0+0+0+0+1+3+0+1=5
$$

In the example above, discretes 5 and 8 will each fire 20% of the time ($1 / 5^{*} 100$), while discrete 6 will fire 60% of the time ($3 / 5^{*} 100$).

Output Duration

ATTENTION: Outputs that are addressed from multiple Extended Match Code Table entries (or from both Primary and Extended Match Code Table entries) and have overlapping durations will activate as shown below. Failure to consider this fact could lead to unexpected discrete output behavior.

The settings in the Primary Match Code Table determine the duration of all outputs initiated by the Extended Match Codes.

For example, assume output 1 is set to activate for 100 ms on a match to 1234 in the Primary Match Code Table, and to activate on a match to 1345 in the Extended Match Code Table. The duration of the Extended Match Code Table activation will be 100 ms (as established in the Primary Match Code Table). If the decoder reads 1234, followed 75 ms later by 1345 , the resulting timing will be the 175 ms . The following illustration will help explain why.

Configuration: AUX and LCD Display Parameters

AUX and LCD Display Parameters

The decoder can display the following on an auxiliary terminal or an optional 2 line x 20 character per line alphanumeric LCD display to monitor:

- bar code data
- output counters
- decoder performance values
- host messages

The AUX terminal and LCD display can each display bar code data, output counter values and decoder performance indicators. The parameters on the screen shown below control how this data is formatted on both devices.

Each format parameter is defined below along with the field type and possible values. The default value is shown in bold letters

Display Data

Field Type	Options
Select	None
Aux Only	
LCD Only	
	Aux and LCD

Controls whether the formatted data is sent to the AUX terminal and/or the LCD display. The default is None, which disables the display of data on both devices.

Select AUX Only to display the data on the AUX terminal but not the LCD display. Select LCD Only to display the data on the LCD display but not the AUX terminal. Select $A U X$ and $L C D$ to enable the display of data on both devices.

The display parameters set for the AUX port apply to the AUX terminal when it is in manual data entry mode (See Chapter 13 for information on manual data entry).

Message Format

Field Type	Options
Select	Unformatted Host Format

Controls the format of the bar code data that is displayed. The default is Unformatted, which means the bar code data is displayed unformatted.

Select Host Format to display scanned data in the host message format set by the parameters on the Host Message Format configuration screen.

Note: Manually entered data cannot be sent to the LCD.
For example, assume the scanned bar code data is 123456 . If the data is displayed unformatted, it is sent as 123456 . If the data is displayed in the host format (using predefined configuration parameters), it is sent as:

See the Host Message Format screen configuration instructions in Chapter 11 for details on the configuration parameters that control the host message format.

Note: The Aux Terminal internal selector (described in Chapter 13) must be installed in the data entry position to send host formatted data to the Aux Port.

Scroll LCD

Field Type	Options
Select	No Yes

Enables or disables scrolling of the LCD display. The default of No disables scrolling and formats the LCD as a single line, 40 character display. Each new entry overwrites all positions.

Note: Newly displayed data will overwrite existing display data from the lowest position specified to the end of the display with blanks, so plan your LCD display parameters carefully. For example, messages written from the host to position 1 would not be overwritten by the decoder if the lowest position specified for LCD display was 21.

Select Yes to enable scrolling. With scrolling enabled, the LCD operates as a 2 line x 20 character display. New data always displays on line 2 , moving the previous data up to line 1 . The following figure illustrates how the LCD operates when scrolling is disabled (left) and enabled (right).

You must consider the operating mode of the LCD when displaying data. If scrolling is disabled, the LCD operates as a 1 line x 40 character display. Any data that exceeds 40 characters is truncated. If scrolling is enabled, the LCD operates as a 2 line x 20 character display. Any data that exceeds 20 characters is truncated.

Position: Bar Code Strings

Field Type	Options
Edit Numeric	0 through 40
	0

Defines the character position at which to start displaying the bar code data. The default of 0 disables the display of bar code data.

To start the bar code data display at a specific position, enter a starting character position between 1 and 40 . For example, to start the display at character position 1 , enter $1 .{ }^{\circ}$

Position: Decoder Performance

Field Type	Options
Edit Numeric	0 through 40
	0

Defines the character position at which to start displaying the decoder performance values for Scanner A and (for DD decoders) Scanner B. The performance indicator displays one value for each scanner. Each is left justified and can be a value up to 100 . For DD decoders, the first value applies to Scanner A; the second value applies to Scanner B. The default of 0 disables the display of this data.

To determine the starting position for decoder performance display, enter a starting character position between 1 and 40 . For example, to start the display at character position 21 , select 21 . Assuming scrolling is disabled, the display will appear beginning in the first position on the second line of the LCD display.(1)

Remember when selecting a starting position that you will need space for up to 3 characters for a single scanner and 6 characters for two scanners.

Position: Package Counter

Field Type	Options
Edit Numeric	0 through 40 0

Defines the character position at which to start displaying the 6 digit package counter. The default of 0 disables the display of the package counter.
(1) The Default Prompt Message and host messages always start in position 1. To prevent other data fro overwriting these messages on the LCD Display, select a position greater than the message length : LCD scrolling.

To start the package counter display at a specific position, enter a starting character position between 1 and 40. For example, to start the display at character position 30 , select 30 .(1)

Position: Symbols Not Read Counter

Field Type	Options
Edit Numeric	0 through 40 0

Defines the character position at which to start displaying the 6 digit no-read counter. The default of 0 disables the display of the no-read counter.

To start the no-read counter display at a specific position, enter a starting character position between 1 and 40 . For example, to start the display at character position 30 , select 30 .(1)

Position: Primary Counters

Field Type	Options
Edit Numeric	0 through 40 0

Defines the character position at which to start displaying the 6 digit primary output counters ($1-8$). The default of 0 disables the display of the specified output counter.

To start the output counter display at a specific position, enter a starting character position between 1 and 40. For example, to start the display at character position 30 , select 30 .

Remember, each output counter occupies 6 character positions. If you display more than one counter, allow enough positions for each counter to prevent data from overwriting other data.(1)

Note: All of the output counters (1-8) are formatted the same way.

Displaying Host Messages

The LCD Display can display text messages that are sent from the host using the ASCII or PCCC form of the Display Text Message command (depending on the host protocol you are using). Refer to Chapters 15 and 16 for additional information on ASCII and PCCC commands.
(1) The Default Prompt Message and host messages always start in position 1. To prevent other data frc overwriting these messages on the LCD Display, select a position greater than the message length : LCD scrolling.

ASCII Command

The Display Text Message (TM) command allows you to send a message
to the LCD Display. The following TM command sends the message "START JOB!".

When the host sends this command to the decoder, the message displays on the LCD at the beginning of the line in position 01. The message remains on the display until it is overwritten by another message or data.

Remember, the LCD can only display 20 or 40 characters depending on whether scrolling is enabled. Messages that are longer than 20 or 40 characters will be truncated. See the examples on the next page.

If the TM command is sent with a string length of zero, the decoder displays the Default Prompt Message (if defined) instead. The following prompt defines this message:

Refer to chapter 13 for additional information..

PCCC Command

You can also send a PCCC command to display a message on the LCD. The following command uses the command address of 900 H to send the message "START JOB!". Bytes 6 - 15 define the characters of the message.

Display Message at AUX Terminal (900H)

When the host sends this command to the decoder, the message displays on the LCD at the beginning of the line in position 01 . The message remains on the display until it is overwritten by another message or data.

Remember, the LCD can only display 20 or 40 characters depending on whether scrolling is enabled. Messages that are longer than 20 or 40 characters will be truncated.

If the PCCC $(900 \mathrm{H})$ command is sent without a message defined, the decoder displays the Default Prompt Message instead.

How Scrolling Affects the Display of Host Messages

Scrolling affects the placement of host messages (and default prompt messages) on the LCD Display. When scrolling is disabled, each new message overwrites the last message. When scrolling is enabled, new messages display on line 2 , scrolling the previous message up to line 1.

The following example shows how the LCD handles the host messages "START JOB" and "END JOB" when scrolling is disabled and enabled.

Select starting positions for other data that is greater than the length of the host messages. This will allow host messages and other data to display at the same time without overwriting each other.

LCD Display Examples

The section provides examples to illustrate how data is displayed on the LCD Display and how the configuration parameters control the format of the displayed data.

Example 1

In Example 1, the LCD Display is enabled to display bar code data, decoder performance values, primary counter 1, primary counter 4, and primary counter 8 .

When scrolling is not enabled, the display operates as a single line, 40 character display. Line 1 displays characters in positions 1-20. Line 2 displays characters in positions $21-40$. Any data you configure to display beyond position 40 will be truncated.

The LCD display will look like this for the above configuration. Line 1 displays the bar code data and the decoder performance values. Line 2 displays output counters 1,4 , and 8 .

Important: Host messages and Default Prompt Messages always display in position 01 . If host messages are expected, select starting positions for other data that are greater than the length of these messages to avoid conflicts.

Example 2

In Example 2, the LCD Display is enabled to display bar code data in position 1 and decoder performance values in position 15.

Scrolling is enabled for the LCD Display, which means the display operates as a 2 line display with 20 characters per line. Both lines display characters in positions 1-20. With scrolling enabled, you cannot display more than 20 characters per line at one time. Any data you configure to display beyond position 20 will be truncated.

The LCD display will look like this for the above configuration. Line 2 displays the bar code data and the performance indicators.

When scrolling is enabled, all new data displays on the second line. When the LCD receives new data, it will display on line 2, moving the previous data up one line.

Adjusting Contrast of LCD Display

The main logic board of the decoder has a potentiometer for adjusting the contrast of the LCD Display. Figure 9.1 shows the general location of the potentiometer on the main logic board.

Figure 9.1 Potentiometer for LCD display contrast
Mounting bracket for optional battery

To adjust the contrast of the LCD Display:

1. Power on decoder, but if possible disconnect power from module connectors.
2. Loosen the two screws which secure the cover of the decoder and open.
3. Using your fingers, turn the LCD Display potentiometer to the left or right until the desired contrast or readability is achieved.
4. Close cover of decoder and tighten screws.

AUX Terminal Display Examples

The section provides examples to illustrate how data is displayed at the AUX terminal and how the configuration parameters control the format of the displayed data.

Example 1

In Example 1, the AUX terminal is configured to display unformatted bar code data in position 21.

```
        DISPLAY DATA: Aux Only }4\mathrm{ Enables AUX Terminal to display data.
        MESSAGE FORMAT: Unformatted 4 Displays unformatted bar code data.
        SCROLL LCD: No
POSITION
    2 1 ~ B A R ~ C O D E ~ S T R I N G S ~ < ~ D ~ D i s p l a y s ~ b a r ~ c o d e ~ d a t a ~ s t a r t i n g ~ a t ~ p o s i t i o n ~ 2 1 ,
    0. DECDDER PERFORMMANCE
    0 PACKAGE COUNTER
    0 SYMBOLS NOT READ COUNTER
    _-_PRIMARY CDUNTERS-_-
        0 1) None
        0 2) None
        0 3) None
        0 4) None
        0 5) None
        0 6) None
        0 7) None
    0 8) None
```

The AUX terminal display will look like this for the above configuration.

Example 2
In Example 2, bar code data configured to display in position 21 will not display because the AUX terminal has not been enabled to display data.

Example 3

In Example 3, the AUX terminal is enabled to display bar code data, decoder performance values, and the package counter.

The terminal display will look like this for the above configuration.

Bar Code Data	Decoder Performance Values Scanner A Scanner B		
			Package Counter
. 229176			1724
- 229183	0	96	1725
229192	98	0	1726
229206	0	95	1727
229240	96	0	1728
229253	99	0	1729
229263	0	97	1730
229268		99	1731
229285	97	0	1732
229322	0	96	1733
229327	99	0	1734
229336	99	0	1735
229345	0	95	1736
229361	0	98	1737
229371	97	0	1738
229391	0	99	1739
229427	98	0	1740
229433	97	0	1741
229438	98	0	1742
229449	0	95	1743
229456	96	0	1744
229466	99	0	1745
229476	0	97	1746
229493	0	99	1747
229517	97	0	1748

Chapter 10

Configuration: Host Message Replacement Rules

Introduction to Host Message Replacement Rules

Function 5 on the Select Operation menu accesses the Host Message Replacement Rules configuration screen. Use this function to modify the message sent to the host.

Host message replacement rules may not be required in every application. They are unnecessary when your needs include simple object counting, or collection of raw bar code data. However, host message replacement rules will prove useful when you need to substitute a predetermined output message for specific bar code data during decoding. With them you can:

- send data in a particular, predefined order regardless of the order in which the labels were read
- mask bar code characters to simplify operations and speed processing
- truncate or pad the length of the data package
- substitute a predetermined text string for one or more expected values.
- convert abstract bar code contents into more easily understood text form
- categorize labels based upon selected portions of their contents.

Both the search and replacement strings that make up a Host Message Replacement Rule can consist of a combination of standard ASCII characters and special characters known as metacharacters. Metacharacters are explained later in this section.

Symbols vs. Host Message Fields

Understanding host message replacement rules and their use requires that you clearly understand the difference between two frequently confused terms.

A bar code symbol is the set of bars and spaces from which the scanner gathers data for interpretation by the decoder.

A message field is the decoded information sent from the decoder to a host after processing an incoming symbol.

In the most simple terms, a symbol can be thought of as a stimulus to the decoder, and a message field (or group of message fields assembled into a host message) can be considered the response to that stimulus.

Introduction to Host Message Replacement Rules

The decoder allows you to use up to 16 Host Message Replacement Rules. Each rule can be enabled and defined as necessary to meet your own application needs.

In addition to the prompt line at the bottom of the screen, the Host Message Replacement Rules configuration screen is made up of three sections:

- Rule status, located on the far left side of the screen

Each number represents an available host message replacement rule. Currently enabled rules are marked with an asterisk (*). Rules are enabled by assigning a value to the Find String Containing field.

- Host message replacement rule definition, located in the upper half of the screen
This section displays the current search rule criteria (which include Source, Symbology, Symbol Number, and Find String Containing) and the replacement string to send to the host when matches are found. The rule definition also includes parameters to fix the length of the field, the character used to "fill" the field, and the alignment of the string within the field.
- Example testing, in the lower portion of the screen

This section provides a "worksheet" where you can insert sample bar code strings to test the performance of your rules. This feature allows you to conveniently "debug" your replacement rule expressions for structural and logical errors before going on-line. You simply input the test bar code string on the left. The string that will appear in the host message after application of the displayed rule appears on the right. If your test string does not create a match, you will be notified of that fact on the right side of the screen.
Taken together, these three sections provide for full control over host message replacement rules, and enable you to format complete, comprehensible message fields as required.

Each format parameter is defined below along with the field type and possible values. The default value is shown in bold letters in the parameter tables. A careful study of the examples that follow the parameter descriptions will help explain their use.

Metacharacters

The decoder provides a complete set of special purpose characters you can use to perform logical functions on characters, expressions, or even entire strings. These characters are known as metacharacters. Simply put, they are string manipulation commands consisting of standard ASCII characters which you can embed within search or replacement strings. Each metacharacter conveys a specific instruction to the decoder software, and acts upon a clearly defined range within the string. Metacharacters can be used with standard alphanumeric characters to describe and manipulate even the most complex substitution scenarios with ease.

A listing of valid metacharacters appears in the table below. Each appears with a general explanation of its function and syntax. More detailed examples of their use appear at the end of this chapter.

Note: The host replacement rules interpret a question mark differently than does the match code table. As a metacharacter used with the host replacement rules, a question mark is not interpreted as a single character wild card. See Table 10.B and 10.C later in this chapter.

Note: There are two distinct sets of metacharacters used by the host message replacement rule software. One set applies only to search patterns, and the other only to replacement strings. If the decoder encounters a search pattern metacharacter in a replacement message, it will interpret it as a standard ASCII character. Conversely, if the decoder detects a replacement string metacharacter in a search pattern, it will interpret it as a standard ASCII character. For example, a "*" in a replacement string will be treated as normal text, and " $\&$ " in a search pattern will be treated as normal text.

Use the characters described in the following tables to help establish the exact search patterns that meet your needs. Proceed carefully, however. While the individual metacharacters perform easily understood actions, combining and nesting them will quickly create extremely complex logical expressions. Be sure to test your expressions thoroughly in the lower half of the screen to make certain your search and replace strings perform as you expect them to under the conditions you are liable to experience.

Table 10.A Search pattern metacharacters - position dependent

Character	Description and Use
\wedge	Note: The following two metacharacters are position-dependent. They must appear in the location specified to be matched.
If the circumflex ($\wedge)$ is used as the first character in the search pattern, it indicates that the characters, other metacharacters, expressions, or strings must occur at the beginning of the string to be matched. Note that the circumflex has a special meaning if used within square brackets, as explained elsewhere in this chapter.	
	When the dollar sign is used as the last character in the search pattern, it indicates that the characters, other metacharacters, expressions or strings must occur at the end of the string to be matched.

Table 10.B Search pattern metacharacters - wildcard

Character	Description and Use
\cdot	The period represents any single character, and is used as a single-character "wildcard".

Table 10.C Search pattern metacharacters - string manipulation

Character	Description and Use
$?$	Note: These metacharacters refer to the character, metacharacter, string, or expression that immediately precedes them.
The question mark instructs the rule to match either no occurrence or	
+ one occurrence of what precedes it. This metacharacter is used in a	
search string where the character may not appear at all, or may appear	
once.	
*	The plus sign instructs the rule to match one or more occurrences of what precedes it. This metacharacter is used in a search string where the character will be present, but you are unsure how many times it appears.
The asterisk instructs the rule to match none or more occurrences of what precedes it. This metacharacter is used in a search string in cases where the character may not appear, or may appear one or more times.	

Table 10.D Search patter metacharacters - logical operators and other special functions

Character	Description and Use
[]	Square brackets ([]) instructs the rule to match an incoming string if any character enclosed within the brackets appears in the string. A range of values can be represented within the brackets by separating the first and last characters in the range by a hyphen. Square brackets must be used in pairs. Note: The circumflex (\wedge) can be used as the first character within the square brackets to reverse the sense of the expression. Examples [ABC] Matches " A ", " B ", or " C " [L-P] Matches "L", "M", "N", "O", or "P" [0-9] Matches "0", "1", " 2 ", " 3 ", " 4 ", " " ", " 6 ", " "", " 8 ", or " 9 " [$A-Z]$ Matches any character that is not upper case alphabetic
()	Parentheses can be used in two different ways. They can be used in search patterns to group characters and metacharacters to form expressions. Parentheses must be used in pairs. Examples $(A B)+\quad \text { The plus sign applies to the expression (AB). }$ Strings that would match this expression include: "AB", "ABAB", "123AB", and "AB123". Parentheses can also be used to identify strings for use in the Replace Entire String With field. If a character, string, or expression is surrounded by parentheses in a search pattern, then it can be later recalled in a replace pattern with the "n" metacharacter described elsewhere in this chapter. Note: Parentheses may be nested to form complex expressions.

Character	Description and Use
\|	A vertical bar (the shifted "" character on the keyboard) instructs the rule to match an incoming string if the character or expression on the left or right of the vertical bar appears in the string. Examples $A \mid B \quad$ Matches " A " or " B " abcl123 Matches "abc" or " 123 "
1	The backslash indicates that the following character, which would normally be interpreted as a metacharacter, should instead be interpreted as a literal ASCII character. Note: The backslash is used differently in the Replace Patterns. See Table 10.E. Example

Table 10.E Replacement string metacharacters

Character	Description and Use
In	The backslash plus a number 1 through 9 recalls a previously saved string. Any character, string or expression that is surrounded by parentheses in the search pattern (as described earlier) can be recalled by the replace pattern using the "nn" format. Since the parentheses may be nested, the number " n " represents the order of the groupings as defined by the order of the left parenthesis in the search pattern.

Examples

Search Pattern $=$	$123(\mathrm{ABC})$
Replace Entire String With $=$	11
Incoming String $=$	$123 A B C 456$
Result for Host Message $=$	ABC

The search pattern above matches the incoming string. The Replace Entire String With value states that the string identified within the first parentheses should be sent to the host.

Search Pattern $=$	$(123(A B C))$
Replace Entire String With $=$	1112
Incoming String $=$	$123 A B C 456$
Result for Host Message $=$	$123 A B C A B C$

The search pattern above matches the incoming string. The Replace Entire String With value states that the string identified within the first parentheses (123ABC), plus the string identified by the second parentheses $(A B C)$ should be sent to the host.
\&
When the ampersand (\&) is used in a replacement pattern, it indicates that the part of the string that matches the search pattern should be sent to the host. Therefore, if the string read contains more characters than the search pattern, then the additional characters are discarded.

Examples

Search Pattern $=$	123ABC
Replace Entire String With $=$	$\&$
Incoming String $=$	123 ABC
Result for Host Message $=$	123 ABC

The search pattern matches the incoming string. The Replace Entire String With value states that the string identified in the search pattern should be sent to the host.

Search Pattern $=$	$123 A B C$
Replace Entire String With $=$	$\&$
Incoming String $=$	$123 A B C 456$
Result for Host Message $=$	$123 A B C$

The search pattern matches the incoming string. The Replace Entire String With value states that the string identified in the search pattern should be sent to the host. This does not include the digits 456 .

Processing Order

Matches are determined for each of the Host Message Fields (1 through 16) by applying the rule parameters as follows:

The lowest numbered rule with the Host Message Field Number value of 1 (or $A l l$) will be applied first. If that rule is successful, no other rule specifying field 1 (or All) will be applied. This will continue until a rule satisfies the field, or until all appropriate rules have been applied to field 1 . The decoder will continue this process for all fields until each is satisfied, or until all appropriate rules have failed. No-read Replacement strings (if defined) will be substituted for the data if the rules fail. See Chapter 11.

Important: You will want to set up your host message replacement rule table with care. Here are a few general guidelines:

- Prioritize your replacement rules. Only one rule can fill a field, and once one rule has filled a field, then no other rules will apply to that field. Define the rule which will lead to the most preferable result first, the next preferable result next, and so on.
- If you need to fill specific fields, define the rules for those fields first.
- When using metacharacters, define first those expressions which are most restrictive (most specific), and then proceed to those which are less so.
- Define rules specifying All as the host message field number last. This is especially important, because if such a rule creates a match, then no other rules that occur after it and are directed to specific host fields can have any affect. (Remember: once one rule has filled a field, then no other rules will apply to that field.)

Configuration Parameters

Source

Field Type	Options
Select	A (Default for DS Only) B A $\mid B=A$ or B (Default for DD only) Aux

Specifies where an event can originate and meet the host message replacement rule requirements. For DS decoders, Scanner A is the default value. For DD decoders, the default value is $A \mid B$, which means that the decoder will accept input from either A or B to create a match. You can also select AUX or, if you have a DD decoder, Scanner B as the source.

The decoder processes rules for the AUX and each of the scanners separately. For example, if all enabled rules specify Scanner A as the source, then data received from Scanner B or the auxiliary terminal does not pass through the rules and will not be affected by them.

Note: If any rule is enabled for a given source, then all data from that source will pass through the rules. For example, if any rule is enabled for AUX data, then all AUX data will pass through the rules.

Therefore, if you construct a rule with Scanner A as the source, and establish no rule for Scanner B, then all data from Scanner A will pass through the rules, while the data from Scanner B will not. In that case, a no-read from Scanner A would be represented by the appropriate no-read replacement string. A no-read from Scanner B (in Independent Mode) would be represented by the default no-read string. Use "A|B" as the source if you want the rule to apply to both scanners, or whenever Scanner B is set to coordinated mode.

When $A U X$ is selected as the source, the rule processor ignores that rule's Host Field Number, Symbol Number, and Symbology parameters.

Symbology

| Field Type | Options |
| ---: | :--- | :--- |
| Select | Code 39 |
| | Interleaved 2-of-5 |
| | Codabar |
| | |
| | UPC-E |
| | EAN-8 |
| | EAN-13 |
| | Code 128 |
| Pharma-Code(1) | |
| | Any |

Selects the symbology to which the host message replacement rule should be applied. The default value is Any. Pharma-Code is available only on decoders equipped with the Pharma-Code option.

Symbol Number

Field Type	Options
Edit Numeric	1 to 16
	All

Determines the bar code symbol to which the displayed rule should be applied. 1 would apply the rule only to the first symbol read, 2 to the second symbol, and so on up through 16. The default value of All applies the rule to all symbols read.

Use All in raster scanner applications, or whenever you are uncertain of the order in which the symbols will be read.

Note: Using a combination of $A l l$ in the symbol number field and All in the host message field number field within a rule creates a special situation in which the decoder will attempt to match the rule using only those symbols that have not previously satisfied a rule.

A rule in which the host message field number is set to All will try to process every symbol to satisfy the search criteria until all of the host fields are satisfied.

Important: Do not set the host message field number to All unless:

- The Number of Fields in Message parameter is set to 1 on the Host Message Format screen.

OR

- The Number of Fields in Message parameter is set to All on the Host Message Format screen and the Symbols per Package parameter is set to 1 on the Scanner Control screen

OR

- The Symbol Number parameter is set to All.

Other configurations will result in multiple copies of the same data being set as different fields in the host message.

For example, if the Number of Fields in Message parameter is set to a number greater than 1 , with the host message field number set to All, then the same symbol will be processed through a single rule multiple times. For the purposes of this example, assume the number of fields in message value is set to 3 , and the user has enabled rule number 1 as shown below.

Commands:ESC Change:SPACE Cursor Control:ARROWS

If Scanner A reads the following symbols:
AB1
1AB
BA1

Then the host message would be $A B 1 A B 1 A B 1$. Since the first symbol read satisfies the search criteria, it will continue passing through the rule until all host fields are filled.

Changing the symbol number to 2 would lead to a host message of 1 AB 1 AB 1 AB .

Instead, if the Symbol Number parameter is set to All and the host message field number is set to All , then each symbol that has satisfied a rule is "marked". That symbol's marked status prohibits other rules with both Symbol Number and Host Message Field Number parameters set to All from using it.

For example, resetting the symbol number to All in the configuration illustrated above results in a host message of AB11ABBA1.

This occurs because AB1 (the first symbol read) satisfies the rule and is used for host field one. Since AB1 has now been used, and both symbol number and host message field number are set to All, AB1 won't be considered for the second pass through the rule. Instead, 1 AB will satisfy the rule on the second pass, and will be used for host field two and will be marked so it will not be considered for the third pass. BA1 satisfies the third pass, and will be used for host field three.

Find String Containing

Field Type	Options
Edit Text	Any valid string up to 24 characters in length Blank

If not blank, enables the selected rule number and specifies a string for which to search among incoming symbols. The string may consist of any valid combination of ASCII characters and metacharacters. All the Find String Containing fields are empty by default, which disables all host message replacement rules. Only enabled rules will affect decoder performance. All rules are empty and therefore disabled - at default startup.

Replace Entire String With

Field Type	Options
Edit Text	Any valid string up to 24 characters in length Blank

Defines the string or expression that should be sent to the host to replace the string that was matched by the search pattern currently in effect. Whenever the search pattern is satisfied, the replacement pattern defined here will be substituted for the entire string.

Even if the search pattern is only a portion of the incoming string, the entire incoming string is replaced by the replacement pattern. For an example of how to replace only a portion of the incoming string, see Example 9 at the end of this chapter.

The resulting string appears in the field defined by the host message field number. The string or expression may consist of any valid combination of ASCII characters and metacharacters. The default value is Blank.

Minimum Field Length

Field Type	Options
Edit Numeric	0 through 64
	0

Specifies the minimum number of characters in any field that satisfies the rule. Fields that are longer than the minimum field length remain unchanged, but fields that are shorter than the minimum length are padded to meet the minimum value. Fill characters appear either before or after the existing field, depending on the field's alignment.

The default value is 0 , which means minimum field length, alignment, and fill character functions are all disabled. Allowable values are any number from 0 to 64 .

Alignment

Field Type	Options
Select	Left Right

Determines whether the data in the host message should align to the left or right edge of the field. The default is Right. As described above, fill characters will be applied before the text (pushing the text to the far right) in right justified fields, and after the text (pushing the text to the far left) in left justified fields.

Fill Character

Field Type	Options
Edit ASCII	Any ASCII Character 0-255 $0=$ None

Specifies a character to insert in the field when its length is less than the minimum field length selected above. For example, if the result of a successful replacement is the $\boldsymbol{A B C D}$, with a minimum field length of nine, left alignment, and a fill character of ASCII 35 (\#), the resulting field would look like:

ABCD\#\#\#\#\#

Appendix I contains a complete chart of ASCII characters and their values.

Host Message Field Number

Field Type	Options
Edit Numeric	1 through 16 All

Specifies to which of the 16 available field numbers the currently displayed rule applies. The default value is All. Other allowable values include the numbers 1 through 16.

Since rule processing applies to the rules in numerical order (1 through 16), once a field is satisfied by a rule, no other rule with the same host message field number will be processed.

Note: Using a combination of All in the symbol number field and All in the host message field number field within a rule creates a special situation in which the decoder will attempt to match the rule using only those symbols that have not previously satisfied this rule or any other.

Assembling a Host Message

Some applications demand nothing more than a stream of raw bar code data to be of use. However, interpretation and manipulation of that raw data proves useful in many production situations. Host message replacement rules make that interpretation and manipulation possible.

When assembling a host message, the decoder software calls upon the rule processor to fill in each position of the host message beginning with the first host message field, and proceeding in order to the last.

Up to 16 fields can be specified for each message. The exact number is determined by the setting in the Host Message Format screen's number of fields in host message.

If the number of fields in host message value is All, then the number of fields in the host message will equal the value appearing in the Symbols per Package parameter on the Scanner Control screen. However, when its value is 1 to 16 , then the decoder sends back exactly that number of fields.

In a case where the number of fields read does not equal the specified number of symbols per host message, the host replacement rules, if active, will determine which data is sent to the host. If the rules are inactive, symbol data will be sent in the order decoded, up to the value specified in the number of fields in the Host Message parameter. In cases where there are fewer symbols than there are fields specified, then the decoder will send no-read message strings as explained below.

If no rule finds a match for a given host message field, it inserts the no-read replacement string for that field number. In cases where the no-read replacement string has not been defined for that particular field number, then the decoder inserts the default no-read string. Finally, if the default no-read string is not defined, then the decoder leaves the field blank.

Examples

Example 1: Sorting by Data Source

Parameter	Rule \#1 Value	Rule \#2 Value
Source	A	B
Symbology	Any	Any
Symbol Number	All	All
Find String Containing	.*	.*
Replace Entire String	$\&$	$\&$
With	\&	
Minimum Field Length	0	0
Alignment	Right	Right
Fill Character	None	None
Host Message Field		
Number	1	2

In the decode mode Coordinated 1 or 2 , two symbols per package and each scanner reading a single symbol, the data from Scanner A will always appear first, and the data from Scanner B second.
Appropriate No-Read messages may be selected for each scanner by using the No-Read Replacement Rules.

Example 2: Identifying the Source of Data

Parameter	Rule \#1 Value	Rule \#2 Value
Source	A\|B	Aux
Symbology	Any	Any
Symbol Number	All	All
Find String Containing	.*	.*
Replace Entire String		
With	\&	\& Aux Data
Minimum Field Length	0	0
Alignment	Right	Right
Fill Character	None	None
Host Message Field		
Number	1	1

All scanner data will be sent to the host as received. Data entered into the AUX Port will be sent with the characters "Aux Data" appended to the data. In a real application, it may be critical to know the source of information. The Host Replacement Rules make this possible. (Also see Source Identifier.)

Example 3: Sorting by Symbology

By setting up specific rules to check for symbology, different code types may be sent to the host in a predetermined order.

Parameter	Rule \#1 Value	Rule \#2 Value
Source	A $\mid \mathbf{B}$	A $\mid \mathbf{B}$
Symbology	Code 128	I2 of 5
Symbol Number	All	All
Find String Containing	.*	.*
Replace Entire String	\&	
With		0
Minimum Field Length	0	Right
Alignment	Right	None
Fill Character	None	2

In this case, 2 symbols per package will be read. The symbols are sent to the host with the Code 128 symbol first, or its No-read Replacement Message. This technique may be useful in applications where these two symbologies are used together.

Example 4: Sorting by Symbol Number

Parameter	Rule \#1 Value	Rule \#2 Value
Source	A $\mid \mathbf{B}$	A $\mid \mathbf{B}$
Symbology	Any	Any
Symbol Number	2	1
Find String Containing	.*	.*
Replace Entire String		
With	$\&$	$\&$
Minimum Field Length	0	0
Alignment	Right	Right
Fill Character	None	None
Host Message Field		
Number	1	2

The above rules allow the host to receive the symbol data in reverse order from the order it was decoded. The first symbol decoded (symbol number 1) will be sent as field number 2, while symbol number 2 will be sent first.

Example 5: Sorting Symbols by Data Identifiers

Parameter	Rule \#1 Value	Rule \#2 Value	Rule \#3 Value	Rule \#4 Value		
Source	A\|B	A\|B	A\|B	A\|B		
Symbology	Any	Any	Any	Any		
Symbol Number	All	All	All	All		
Find String Containing	$\begin{aligned} & \text { ^P } \mathrm{P}(. . \\ & \$ \mathrm{l} \end{aligned}$	${ }^{\wedge} \mathrm{Q}\left(.^{*}\right)$	^S(.*)	$\wedge V(\ldots .) \$. \hline Replace Entire String With & 11 & Qty $=11$	\1	\1
Minimum Field Length	0	0	0	0		
Alignment	Right	Right	Right	Right		
Fill Character	None	None	None	None		
Host Message Field Number	1	2	3	4		

This example illustrates the effects of sorting host data using data identifiers. Specifications such as AIAG and ODETTE use these unique characters to identify specific data within a group of symbols. These characters are embedded into the encoded Bar Code symbol. Although not always printed in the human readable text, they appear as the first character (or group of characters) in the symbol. In this example data are sorted so that the part number, quantity, serial number, and supplier identification are sent to the host in that particular order. By using the parentheses in the search string and the " 1 " in the replace string, we are able to strip off the data identifier, and send only the data desired.

In this example, if the part number does not have exactly 7 characters after the identifier, it will fail the rule and not be sent. In rule \#2, we search for the quantity identifier. If the symbol Q100 was read, we would send "Qty = 100" with the replace string "Qty = \1"

Example 6: Sorting by Unique Characters and/or Strings

Parameter	Rule \#1 Value
Source	A\|B
Symbology	Any
Symbol Number	All
Find String Containing	${ }^{\wedge} 6[2-9] \mid \wedge[7-9][0-9] \$$
Replace Entire String With	$\&$
Minimum Field Length	0
Alignment	Right
Fill Character	None
Host Message Field Number	1

This rule checks symbols as they are decoded for values between 62 and 99 . All other symbols would be ignored by this rule. Values between 62 and 99 are sent to the host. Note the ${ }^{\wedge}$ and $\$$ are required to avoid matching strings such as 562 or 758 that do contain the desired string data (62 and 75), but are not the desired matches.

Example 7: Stripping Unwanted Characters

Parameter	Rule \#1 Value	
Source	A\|B	
Symbology	Any	
Symbol Number	All	
Find String Containing	$\wedge 0^{*}\left(.^{*}\right) \$$ this example)	$(\$$ is optional in
Replace Entire String With	11	
Minimum Field Length	0	
Alignment	Right	
Fill Character	None	
Host Message Field Number	1	

This example strips leading zeroes off the decoded symbols. For example, the symbol 00012345678905 would be sent to the host as 12345678905.

Example 8: Stripping Unwanted Characters

Parameter	Rule \#1 Value
Source	A\|B
Symbology	UPC-A
Symbol Number	All
Find String Containing	$\wedge(\ldots \ldots)\left(.^{*}\right)$
Replace Entire String With	12
Minimum Field Length	0
Alignment	Right
Fill Character	None
Host Message Field Number	1

This rule allows the number system character (first character) and the next 5 characters (the manufacturer's identification code) to be dropped when the data is sent to the host. This technique can be useful in obtaining maximum throughput, as it helps minimize communication and host program sorting time.

Example 9: Substituting Characters Within a String

Parameter	Rule \#1 Value
Source	A \mid B
Symbology	Any
Symbol Number	All
Find String Containing	$\left(.^{*}\right)(123)\left(.^{*}\right)$
Replace Entire String With	$\backslash 1$ ABCl3
Minimum Field Length	0
Alignment	Right
Fill Character	None
Host Message Field Number	1

This example will substitute "ABC" for " 123 " within the string. Note that if " 123 " appears more than once within the incoming data, "ABC" will be substituted only for the last occurrence. For example, "01234567" would become "0ABC4567", and "01231237" would become "0123ABC7".

Configuration: Host Message Format

Host Message Format

Introduction to Host Message Format

Function 6 on the Select Operation menu accesses the Host Message Format configuration screen. Use this function to configure the message format of bar code data sent to the host. The screen displays with the first field highlighted.

	(A): (B) : NUMBER OF FIELDS IN MESSAGE: ALL SEND PACKAGE CDUNT: No SEMD DECODER PERFORMAMCE: No END MESSAGE: CrLf FIELD NUMBER NO-READ REPLACEMENT STRING 11 12 13 14 15 16
Commands:ESC Change:SPACE	Cursor Control:ARROWS

The default settings are displayed the first time you access this screen. Make changes appropriate for your application. If the factory defaults are satisfactory, you can exit the configuration software by pressing [Esc] twice, or move on to the Host Communications configuration screen by pressing [Esc][Return]

The parameters are grouped by function on the screen. The following pages describe each group of parameters.

Bar code data is sent to the host at the end of a trigger or after a valid package (see Send Message to Host). The data is sent to the host as an ASCII string. The figure below shows the structure of the string. For each field in the string, the figure shows:

- the type of data in each field
- length of the field (in parentheses)

Some of the fields are controlled by the bar code itself. However, most of the fields are controlled by the host message configuration parameters. In addition, many of these same functions can be performed using the Host Replacement Rules described earlier in this manual.

Bar Code Host Message Format

In messages containing multiple bar code data strings, each string will be separated by a single field delimiter. A double delimiter follows the final string.

Below are some sample host messages to help you configure your decoder. The examples show data transmitted by the decoder. The configuration parameters for the message were set up as follows:

Note: A double delimiter (two quotation marks in this example) indicate the end of bar code data.

Example 1: If one Code 39 label is decoded, the decoder transmits:

Example 2: If two Code 39 labels are scanned on a single package, the decoder transmits:
\#L7-AData From Scanner A " 01998877665 " 01001122334 " " 000014 CRLF

Example 3: If a No-Read occurs, the decoder transmits:

Note: Message packages can consist of both bar code strings and no-read strings.

Host Message Parameters

The parameters listed below include those used to control the message format of bar code data that is sent to the host. Each parameter is defined below. The options for each parameter are summarized in a table, and explained more fully in the text. Where appropriate, the default setting for each parameter is displayed in bold letters in the table.

Start Character

Field Type	Options
Edit Numeric	ASCII Numeric $(1-255)$ $255=$ None
	2

Defines the three digit decimal ASCII starting character for every bar code message sent to the host. The default is None or 255 , which indicates no start character.

Source Identifier for AUX, A, and B

Field Type	Options
Edit Text	Any ASCII Character
	String (4 chars max) Blank

Defines a 1 to 4 character identifier to include in each message sent to the host. The string identifies the source device for the data contained in the message. The default for each field is Blank, which means a source identifier is not defined. Example source identifiers are SCNA, SCNB, and AUX.

The source identifier may be unique for Scanner A, Scanner B and the AUX terminal to identify the data source.

Header Message

Defines a 1 to 32 character header message to include in each message sent to the host. The default is Blank, which means a header message is not defined. An example header message is BAR CODE DATA.

Field Delimiter

Field Type	Options
Edit Numeric	ASCII Numeric $(1-255)$ $255=$ None

Defines the three digit decimal ASCII character that will indicate the beginning and end of bar code label data. If multiple symbols are being read, the delimiter also separates each field in the message. A double delimiter (two consecutive occurrences of a delimiter character) indicates the end of a package.

The default is None or 255 , which means no delimiter is defined. When choosing a delimiter, be careful to select a character that will not appear in the bar code data.

Number of Fields in Message

Field Type	Options
Edit Numeric	1 through 16 $0=$ All

Determines the number of bar code symbols to include in each message. The default $A l l$ sets the value to equal the number of symbols per package. The values 1 through 16 will set this value to a specific number of fields. (See Symbols Per Package, Chapter 7, and Host Replacement Rules: Host Message Field Number, Chapter 10, for more information.)

Send Symbology

Field Type	Options
Select	Yes
	No

Controls whether the symbology type of the bar code is included in the message sent to the host. The default is No, which means the symbology type is not sent to the host.

If you select Yes, the symbology type is transmitted as a two digit code:

00	Keyboard Data from AUX Terminal
01	Code 39
02	Interleaved 2-of-5
03	Codabar
04	UPC-A
05	UPC-E
06	EAN-8
07	EAN-13
08	Code 128
09	Pharma-Code

Send Package Count

Field Type	Options
Select	Yes
	No

Controls whether the package count is included in the message sent to the host. The default is No, the package count is not sent to the host.

The six digit package count is maintained by the package counter. Counter data can also be sent to the host when requested by a host command as described elsewhere in this manual.

Send Bar Code Strings

Field Type	Options
Select	Yes
	No

Controls whether bar code data is sent to the host. The default of Yes sends bar code data to the host.

Send Decoder Performance

Field Type	Options
Select	Yes
	No

Controls whether the performance indicators for Scanners A and B are included in the message sent to the host. The default is No, the performance indicators are not sent to the host.

The performance indicator is a three digit value for DS units, and a six digit value for DD units. The first three digits apply to Scanner A, and the last three digits apply to Scanner B.

End Message

Field Type	Options
	None
	CRLF
Select	CR
	LF
	ETX
	CRETX
	LFETX
	CRLFETX

Defines an ASCII control code to terminate or end each message sent to the host. The default is CRLF, which terminates each message with a carriage return and line feed.

Default No-Read Message

Defines a 1 to 32 character no-read message to include in each message sent to the host when a no-read occurs and a specific no-read message has not been defined for that field (see below). The default is Blank, which means a default no-read message string is not defined. An example no-read message is NO-READ.

No-Read Replacement Strings

Field Type	Options
	Any ASCII Character
Edit Text	String Blank chars max)

If the rules are active (See Chapter 10), defines a 1 to 32 character string to include in the message sent to the host. These strings are sent when a no-read or a specific host replacement rule is not satisfied for a specific field (1 through 16). The default is Blank, which means a no-read replacement string is not defined for that field. If a no-read does occur, or a replacement rule fails, the default no-read message (if one is defined) will be sent.

Configuration: Host Communications

Host Communications
Function 7 on the Select Operation menu accesses the Host Communications menu screen from which you can control communications for the HOST port of the decoder. The screen displays with the first field highlighted.

The default settings are displayed the first time you access this screen. Make changes appropriate for your application. If the factory defaults are satisfactory, you can exit the configuration software by pressing [Esc] twice, or move on to the AUX Terminal Data Entry configuration screen by pressing [Esc][Return]

```
_-__-_-_HOST COMMUNICATIONS-_-_-_
            BAUD RATE*: &
            BITS/CHAR*: 8 Data 1 Stop
            PARITY*: None
        HOST PROTOCOL*: RS232
    DEUICE ADDRESS*: }
            ACK CHAR*: None 255
            NAK' CHAR*: None 255
```

*Save and Restart required for these parameters to take effect.

| | SCANNER A | SCANNER B | |
| :---: | :--- | :--- | :--- | :--- |
| START SCAN CHAR: None | 255 | None | 255 |
| STOP SCAN CHAR: None | 255 | None | 255 |

 LARGE BUFFER: No
 SEND HOST MESSAGE: At End of Trigger
TRANSMISSION CHECK: None

Commands:ESC Change:SPACE Cursor Control:ARROWS

Host communication parameters (Baud Rate, Bits/Char, Parity, Host Protocol, Device Address, ACK/NAK Char) do not take effect until you SAVE them and restart the decoder.

Each parameter is defined below along with its field type and possible values. The default value is shown in the table in bold letters.

Baud Rate

Field Type	Options
	9600
	4800
Select	2400
	1200
	300
	19200
	38400

Selects the baud rate (data transmission speed) for the HOST port. The default is 9600 the first time the decoder is started. From then on, operation is determined at restart by the contents of storage memory.

Bits/Char

Field Type	Options
	8 Data 1 Stop 8 Data 2 Stop
	7 Data 1 Stop
	7 Data 2 Stop

Selects the number of data and stop bits transmitted with each character via the HOST port. The default is 8 Data Bits, 1 Stop Bit the first time the decoder is started. From then on, operation is determined at restart by the contents of storage memory. ${ }^{(1)}$

Parity

Field Type	Options
}{}	None
	Even
	Odd

Selects the parity bit for each character transmitted or received at the HOST port. The default is None the first time the decoder is started. From then on, operation is determined at restart by the contents of storage memory.
(1) The contents of storage memory can be reviewed by performing a Recall. Parameters are saved to s memory with the Save command.

Host Protocol

Field Type	Options
Select	RS232
	RS232 XON/XOFF
	RS232 CTS/RTS - 1
	RS232 CTS/RTS - 2
	RS422
	RS422 XON/XOFF
	DH485 PCCC - 1
	DH485 PCCC - 2
	DH485 ASCII - 1
	DH485 ASCII - 2

Selects a communication interface and protocol for the HOST port. The default is $R S-232$ (with no flow control) the first time the decoder is started. From then on, operation is determined at restart by the contents of storage memory.

Other options include:

- RS232 XON/XOFF uses XON/XOFF flow control
- RS232 CTS/RTS-1 uses half duplex RTS, CTS and DTR modem control lines to control the flow of data from the decoder to the host.
- RS232 CTS/RTS-2 uses RTS, CTS and DTR modem control lines for bidirectional (full duplex) flow control between the decoder and the $2760-\mathrm{RA} / \mathrm{RB}$ module (when the module has modem control enabled).
- RS422 (no flow control) uses no flow control.
- RS422 XON/XOFF uses XON/XOFF flow control.
- DH485 PCCC-1 uses PCCC commands with write replies.
- DH485 PCCC-2 uses PCCC commands without write replies.
- DH485 ASCII-1 uses ASCII commands with responses.
- DH485 ASCII-2 uses ASCII commands without responses.

Device Address

Field Type	Options
Edit Numeric	00 through 31
01	

Specifies the node address of the decoder if operating as a node on an RS-485 network. Each node on the network must have a unique node address from 00 to 31 . The default device address for the decoder is 01 the first time the decoder is started. From then on, operation is determined at restart by the contents of storage memory.

ACK Character

Field Type	Options
Edit ASCII	0 through 255 $255=$ None

Defines an Acknowledge (ACK) character for ACK/NAK protocol. The first time the decoder is started, the default is None, which means an ACK character is not defined. From then on, the default is determined at restart by the contents of storage memory. ${ }^{(1)}$

The ACK character is sent by the host to acknowledge receipt of a message. The decoder holds the last transmitted message until an ACK is returned to the decoder. Any command the decoder receives from the host is also interpreted as an ACK character.

You must define ACK and NAK characters to enable ACK/NAK protocol with the host. ACK/NAK protocol only applies to bar code data sent to the host. It is typically used with the transmission check to provide error detection. You can also use ACK/NAK protocol to provide flow control.

NAK Character

Field Type	Options
Edit ASCII	through 255 $255=$ None

Defines a Negative Acknowledge (NAK) character for ACK/NAK protocol. The first time the decoder is started, the default is None, which means a NAK character is not defined. From then on, the default is determined at restart by the contents of storage memory. ${ }^{(1)}$

The NAK character is sent by the host when a message is not received properly and prompts the decoder to retransmit the last message up to three times.

[^8]
ABCDHIMNOPRST

If the single character commands do not use these uppercase characters, you do not have to start command sequence. For example, if N is used as the NAK command, then it would b impossible to send the NR command without preceding it with the ESC=! start command s If n is used instead, then no start command sequence would be necessary to send an NR cc Therefore, we recommend using only lowercase letters for single character command

Refer to Chapter 15 for additional information.

You must define ACK and NAK characters to enable ACK/NAK protocol with the host. ACK/NAK protocol only applies to bar code data sent to the host. It is typically used with the transmission check to provide error detection. You can also use ACK/NAK protocol to provide flow control.

Start Scan Character

Field Type	Options
Edit ASCII	0 through 255 $255=$ None

This parameter is used with the stop scan character and only applies when the Decode Mode is set to Host.

Defines the character that tells the scanner(s) to start scanning. There is a field for both Scanner A and, if present, Scanner B. The default is None, which means a start scan character is not defined. ${ }^{(1)}$

Stop Scan Character

Field Type	Options
Edit ASCII	0 through 255 $255=$ None

This parameter is used with the start scan character and only applies when the Decode Mode is set to Host.

Defines the character that tells the scanner(s) to stop scanning. There is a field for both Scanner A and, if present, Scanner B. The default is None, which means a stop scan character is not defined. ${ }^{(1)}$
(1) If any of the characters below are used as single character commands (ACK/NAK or Start) Characters), then the escape sequence ($\mathrm{ESC}=$!) must be used with all two character comm start with that character.

ABCDHIMNOPRST

If the single character commands do not use these uppercase characters, you do not have ts start command sequence. For example, if N is used as the NAK command, then it would b impossible to send the NR command without preceding it with the ESC=! start command s If n is used instead, then no start command sequence would be necessary to send an NR cc Therefore, we recommend using only lowercase letters for single character command

Refer to Chapter 15 for additional information.

Large Buffer

Field Type	Options
Select	Yes
	No

Enables or disables use of the 8 K byte buffer on the HOST port. The default is No, which disables use of this buffer.

The 8 K byte buffer allows the decoder to decode and buffer messages to the host. This feature is useful for applications where the host is incapable of handling high burst rates of data from the decoder. If No is selected, the decoder will only buffer one message.

ATTENTION: Do not use the large buffer if the data sent to the host must be coordinated with the output modules, because the buffering may delay receipt of the data by the host.

Send Message to Host

Field Type	Options
Select	At End of Trigger Immediately After Valid Package

Specifies when the decoder sends data to the host or activates an output module. The default is At End of Trigger.

The end of trigger condition is determined by the decode mode. The end of trigger conditions for the triggered decode modes are:

Timing	Host	Package Detect	Internal Timer		
End of Trigger (send message to host at end of trigger)	Stop scan character	Detect signal goes inactive			
Immediately After Nires	Symbols/package timer ex- count met	No-read timer ex- pires	No-read timer ex- Sires		
Valid Package					
count met				\quad	Symbols/package
:---					
count met	,				

The response mode for the continuous and continuous/unique decode modes is always Immediately After Valid Package. The decoder sends data and activates the outputs immediately after a valid package (symbols/package count is met) or a no-read, whichever comes first. Use this mode for maximum speed.

Transmission Check

Field Type	Options
Select	None
	LRC
	Checksum - LSB
	Checksum - MSB

Specifies the type of transmission check that is generated at the end of a message sent to the host. The default is None, which means no transmission check is generated.

The decoder can generate three types of transmission checks:

1. LRC (Longitudinal Redundancy Check). A byte developed by an exclusive OR of all bytes in a message.
2. Checksum-MSB. Sixteen bit sum of all the bytes in a message with the most significant byte transmitted first.
3. Checksum-LSB. Sixteen bit sum of all the bytes in a message with the least significant byte transmitted first.

Appendix C provides an example of a transmission check.
Do not use XON/XOFF flow control with transmission check. The transmission check bytes could be interpreted as an XOFF character.

Configuration: AUX Terminal Data Entry

Chapter Objectives

The terminal connected to the AUX port can be used for either configuration or manual data entry and display operations. We refer to this terminal as the AUX terminal. This chapter describes how to configure and use the AUX terminal for manual data entry and display operations. Topics include:

- supported terminals for manual data entry
- configuration for AUX terminal data entry
- how to enable manual data entry mode
- how to display bar code data, decoder performance and counter values
- how to display host messages
- how to perform manual data entry at the keyboard

Any terminal that supports the following features can be used for manual data entry or display operations at the AUX port:

- Carriage Return and Line Feed
- 9600 Baud Rate
- 8 Data Bits
- 1 Stop Bit
- Parity None
- XON/XOFF Flow Control

Specific terminal types for data entry and display include:

- Allen-Bradley Industrial Terminal (Catalog No. 1771-T1, -T2, -T3)
- Allen-Bradley laptop computers (Catalog No. 1784-T45, -47, -48)
- Allen-Bradley 2708-DH5 Series of Attended Workstations
- DEC VT100
- Lear Siegler ADM 3E

Appendix D provides details on how to connect and setup the terminals listed above. To set the above communication parameters for other types of terminals, refer to your terminal's User Manual.

Function 8 on the Select Operation screen accesses the AUX
Terminal Data Entry screen. Use this screen to configure the AUX terminal for manual data entry operations. These parameters are used by the terminal when the AUX port is set to manual data entry (not configuration) mode.

Note: Manual data entry and configuration modes are mutually exclusive.

Each manual data entry parameter is defined below along with the field type and possible values. The default value is shown in the tables in bold letters.

```
_____AUX TERMINAL DATA ENTRU
ENABLE KEYBOARD ENTRY: I
            CONFIRM ENTRY: No
        AUX DATA FORMAT: Unformatted
        RUBOUT CHAR: }8\mathrm{ BS
    ECHO TO TERMINAL: No
    SIZE OF DISPLAY: 80
DEFAULT PROMPT MESSAGE:
```


Enable Keyboard Entry

Field Type	Options
	No
Select	Yes
	No-Read

Enables or disables use of the terminal keyboard when the AUX port is set to manual data entry mode. The default is No, which disables keyboard data entry.

No Disables the keyboard locally. However, the host can remotely enable the keyboard for one message using the Display Text Message command as explained later in this chapter.

Yes Enables the keyboard for data entry. Selecting Yes enables you to manually enter data at the keyboard. When entry is enabled, pressing [ESC] will cancel the current entry.

Data entered at the keyboard is sent to the host with the AUX Port Source Identifier (if defined) and formatted according to the Aux Data Format parameter. The data is either formatted like the host message or is unformatted.

No-Read Enables the keyboard for data entry when a no-read occurs for a package. Selecting No-Read allows you to manually enter a single string at the keyboard.

If a no-read occurs, the Default Prompt Message displays (if defined) prompting you to act. You can also use the Display Text Message host command at any time to manually prompt for data.

Data is sent to the host with the AUX Port Source Identifier (if defined) and formatted according to the Aux Data Format parameter.

Note: For safety considerations, data entered at the keyboard cannot be used to control the discrete I/O.

Confirm Entry

Field Type	Options
Select	No Yes

Specifies whether you are required to confirm a keyboard entry by typing the data a second time. The default is $N o$, confirmation is not required.

Select Yes to require that data entered at the keyboard be entered a second time. Data must be entered twice consecutively in exactly the same way before it is sent to the host.

Entering the data twice helps ensure data integrity. Errors are more likely to occur with data that is manually entered than scanned, but it is unlikely that one will make identical typing errors in succession. Simply press [ENTER] twice in succession to send no message (with the end message character).

AUX Data Format

Field Type	Options
Select	Unformatted Host Format

Controls the format of data sent to the host from the keyboard. The default is Unformatted; the data, with the AUX Source ID prefix (if defined), is sent in the same form it was entered.

Select Host Format to send the data in the host message format set by the parameters on the Host Message Format configuration screen. The host format packages the manually entered data as if it were scanned. The source identifier for the AUX terminal (if defined) will distinguish manually entered data from scanned data. If Send Symbology is enabled, " 00 " will be sent for data entered at the AUX terminal. (Also see Host Message Replacement Rules, Chapter 10.)

Rubout Character

Field Type	Options
Edit ASCII	0 through 255 008 BS

Defines the terminal character that allows you to delete the previous character during keyboard data entry. The default is backspace (decimal ASCII 008). To define a different rubout character, enter a numeric value between 0 and 255 .

Echo To Terminal

Field Type	Options
Select	No Yes

Controls whether data entered at the keyboard is displayed (echoed) on the terminal display. The default is No, keyboard data is not echoed.

If the terminal itself is set to echo data, select No to prevent the terminal from displaying duplicate characters; otherwise, select Yes.

Size of Display

Field Type	Options
Edit Numeric	10 through 80
	80

Defines the maximum number of characters that can display on one line of the terminal display. The default is 80 , which means up to 80 characters can display on one line. The typical display size is 80 . To specify another display size, enter a value between 10 and 80 .

Default Prompt Message

Field Type	Options
Edit Text	ASClI Text to 20 Characters Max Blank

Defines a 1 to 20 character message that displays on the terminal prompting you to enter keyboard data or take some other action. The message always starts at position 1 on the display. The default is Blank, which means a prompt message is not defined.

This message is displayed when Enable Keyboard Entry is set to No-Read and a no-read occurs. It is also displayed when Enable Keyboard Entry is set to No and the host remotely enables the keyboard for one message using the Display Text Message command. If this command is sent with a zero length string (no message), the Default Prompt Message is displayed.

Switching to Manual Data Entry Mode

The AUX terminal port is set for configuration operations at the factory. To enable the AUX terminal for manual data entry (instead of configuration), use one of the AUX Terminal Selectors.

The AUX Terminal Selectors allow you to switch between configuration and manual data entry operations using one of two methods:

- Internal Selector (jumper on main logic board)
- External Selector (pin connections on AUX port connector)

Note: Manual data entry and configuration modes are mutually exclusive.

The jumper has two positions, which determine the mode of operation that is enabled for the AUX port terminal.

\section*{AUX TERMINAL

AUX TERMINAL

- •

DATA CONFIG.
ENTRY

CONFIG (Jumper Right)

With the jumper positioned as shown on the upper left, you can use the AUX terminal for configuration only. Configuration menus and screens are enabled. This is the factory default setting.

DATA ENTRY (Jumper Left)

With the jumper positioned as shown on the lower left, you can use the AUX terminal for manual data entry and display functions only. Configuration menus and screens are disabled.

External Selector

The other way to switch from configuration to manual data entry mode is to connect pins 15 and 16 (NEMA Type 1) or G and H (NEMA Type 4) in the AUX port connector. See Chapter 4 for a description of the AUX port connector pins.

Note: If either the external selector or the the internal selector is set to data entry, the decoder will be in manual data entry mode, and will not display the Configuration screens.

Data Entry and Display Operations

Displaying Data at the AUX Terminal

After switching to manual data entry mode, you can:

- Display bar code data, decoder performance indicators, counter data, and host messages on the AUX terminal.
- Enter data at the AUX terminal keyboard.

Both of these operations are controlled by parameters on the AUX and LCD Display Format and AUX Terminal Data Entry configuration screens. The parameters defining display parameters are discussed in Chapter 9.

The sections that follow show how these parameters directly affect the display of data on the AUX terminal, and control the type of data entry operations that are allowed at the AUX terminal.

This section shows how to configure the AUX terminal for display operations. You can configure the AUX terminal to display:

- Bar code data
- Decoder performance indicators
- Counter data
- Host messages

The parameters on the AUX and LCD Display Format configuration screen determine what data is displayed, where the data is displayed, and on which device. Detailed definitions of these parameters appear in Chapter 9.

```
_-_-_-_-_
    DISPLAY DATA: IN:
    MESSAGE FORMAT: Unformatted
                SCROLL LCD: No
POSITION
    O BAR CODE STRINGS
    O DECODER PERFORMANCE
    O PACKAGE COUNTER
    O SUMBDLS NOT READ COUNTER
    --PRIMARY COUNTERS---
    0 1) None
    0 2) None
    0 3) Mone
    0 4) None
    0 5) Mone
    0 6) None
    0 7) Mone
    0 8) None
```

Commands:ESC Change:SPACE Cursor Control:ARROWS

Displaying Host Messages

The AUX terminal can display text messages that are sent from the host using the Display Text Message command. Typically, this command is used during manual data entry to prompt the user to enter bar code data or take some other action. The last section in this chapter describes manual data entry operations.

To accommodate the many variations in display terminals, messages sent from the host always display in position 1 .

If the host sends the Display Text Message command to the decoder with a text string length set to zero, the decoder will display the Default Prompt Message instead (if defined). The text string from the host and the default prompt message are always preceded by a carriage return and line feed, and display at the beginning of the line in position 1 .

The following parameter defines the Default Prompt Message:

DEFAULT PROMPT MESSAGE:
 Defines 1 to 20 character prompt message. Initially, the default prompt message is undefined.

The amount of data to be displayed is restricted by the size of the terminal display. For example, most terminals support an 80 character display. Formatted data (other than host messages) that exceeds the size of the display is truncated. Text messages from the host that are longer than the size of the display will truncate.

Processing No-Reads

This section includes some examples to illustrate how the decoder handles subsequent packages while waiting for you to respond to a no-read. All examples assume that manual data entry is enabled only for no-reads and the Default Prompt Message is defined as "Enter Carton Data:".

Example 1: What happens if you respond to a no-read before the next package arrives?

If you complete the data entry process for a no-read before the next package arrives, the package count of the manually entered data (which is sent to the host if the data is host formatted) will be the same as the no-read package.

Example 2: What happens if you have not completed entering the data at the keyboard and the next package arrives?

If the next package is a valid read, it will be sent to the discretes I/O and the host. The package count will increment. This will continue with each subsequent valid read. When the manual data entry is complete, it will be sent to the host with the package count of the last package read.

If the next package (or any of the packages processed before the manual data entry is completed) is a no-read, the decoder will send only a single message. The opportunity for entering data for additional no-reads that occurred during manual data entry will be lost. In other words, if you can enter data manually more quickly than no-reads occur, then you will lose no data. If two no-reads occur before you have completed entering data for the first, then you will have no opportunity to enter data for the second no-read in the sequence.

Important: To process a no-read and guarantee that the package count of the manually entered data corresponds to the scanned data, prevent future triggers from occurring. You can configure a discrete output for the no-read condition or a host message containing "no-read" to prevent subsequent packages from being processed.

ASCll Commands

The Display Text Message (TM) command allows you to send a message to the AUX terminal and optionally enable the AUX terminal keyboard for one entry.

The following TM command sends the message "START JOB!" but does not enable the keyboard.

When the host sends this command to the decoder, the text string displays on the AUX terminal at the beginning of the line in position 01.

START JOB!

Messages that are longer than the size of the AUX terminal display truncate.

If the TM command is sent with a string length of zero (no message defined), the decoder displays the Default Prompt Message instead.

The following TM command sends the message "ENTER DATA:" to the AUX Terminal and enables the keyboard for one entry.

When the host sends this command to the decoder, the following text string displays on the AUX terminal prompting you to enter data. The message displays at the beginning of the line in position 01.

ENTER DATA:

If the TM command is sent without a message defined, the decoder displays the Default Prompt Message instead.

Messages that are longer than the size of the AUX terminal display truncate.

When receiving the host or default prompt message, the keyboard is enabled for one entry. Type the data and press [Enter].

ENTER DATA: 123456 [Enter]

After pressing [Enter], the keyboard is immediately disabled until receiving the next host command. To cancel the data entry operation without entering data, press [Esc].

Format of Manually Entered Data

After entering data, the decoder sends it to the host. The format in which the data is sent is controlled by the AUX Data Format parameter, which is described earlier in this chapter.

PCCC Commands

You can also send a PCCC command to the decoder to display a message at the AUX terminal and optionally enable the AUX terminal keyboard.

The following PCCC command sends the message "START JOB!" to the AUX terminal. The command address 900 H sends a message for display, but does not enable the keyboard. Bytes 6 - 15 in the example below define the characters of the message

Display Message at AUX Terminal (900H)			
	MSB High Byte	Low Byte	LSB
1	STS $=00 \mathrm{H}$	CMD $=08 \mathrm{H}$	
3	TNS		
5		$=900 \mathrm{H}$	
7	"T"	"S"	
9	"R"	"A"	
11	""	"T"	
13	"0"	"J"	
15	"!"	"B"	

Messages that are longer than the size of the AUX terminal display will truncate.

When the host sends this command to the decoder, the message displays on the AUX terminal at the beginning of the line in position 01.

If the PCCC $(900 \mathrm{H})$ command is sent with a string length of zero (no message defined), the decoder displays the Default Prompt Message instead

The following PCCC command sends the message 'ENTER CARTON DATA:" to the AUX terminal and enables the keyboard for data entry. The command address 901 H distinguishes this command function from the 900 H command. Bytes $6-23$ define the characters of the message.

Messages that are longer than the size of the AUX terminal display will truncate.

When the host sends the command to the decoder, the text string displays on the AUX terminal prompting you to enter data. The message always displays at the beginning of the line in position 01.

ENTER CARTON DATA:

If the command is sent with a string length of zero (no message defined), the decoder displays the Default Prompt Message. When receiving the host or default prompt message, the keyboard is enabled for one entry. Type the data and press [Enter].

ENTER CARTON DATA: 123456 [Enter]

After pressing [Enter], the keyboard is disabled until receiving the next host command. To cancel the operation, press [Esc].

Display and System Configuration

Chapter Objectives

Connect and Set Up AUX Terminal

This chapter describes how to use the bar code decoder configuration software to:

- Display bar code strings
- Display decoder performance indicators and counters
- Reset status and counters
- Restart the system
- Select a new language option
- Save the current configuration.

To use the built-in configuration menus and screens, you must first connect a terminal to the RS-232 AUX port of the decoder.

Appendix D provides details on how to connect and setup each terminal. The AUX port communication parameters are:

- 8 Data Bits
- 1 Stop Bit
- 9600 Baud Rate
- Parity None
- XON/XOFF Flow Control

Refer to Chapter 5 for information on getting started with the AUX communication software.

Display Bar Code Strings

The Display Bar Code Strings function on the Select Operation menu allows you to monitor bar code labels as they are decoded.

2755-DD1P/DD4P

Bar Code Decoder
Copyright 1992 Allen-Bradley Company, Inc.
CONF IGURAT ION

1) Symbology
2) Scanner Control, Primary Match Table, Discrete I/O
3) Extended Match Table and Counters
4) Aux and LCD Display Format
5) Host Message Replacement Rules
6) Host Message Format
7) Host Communications
8) Aux Terminal Data Entry

Display
A) Bar Code Strings B) Status and Primary Counters

System
CJ Reset Status and Primary Counters
D) Reset Extended Match Counters

EJ Restart System
F) Select Language
G) Save Conf iguration

Press 1...8, A...G or ESC

To select this function, press the "A" or "a" key. The screen will clear and display decoded bar code strings. You might see:
198763673456721
59874292
45763019
56474821
16945280
45674895
87599639
35426881
11987454
54664778
87997070
56460982
54664747
69585746
53647747
No-Read
65454565
76845329
43623123
98967587
89654934
34592345
22134232
35647465
65454565

The data from each string displays on a separate line. If several symbols are decoded in one scan, the symbols are displayed on a single line, separated by a space.

Each line displays a maximum of 80 characters. If the data consists of more than 80 characters, it continues to the next line until the entire string is displayed.

If the decoder is unable to decode a bar code label, the no-read message (if defined during configuration) is displayed.

The display continuously scrolls upward, displaying new bar code data at the bottom of the screen.

To exit this function and return to the Select Operation menu, press [ESC].

Display Status and Primary Counters

The Display Status and Primary Counters function on the Select Operation menu allows you to monitor system status and counters maintained by the decoder.

To select this function, press the "B" or "b" key. The following screen displays:

2755-DD1P/DD4P Bar Code Decoder
Copyright 1992 Allen-Bradley Company, Inc.
Decoder Performance : 0 (Scanner A) Decoder Performance : 0 (Scanner B) Sumbols Not Read : 0 Package Counter :

0
Primary Counters

1) 0 A 1 B None
2) 0 AlB None
3) 0 AlB None
4) 0 AlB None
5) 0 AlB None
6) 0 A $1 B$ Nome
7) 0 AlB None
8) 0 A 1 B None

Press 1. 8 to Reset Counter, SPACE to Reset All, ESC to Exit

The decoder performance indicators and counters are updated on the display once each second. Following is a description of each display item.

Decoder Performance In continuous mode, the performance indicators display the (Scanner A and B) percent of decoded scans for each scanner.

In triggered mode, the performance indicators display the number of valid scans (up to 100) during a trigger active period for Scanner A and Scanner B.

Note: The decoder performance will never exceed the capture count if Send Message to Host is set to Immediately After Valid Package.

Decoder performance indicators are useful during:

- initial setup (when the decoder is in continuous mode) to determine the optimum location of the scanner relative to the bar code labels.
- decoder operation to identify a decrease in performance. For example, if the number of good reads drops significantly, the label quality may have degraded or the scan head window may require cleaning.

Note: If a buffer overflow occurs while collecting data for the sample scans, the value 999 displays until the condition is corrected. This occurs if host communications is suspended.
Symbols Not Read Displays the number of symbols not read in the triggered Counter mode of operation.

A no-read occurs when the decoder does not decode the correct number of symbols on a package as defined by the Symbols per Package parameter.

The counter increments for each symbol not read in a package.

Package Counter Displays the number of packages detected by the decoder.
The package counter increments each time a trigger is generated by the package detector, a host command, or the internal timer. It also increments each time a package is read in the continuous or continuous/unique operation modes.

Primary Counters Displays the number of output conditions that occur for each
(1-8) discrete output (1-8).
Each output counter increments when a TRUE condition occurs for that output.

The counters are six digit values that increment up to 999999 . When exceeding 999999 , the display automatically advances to 000000 .

To exit this function and return to the Select Operation menu, press [ESC].

Resetting the Counters

You can reset the decoder status and counters to zero from the Display Status and Counters screen. You can reset individual counters by pressing a number 1 through 8 , and answering [Y] to the confirmation request that appears on the bottom of the screen.

You can reset reset the decoder status and all primary counters to zero by pressing the [Space] bar. Press [Y] to reset the status and counters. Press [N] or [Esc] to cancel the operation. This operation is identical to the Reset Status and Counters function on the Select Operation menu.

Note: The counters also reset when you restart the system with function Restart System.

There is a second way to reset the decoder performance indicators and all counters to zero from the Select Operation menu, select the Reset Status and Primary Counters function. Press the "C" or "c" key. Press $[\mathrm{Y}]$ to reset the decoder performance indicators and counters to zero. Press [N] or [Esc] to cancel the operation. This operation is identical to pressing [Space] on the Display Status and Counters screen.

Restart System

The Restart System function allows you restart the decoder. This operation reboots the decoder, enables autoload functions, and enables lotting, and activates certain host communications parameters (Refer to Chapter 12).

To restart the decoder, press the "E" or "e" key. Press [N] or [Esc] to cancel the operation and return to the Select Operation menu. Press $[\mathrm{Y}]$ to restart the decoder.

During a restart, all configuration parameters are reset to the values last saved to storage memory, and the Select Language screen is displayed.

Select Language

The Select Language function allows you to access the Select Language screen. Press the " F " or " f " key from the Select Operation menu.

SELECT LANGIUAGE	CHOIX DUJ LANGAGE	WAEHLE SPRACHE
1) English	1) Anglais	1) Englisch
2) French	2) Francais	2) Franzoes isch
3) German	3) Allemand	3) Deutsch
4) Italian	4) Italien	4) Italienisch
5) Spanish	5) Espagmol	5) Spanisch
Press 1,2,3,4,5 or ESC	Appuyer 1,2,3,4,5 ou ESC	Druecke 1,2,3,4,5 oder ESC
SELEZIONARE LINGUA	SELECCIONAR LENGUA	
1) Ing lese	1) Ingles	
2) Francese	2) Frances	
3) Tedesco	3) Aleman	
4) Italiano	4) Italiano	
5) Spagnolo	5) Castel lamo	
Premere $1,2,3,4,5 \mathrm{oLSC}$	Pulsar $1,2,3,4,5$ o ESC	

Press the number key that corresponds to the language you want to use. All subsequent screens display in the selected language.

Save Configuration

To save the current system settings in storage memory, type " G " or " g " or select Save Configuration on the Select Operation menu. Press [N] or [Esc] to cancel the save operation and return to the Select Operation menu. Press [Y] to save the current configuration. All configuration parameters are saved to storage memory.

ASCII Host Commands

Chapter Objectives

Using RS-232/RS-422

Using DH485

This chapter defines ASCII commands you can send from a host to the decoder using the RS-232, RS-422, or DH485 communication interfaces.

The RS-232, RS-422, and DH485 interfaces allow you to send single or two character ASCII commands from the host to the decoder. All commands and command responses are ASCII character strings.

The single character commands control scanning (Start/Stop Scan characters), and the transmission (ACK/NAK characters) of data to the host. They are not used to configure or monitor decoder operations. The single character commands are configured on the Host Communications screen described elsewhere in this manual.

The two character commands perform the same functions as the settings on the configuration screens, and can be used to configure and monitor decoder operations. The rest of this chapter defines the two character ASCII commands.

\triangle
ATTENTION: When controlling discrete outputs locally using AUX port configuration, suspend host communications to prevent outputs from unintentionally changing state.

The DH485 interface supports the two character ASCII commands. To use these commands, the decoder requires you to set the Host Protocol parameter on the Host Communications screen to one of the following:

- DH485 ASCII-1 Protocol with Responses
- DH485 ASCII-2 Protocol without Responses

Note: The DH485 ASCII-2 Protocol (without responses) reduces data traffic on the link. Responses are unnecessary since the link layer of the Allen-Bradley DH485 network insures that a command is properly received.

The decoder supports the following DH485 communication addresses:

DH485 LSAP	Function
0	Diagnostic Commands (Perform Application Layer)
1 or 128	ASCII Commands (Perform Application Layer)
129	Perform Link Reset-immediate Block

Table 15.A Two-character ASCII commands (grouped by function)

Page Number	Command Code	Command Function
Symbologies		CT
$15-8$	Configure Bar Code Symbology and Supplements	
$15-9$	SL	Configure Bar Code Specific Length
$15-11$	CC	Configure Code 39, I 2-of-5, Codabar Check Characters
$15-12$	CG	Configure I 2-of-5 Guard Bar
$15-13$	CQ	Configure Quiet Zone
$15-14$	CF	Configure Code 128 FNC1 Character
$15-15$	CV	Configure Code Verification List
$15-16$	CP	Configure Pharma-Code
Scanner Control		
$15-18$	SC	Configure Scanner A Control
$15-20$	PB	Configure Scanner B Control
$15-21$	IF	Configure Scanner A Package Detect Filter and Sense
$15-22$	BF	Configure Scanner B Package Detect Filter and Sense
$15-23$	BL	Configure Scanner B Laser Mode

Primary Match Code Table

$15-24$	SW	Write Scanner Source to Match Code Table
$15-25$	AB	Auto-load Begin
$15-25$	AE	Auto-load End
$15-26$	AL	Auto-load
$15-28$	OS	Set Output Normally Open/Normally Closed
$15-29$	OC	Set Output Condition and Duration
$15-31$	OH	Hold Output Open/Closed
$15-33$	MR	Read Primary Match Code Table Entry (1-8)
$15-34$	MW	Write Primary Match Code Table Entry (1-8)
$15-35$	CM	Clear Primary Counter (1-8)
$15-36$	CO	Clear All Primary Output Counters

Extended Match Code Table

$15-25$	AB	Auto-load Begin
$15-25$	AE	Auto-load End
$15-26$	AL	Auto-load
$15-36$	CA	Clear Extended Match Counters
$15-37$	SE	Set Extended Match Counter
$15-38$	RC	Read Extended Match Counter
$15-39$	SM	Set Extended Match Data
$15-41$	RP	Read Extended Match Data
$15-43$	RA	Read All Extended Counters
$15-45$	CS	Disable Extended Match Code Set
$15-46$	RS	Read Extended Match Set Status

Page Number	Command Code	Command Function
AUX and LCD Display Format		
15-47	DF	Enable AUX Terminal and LCD to Display Formatted Data
15-48	DP	Configure Data Display Positions for AUX Terminal and LCD
15-49	SD	Enable LCD Scrolling
Host Message Replacement Rules		
15-50	SR	Set Search and Replace Rule for Host Message Fields
15-52	SF	Set No-Read Replacement String
Host Communications \& Host Message Format		
15-53	HC	Configure Host Communications
15-55	HB	Configure Scanner B Start \& Stop Characters
15-56	MF	Configure Host Message Format
15-58	HF	Set the Number of Fields in Host Message
15-59	IX	Configure AUX Terminal Source Identifier
15-60	IM	Configure Scanner A Source Identifier
15-61	IB	Configure Scanner B Source Identifier
15-62	HM	Configure Header Message
15-63	NM	Configure Default No-Read String
AUX Terminal Data Entry		
15-64	AX	Configure AUX Terminal Data Entry Operations
15-66	TM	Display Text Message at AUX Terminal and LCD
15-68	PM	Configure Default Prompt Message for AUX Terminal and LCD
Status \& Counters		
15-69	PI	Read Decoder Performance Indicators
15-70	PR	Read Package Counter
15-71	NR	Read the Symbols Not Read Counter
15-72	MC	Read Output Counter
15-73	PC	Clear Package Counter
15-73	NC	Clear Symbols Not Read Counter
15-35	CM	Clear Primary Counters (1-8)
15-36	CO	Clear All Primary Output Counters
System Commands		
15-74	RN	Save Configuration to Storage Memory and Restart
15-74	SA	Save Configuration to Storage Memory (No Restart)
15-75	DD	Set Configuration to Factory Defaults
15-75	RD	Set Configuration to Defaults, Save and Restart
15-76	RE	Restart
15-76	ID	Version of Software
Obsolete Commands (For Reference)		
15-77	DM	Configure Bar Code Data Mask
15-77	PD	Configure Data Pad Character

Table 15.B lists the two character ASCII commands in alphabetical order, by command code.

Table 15.B Two-character host commands (Alphabetical Order)

Page Number	Command Code	Command Function
15-25	AB	Auto-load Begin
15-25	AE	Auto-load End
15-26	AL	Auto-load
15-64	AX	Configure AUX Terminal Data Entry Operations
15-22	BF	Configure Scanner B Package Detect Filter and Sense
15-23	BL	Configure Scanner B Laser Mode
15-36	CA	Clear Extended Match Count
15-11	CC	Configure Code 39, I 2-of-5, Codabar Check Characters
15-14	CF	Configure Code 128 FNC1 Character
15-12	CG	Configure I 2-of-5 Guard Bar
15-35	CM	Clear Counter (1-8)
15-36	CO	Clear All Primary Output Counts
15-16	CP	Configure Pharma-Code
15-13	CQ	Configure Quiet Zone
15-45	CS	Disable Extended Match Code Set
15-8	CT	Configure Bar Code Symbology and Supplements
15-15	CV	Configure Code Verification List
15-75	DD	Set Configuration to Factory Defaults
15-47	DF	Enable AUX Terminal and LCD to Display Formatted Data
15-77	DM	Configure Bar Code Data Mask
15-48	DP	Configure Data Display Positions for AUX Terminal and LCD
15-55	HB	Configure Scanner B Start \& Stop Characters
15-53	HC	Configure Host Communications
15-58	HF	Set the Number of Fields in Host Message
15-62	HM	Configure Header Message
15-61	IB	Configure Scanner B Source Identifier
15-76	ID	Version of Software
15-21	IF	Configure Scanner A Package Detect Filter and Sense
15-60	IM	Configure Scanner A Source Identifier
15-59	IX	Configure AUX Terminal Source Identifier
15-72	MC	Read Output Counter
15-56	MF	Configure Host Message Format
15-33	MR	Read Match Code Table Entry (1-8)
15-34	MW	Write Match Code Table Entry (1-8)
15-73	NC	Clear Symbols Not Read Counter
15-63	NM	Configure Default No-Read String
15-71	NR	Read the Symbols Not Read Counter
15-29	OC	Set Output Condition and Duration
15-31	OH	Hold Output Open/Closed
15-28	OS	Set Output Normally Open/Normally Closed
15-20	PB	Configure Scanner B Control
15-73	PC	Clear Package Counter

Page Number	Command Code	Command Function
$15-77$	PD	Configure Pad Data Character (Obsolete Command)
$15-69$	PI	Read Decoder Performance Indicators
$15-68$	PM	Configure Default Prompt Message for AUX Terminal and LCD
$15-70$	PR	Read Package Counter
$15-43$	RA	Read All Extended Counts
$15-38$	RC	Read Extended Match Count
$15-75$	RD	Set Configuration to Defaults, Save and Restart
$15-76$	RE	Restart
$15-74$	RN	Save Configuration to Storage Memory and Restart
$15-41$	RP	Read Extended Match Data
$15-46$	RS	Read Extended Match Set Status
$15-74$	SA	Save Configuration to Storage Memory (No Restart)
$15-18$	SC	Configure Scanner A Control
$15-49$	SD	Enable LCD Scrolling
$15-37$	SE	Set Extended Match Count
$15-52$	SF	Set Default Search Strings
$15-9$	SL	Configure Bar Code Specific Length
$15-39$	SM	Set Extended Match Data
$15-50$	SR	Set Search and Replace Rule for Host Message Fields
$15-24$	SW	Write Scanner Source to Match Code Table
$15-66$	TM	Display Text Message at AUX Terminal and LCD

Command Format

The format or structure of the two character commands is:

1	2	3	4
Start Command Sequence	Command Code	Parameters	Terminator

1. Start Command Sequence. Contains the escape sequence <ESC>=!. The table below defines the ASCII and Hexadecimal equivalents of each character of the command sequence

ASCII and Hexadecimal Equivalents - Start Command Sequence

Character	ASCII	Hex
ESC	27	$1 B$
$=$	61	$3 D$
$!$	33	21

Note：The start command sequence is optional．The＜ESC＞＝！ sequence differentiates two character commands from single character commands．If any of the characters below are used as single character commands（ACK／NAK or Start／Stop Scan Characters），then the escape sequence（ $\mathrm{ESC=}=$ ！）must be used with all two character commands that start with that character．

ABCDHIMNOPRST

If the single character commands do not use these uppercase characters，you do not have to use the start command sequence． For example，if N is used as the NAK command，then it would be impossible to send the NR command without preceding it with the $\mathrm{ESC}=$ ！start command sequence．If n is used instead，then no start command sequence would be necessary to send an NR command．Therefore，we recommend using only lowercase letters for single character commands．

Note：The start command sequence $\langle E S C>=$ ！is not valid when sending ASCII commands using the DH485 interface．

2．Command Code．Two characters that specify the command．
3．Parameters．Data that further determines the command action． Some commands do not have parameters．

4．Terminator．An ASCII control code（less than decimal 32）that terminates the command．Typical control codes are：〈CR＞，〈LF〉， ＜CRLF＞，＜ETX＞．

Command Replies

The decoder sends a reply in response to each command sent from the host．Command replies have the following structure：
\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline 1 & \text { Parameter } & \begin{array}{l}2 \\
\text { End of } \\
\text { Parameter } \\
\text { Code }\end{array} & 3 & \begin{array}{l}4 \\
\text { Response } \\
\text { Code }\end{array}\end{array}
$$ \begin{array}{l}5

End of

Message

Code\end{array}\right]\)

Note：The first two parts of the response may not be present depending on the command．

1. Parameters. Contains data requested by the command parameters. Some commands do not return any parameters.
2. End of Parameter Code. Delimiter that indicates the end of the parameter list. This code is the same as the End of Message Code.
3. $=$ Response delimiter.
4. Response Code. Indicates the status of the processed command. The table below lists the response codes and what they mean.

Response Codes and Descriptions

Response	Description
00	Command complete (normal termination).
01	Valid and successful command. Applies only to TM command.
02	Display buffer is full. Applies only to TM command.
11	Valid command but format is invalid.
50	Unknown command.
97	Reset to new configuration received.
98	Reset to default configuration received.

5. End of Message Code. Indicates the end of the message. Typical end of message control codes are CR, CRLF, LF, ETX, or None.

All examples in this chapter use <end> to represent the end of message control code.

The End Message configuration parameter defines the end of message control code. Refer to the Host Message Format screen described elsewhere in this manual for additional details.

CT - Configure Bar Code Symbology and Supplements

Command Format: CTfccs

Function: Enables or disables the decoding of a specific bar code symbology and supplements.

Parameters: fccs

Command Parameter	Parameter Function	Valid Values
f	Enable a bar code symbology?	$\begin{aligned} & 1=\mathrm{Yes} \\ & 0=\mathrm{No} \end{aligned}$
CC	Specifies a bar code symbology.(1)	$\begin{aligned} & \text { 01=Code } 39 \\ & 02=\text { Interleaved } 2 \text {-of-5 } \\ & 03=\text { Codabar } \\ & 04=\text { UPC-A } \\ & 05=\text { UPC-E } \\ & 06=\text { EAN-8 } \\ & 07=\text { EAN-13 } \\ & 08=\text { Code } 128 \end{aligned}$
s	Specifies supplements for a bar code symbology. (2)	0=None 1=2 character supplement 2=5 character supplement $3=2$ or 5 character supplement 4= Auto (None, 2 or 5 character supplement)

${ }^{(1)}$ See the CP command for Pharma-Code configuration.
(2) Supplements are valid for UPC-A, UPC-E, EAN-8, EAN 13. For other symbologies, select 0=None or omit the "s" parameter.

Response: =rr <end>
$r r=$ response code
<end> = end of message control code

Example:

Command: CT1041
Parameters: 1041

Command Parameter	Parameter Functions	Values
f	Enable bar code symbology?	$1=$ Yes
cc	Select bar code symbology.	$04=$ UPC-A
s	Enable supplements for selected symbology.	$1=2$ character supplement.

$00=$ command complete response code
$\mathrm{CR}=$ end of message control code for Carriage Return

SL - Configure Specific Length for Bar Code Symbology

Command Format: SLccssttuuvvwwxxyyzz
Function: Configures specific lengths for Code 39, Interleaved 2-of-5, Codabar, and Code 128 symbologies.

Parameters: ccssttuuvvwwxxyyzz

Command Parameter	Parameter Function	Valid Values
cc	Bar code symbology	$01=$ Code 39 $02=$ Interleaved 2-of-5 $03=$ Codabar $08=$ Code 128
ss	1st specific length	00 through 64 (1)
tt	2nd specific length	00 through 64 (1)
uu	3rd specific length	00 through 64 (1)
vv	4th specific length	00 through 64 (1)
ww	5th specific length	00 through 64 (1)
xx	6th specific length	00 through 64 (1)
yy	7th specific length	00 through 64 (1)
zz	8th specific length	00 through 64 (1)

(1) A value of 00 in the leftmost field indicates a variable length up to 64. A nonzero value in the left of each field indicates a specific length. The specific length for Interleaved 2-of-5 must be an even number. A two character Interleaved 2-of-5 symbol requires a length of 2.

Response: $\quad=\mathrm{rr}$ <end>

$$
\begin{aligned}
r \mathrm{rr} & =\text { response code } \\
\text { <end>= } & \text { end of message control code } \\
& \text { for Carriage Return. }
\end{aligned}
$$

SL - Configure Specific Length for Bar Code Symbology (continued)

Example:

Command: SL021416000000000000
Parameters: 021416000000000000

Command Parameter	Parameter Function	Values
cc	Bar code type	02= Interleaved 2-of-5
ss	1st specific length	14(1)
H	2nd specific length	161
uu	3rd specific length	00(1)
VV	4th specific length	001
ww	5 th specific length	00①
xx	6th speciific length	00(1)
yy	7th specific length	00(1)
zz	8th specific length	00①
(1) Only Interleaved 2-of-5 symbols with 14 and 16 characters will be decoded.		

Response: = 00CRLF
$00=$ command complete response code
CRLF = end of message control code for Carriage Return and Line Feed.

CC - Configure Code 39, I 2-of-5, Codabar Check Characters

Command Format: CCabcdef
Function: Enables or disables bar code check characters.
Parameters: abcdef
a through f are Yes (1) and No (0) responses to the following parameters (in sequence shown):

Command Parameters	Parameter Function	Valid Values
a	Code 39 check character?	$1=$ Yes, $0=$ No
b	Send Code 39 check character?	$1=$ Yes, $0=$ No
c	I 2-of-5 check character?	$1=$ Yes, $0=$ No
d	Send I 2-of-5 check character?	$1=$ Yes, $0=$ No
e	Codabar check character?	$1=$ Yes, $0=$ No
f	Send Codabar check character?	$1=$ Yes, $0=$ No

Response: =rr <end>

$$
\begin{aligned}
\mathrm{rr}= & \text { response code } \\
<\mathrm{end}>= & \text { end of message control } \\
& \text { code }
\end{aligned}
$$

Example:

Command: CC111100
Parameters: 111100

Command Parameters	Parameter Function	Values
a	Code 39 check character?	$1=$ Yes
b	Send Code 39 check character?	$1=$ Yes
c	I 2-of-5 check character?	$1=$ Yes
d	Send I 2-of-5 check character?	$1=$ Yes
e	Codabar check character?	$0=\mathrm{No}$
f	Send Codabar check character?	$0=\mathrm{No}$

Response: $=00 \mathrm{CR}$
$00=$ command complete response code
$C R=$ end of message control code for Carriage Return.

CG - Configure Interleaved 2-of-5 Guard Bar

Command Format: CGa
Function: Enables verification of guard bars on Interleaved 2-of-5 symbols.

Parameters: a

Command Parameters	Parameter Function	Valid Values
a	Enable verification of guard bar on I $2 / 5$ symbols	$1=\mathrm{Yes}, 0=\mathrm{No}$

Response: = rr <end>

$$
\begin{aligned}
\mathrm{rr} & =\text { response code } \\
\text { <end>} & =\text { end of message control code }
\end{aligned}
$$

Example:

Command: CG1

Parameters: 1

Command Parameters	Parameter Function	Values
a	Enable verification of guard bar on $12 / 5$ symbols	$1=$ Yes

Response: $=00 \mathrm{CR}$
$00=$ command complete response code
$C R=$ end of message control code for Carriage Return.

CQ - Configure Quiet Zone

Command Format: CQaa
Function: Configures the General Quiet Zone Ratio.
Parameters: aa

Command Parameters	Parameter Function	Valid Values
aa	The Quiet Zone Ratio	$00=$ Defaults $04-10$

Response: =rr <end>

$$
\begin{aligned}
r r & =\text { response code } \\
\text { <end>} & =\text { end of message control code }
\end{aligned}
$$

Example:

Command: CQ07
Parameters: 07

Command Parameters	Parameter Function	Values
aa	Set Quiet Zone Ratio to 7	07

Response: $=00 \mathrm{CR}$

$$
\begin{aligned}
00 & =\text { command complete } \\
& \text { response code } \\
\mathrm{CR} & =\text { end of message control code } \\
& \text { for Carriage Return. }
\end{aligned}
$$

CF - Configure Code 128 FNC1 Character

Command Format: CFaaa
Function: Selects return value for Code 128 FNC1 Character.

Parameters: aaa

Command Parameters	Parameter Function	Valid Values
aaa	Select Code 128 FNC1 Character	$000=$ Discard $001 \ldots 255=$ FNC1 Character

Response: = rr <end>

$$
\begin{aligned}
\mathrm{rr} & =\text { response code } \\
\text { <end> } & =\text { end of message control code }
\end{aligned}
$$

Example:

Command: CF130
Parameters: 029

Command Parameters	Parameter Function	Values
aaa	Set Code 128 FNC1 return value to 1Dh (029 decimal)	029 (GS group separator)

Response: = 00CR
$00=$ command complete response code
$C R=$ end of message control code for Carriage Return.

CV - Code Verification List

Command Format: CVaabbbb
Function: Defines numeric values for specific data locations of a Pharma-Code bar code symbol.

Parameters: aabbbb

Command Parameters	Parameter Function	Valid Values
aa	Field location	00 to 16 00 means clear Code Verification List (all 16 locations)
bbbb	Pharma-Code data value	0000,0007 to 8190 0000 clears data value at specified location.

Response: =rr <end>

$$
\begin{aligned}
\mathrm{rr} & =\text { response code } \\
\text { <end> } & =\text { end of message control code }
\end{aligned}
$$

Example:

Command: CV011122
Parameters: 011122

Command Parameters	Parameter Function	Valid Values
aa	Field location	01
bbbb	Pharma-Code data value	1122

Response: $=00 \mathrm{CR}$

$$
\begin{aligned}
00= & \text { command complete } \\
& \text { response code } \\
\mathrm{CR}= & \text { end of message control code } \\
& \text { for Carriage Return }
\end{aligned}
$$

CP - Configure Pharma-Code Symbology

Command Format: CPabccddeefgg

Function: Enables the Pharma-Code symbology and configures parameters of the symbology.

Parameters: abccddeefgg

Command Parameters	Parameter Function	Valid Values
a	Enable symbology	$0=$ No $1=$ Yes
b	Decode direction	$0=$ Forward $1=$ Reverse $2=$ Forward Scanner A Reverse Scanner B(1 $3=$ Reverse Scanner A Forward Scanner B1
cc	Quiet zone ratio	04 to 10
dd	Space tolerance	$00=$ Ignore 05 to 40
ee	Bar tolerance	$00=$ Ignore 05 to 40
f	Wide to narrow bar ratio	$0=$ midrange 2 to 4
gg	Minimum number of bars	03 to 12

${ }^{(1)}$ Applies only to Dual-Head Decoder.

Response: = rr <end>

$$
\begin{aligned}
\mathrm{rr} & =\text { response code } \\
\text { <end }>= & \text { end of message code }
\end{aligned}
$$

CP - Configure Pharma-Code Symbology (continued)

Example:

Command: CP10040000005
Parameters: 10040000005

Command Parameters	Parameter Function	Valid Values
a	Enable symbology	$1=$ Yes
b	Decode direction	$0=$ Forward
cc	Quiet zone ratio	04
dd	Space tolerance	$00=$ Ignore
ee	Bar tolerance	$00=$ Ignore
f	Wide to narrow bar ratio	$0=$ midrange
gg	Minimum number of bars	05

Response: $=00 \mathrm{CR}$
$00=$ command complete response code
$C R=$ end of message control code for Carriage Return

SC - Configure Scanner A Control

Command Format: SCldcsprrrrtttm
Function: Specifies the operating parameters for Scanner A or Scanners A and B in coordinated mode.

Parameters: Idcsprrrrttttm

Command Parameters	Parameter Function	Valid Values
I	Laser-light	$0=$ On $1=$ Triggered $2=$ Off
d	Trigger mode	$0=$ Package Detect $1=$ Host $2=$ Internal Timer $3=$ Continuous $4=$ Continuous/unique
c	Capture count.	0,1 through 8 $(0=$ Verify)
s	Bar code symbols per scan	0 through 6 $0=$ ANY (1,2,3,4,5,6)
p	Bar code symbols per package	$1-9$, A-G (where A=10,...G=16)
rrrr	No-read timer value (in milliseconds)	$0000,0010-9999$ (in milliseconds) 0000 disables timeout
tttt	Inter-scan timer value (in milliseconds)	$0000,0010-9999$ (in milliseconds) 0000 disables timeout
m	Match complete count	$1-9$, A-G (where A=10,...G=16)

Important: See Chapter 6 for a description of the Scanner Control parameters.

Response: = rr <end>

$$
\begin{aligned}
\mathrm{rr} & =\text { response code } \\
\text { <end> }> & =\text { end of message control code }
\end{aligned}
$$

SC - Configure Scanner A Control (continued)

Example:

Command: SC01211005500001

Parameters: 01211005500001

Command Parameters	Parameter Function	Values
I	Laser-light	$0=$ Continuous scanning
d	Decode trigger mode	$1=$ Host
c	Capture count	2
s	Bar code symbols per scan	1
p	Bar code symbols per package	1
rrrr	No-read timer value (in milliseconds)	$0055=55$ millisecond timer value
tttt	Inter-scan timer value (in milliseconds)	$0000=$ Disables inter-scan timer
m	Match complete count	1

Response: $=00 \mathrm{CR}$

$$
00=\underset{\text { response code }}{\text { command complete }}
$$

$C R=$ end of message control code for Carriage Return

PB - Configure Scanner B Control

Command Format: PBabttt

Function: Configures Scanner B to operate in coordinated or independent mode. This command also defines the operating parameters for Scanner B when the scanning mode is set to independent.

NOTE: This command is valid only for dual head decoders.

Parameters: abttt

Command Parameters	Parameter Function	Valid Values
a	Scanning mode of scanner B	$0=$ Coordinated 1 $1=$ Independent Package Detect $2=$ Independent Host Triggered $3=$ Coordinated 2
b	Reserved	Ignored (1)
tttt	Trigger timeout for scanner B (in milliseconds)	$0000,0010-9999$ (in milliseconds) 0000 disables timeout

(1) Decoder ignores character but it must be supplied to maintain compatibility with previous decoders.

Important: See Chapter 7 for a description of the Scanner Control parameters.

Response: =rr <end>

Example:

$$
\begin{aligned}
\mathrm{rr} & =\text { response code } \\
\text { <end> } & =\text { end of message control code }
\end{aligned}
$$

Command: PB110100

Parameters: 110100

Command Parameters	Parameter Function	Values
a	Scanning mode of scanner B	$1=$ Independent Package Detect
b	Ignored	1 (Ignored)
tttt	Trigger timeout for scanner B (in milliseconds)	$0100=100$ milliseconds

Response: $=00 \mathrm{CR}$
$00=$ command complete response code
$C R=$ end of message control code for Carriage Return

IF - Configure Scanner A Package Detect Filter and Sense

Command Format: IFf
Function: Enables or disables the 15 ms input filter and determines the sense of the package detect signal for Scanner A.

Parameters: $\quad f=$ disable or enable filter/select sense.

Command Parameter	Parameter Function	Valid Values
		0=disable filter, LO when package is present f
		Enable or disable filter/select sense
		LO when package is present
		2=disable filter,
	HI when package is present	
		3=enable filter,
		HI when package is present

Response: = rr <end>
$\mathrm{rr}=$ response code
<end> = end of message control code

Example:

Command: IF1

Parameters: 1

Command Parameter	Parameter Function	Value
	Enable or disable filter/select sense	1=enable filter, LO when package is present

Response: $=00 \mathrm{CR}$
$00=$ command complete response code
$C R=$ end of message control code for Carriage Return

BF - Configure Scanner B Package Detect Filter and Sense

Command Format: BFf
Function: Enables or disables the 15 ms input filter and determines the sense of the package detect signal for Scanner B.

NOTE: This command is valid only for dual head decoders.

Parameters: $f=$ disable or enable filter/select sense.

Command Parameter	Parameter Function	Valid Values
f	Enable or disable filter/select sense	0=disable filter, LO when package is present 1=enable filter, LO when package is present 2=disable filter, HI when package is present 3=enable filter, HI when package is present

Response: = rr <end>

$$
\begin{aligned}
\mathrm{rr} & =\text { response code } \\
\text { <end> } & =\text { end of message control code }
\end{aligned}
$$

Example:

Command: BF1
Parameters: 1

Command Parameter	Parameter Function	Value
f	Enable or disable filter/select sense	$1=$ enable filter, LO when package is present

Response: = 00CR

$$
\begin{aligned}
00= & \text { command complete } \\
& \text { response code } \\
\mathrm{CR} & =\begin{array}{l}
\text { end of message control code } \\
\\
\text { for Carriage Return }
\end{array}
\end{aligned}
$$

BL - Configure Scanner B Laser Mode

Command Format: BLa
Function: Configures the laser light for scanner B.
NOTE: This command is valid only for dual head decoders.

Parameters: a

Command Parameters	Parameter Function	Valid Values
a	Scanner B laser light	$0=$ On $1=$ Triggered $2=$ Off

Response: =rr <end>

$$
\begin{aligned}
\mathrm{rr} & =\text { response code } \\
\text { <end> } & =\text { end of message control code }
\end{aligned}
$$

Example:

Command: BL1

Parameters: 1

Command Parameters	Parameter Function	Values
a	Scanner B laser light	1=Triggered

Response: = 00CR

$$
\begin{aligned}
00= & \text { command complete } \\
& \text { response code } \\
\mathrm{CR}= & \text { end of message control code } \\
& \text { for Carriage Return. }
\end{aligned}
$$

SW - Write Scanner Source to Match Code Table

Command Format: SWab
Function: Configures the source of an event.
Parameters: ab

Command Parameters	Parameter Function	Valid Values
a	Match code table entry number	1 through 8
		$1=$ Scanner A 2=Scanner B® b
	Source of event	$3=A \mid B(1$
$4=I l l e g a l$		
		$5=A-B(1)$

(1) Applies only to Dual-Head Decoder.

Response: =rr <end>

$$
\begin{aligned}
\mathrm{rr} & =\text { response code } \\
\text { <end> } & =\text { end of message control code }
\end{aligned}
$$

Example:

Command: SW11

Parameters: 1

Command Parameters	Parameter Function	Values
a	Match code table entry number	1
b	Source of event	$1=$ Scanner A

Response: = 00CR

$$
00=\underset{\text { response code }}{\text { command complete }}
$$

$C R=$ end of message control code for Carriage Return.

AB - Auto-load Begin

Command Format: AB
Function: Resets autoloads. Once received, the decoder loads match code table positions set to autoload with decoded bar code data until it receives an AE (Autoload End command. Equivalent to manual autoload input.

Response: =rr <end>

$$
\begin{aligned}
r r & =\text { response code } \\
\text { <end>= } & \text { end of message control } \\
& \text { code }
\end{aligned}
$$

Example:

Command: AB

$$
\text { Response: } \quad=00 \mathrm{CR}
$$

$$
00=\text { command complete }
$$ response code

$C R=$ end of message control code for Carriage Return.

AE - Autoload End

Command Format: AE
Function: Stops loading data into position set to autoload. This command follows an AB (Autoload Begin) command. Equivalent to releasing a manual autoload input.

Response: = rr <end>

$$
\begin{aligned}
\mathrm{rr} & =\text { response code } \\
\text { <end> } & =\text { end of message control code }
\end{aligned}
$$

Example:

Command: AE

Response: $=00 \mathrm{CR}$
$00=$ command complete response code
$C R=$ end of message control code for Carriage Return.

AL - Autoload

Command Format: ALabeestring
Function: Load the match pattern into the next available position set to autoload, checking first the primary match table, and then the extended match table. This is the equivalent of a manual Autoload, except the data is supplied by the host instead of a scanner.

Parameters: abeestring

Command Parameters	Parameter Function	Valid Values
a	Source	$\begin{aligned} & 1=\mathrm{A} \\ & 2=\mathrm{B} \end{aligned}$
b	Symbology	1=Code 39 2=Interleaved 2-of-5 3=Codabar 4=UPC-A 5=UPC-E 6=EAN-8 7=EAN-13 8=Code 128 9=Pharma-Code
ee	Length of match string	00 to 32
string	Match string	Up to 32 ASCII characters

Response: = rr <end>

$$
\mathrm{rr}=\text { response code }
$$

<end>= end of message control code

AL - Autoload (continued)

Example:

Command: AL

Parameters: 1110ABCDE12345

Command Parameters	Parameter Function	Valid Values
a	Source	$1=\mathrm{A}$
b	Symbology	$1=$ Code 39
ee	Length of match string	10 Characters
String	Match string	ABCDE12345

Response: $=00 \mathrm{CR}$

$$
\begin{aligned}
00= & \text { command complete } \\
& \text { response code } \\
C R= & \text { end of message control code } \\
& \text { for Carriage Return. }
\end{aligned}
$$

OS - Set Output Normally Open/Closed

Command Format: OSnf

Function: Sets the state of a discrete output to normally open or normally closed.

Parameters: nf

Command Parameters	Parameter Function	Valid Values
n	Discrete output number	1 through 8
f	Switch operation normally open or normally closed	$0=$ Normally Open $1=$ Normally Closed

Response: = rr <end>

$$
\begin{aligned}
\mathrm{rr} & =\text { response code } \\
\text { <end>} & =\text { end of message control code }
\end{aligned}
$$

Example:

Command: OS20

Parameters: 20

Command Parameters	Parameter Function	Values
n	Discrete output number	2
f	Switch operation normally open or normally closed	$0=$ Normally Open

Response: $=00 C R$

$$
\begin{aligned}
00= & \text { command complete } \\
& \text { response code } \\
\mathrm{CR} & =\begin{array}{l}
\text { end of message control code } \\
\\
\text { for Carriage Return }
\end{array}
\end{aligned}
$$

OC - Set Output Condition and Output Duration

Command Format: OCncttt

Function: Sets the condition that will activate an output and the length of time (in milliseconds) the output is activated.

Parameters: ncttt

Command Parameters	Parameter Function	Valid Values
n	Output number	1 through 8
c	Condition activates output	$0=$ None 1= Read (Package) 2= No-Read (Package) 3= Match Complete 4= Match Entry $5=$ Read and No-Match $6=$ No-Read or No-Match 7= Auto Load $8=$ Auto Load (Input)(1) $9=$ Host buffer full A= Host buffer overflow
tttt	Time (in milliseconds) that output is activated.	0000, 0010 to 9999 (milliseconds) 0000 disables condition

(1) The AutoLoad (Input) function applies only to output 8 .

Response: =rr <end>
rr = response code
<end> = end of message control code

OC - Set Output Condition and Output Duration (continued)

Example:

Command: OC510110

Parameters: 510110

Command Parameters	Parameter Function	Values
n	Output number	5
c	Condition that activates output	$1=$ Read (Package)
tttt	Time (in milliseconds) that output is activated.	$0110=110$ milliseconds

Response: $=00 \mathrm{CR}$

$$
00=\underset{\text { response code }}{\text { command complete }}
$$

$C R=$ end of message control code for Carriage Return

OH - Hold Output Open/Closed

Command Format: OHnffttt
Function: Allows the host to control the discrete outputs (regardless of their "normal" state) for a set duration.(1) When the duration expires, the output reverts to its previous state.

Note: If a normally open output is held open (or a normally closed output is held closed), the state of the output will not change.

ATTENTION: An output held open or closed will reestablish itself after a power loss (all other conditions will be deactivated if power is lost). A Restart command will deactivate a held output.

Parameters: nfftttt

Command Parameters	Parameter Function	Valid Values
n	Discrete output number	1 through 8
ff	Hold switch operation in open or closed state?	$00=$ Hold Open(1) $11=$ Hold Close
tttt	Time (in milliseconds) that output remains in held state. When the time expires, the output returns to its previous state.	0000,0010 to 9999 (milliseconds) 0000 holds output in state until changed.

Response: =rr <end>

$$
\begin{aligned}
\mathrm{rr} & =\text { response code } \\
\text { <end> } & =\text { end of message control code }
\end{aligned}
$$

OH - Hold Output Open/Closed (continued)

Example:

Command: OH2001000
Parameters: 2001000

Command Parameters	Parameter Function	Values
n	Discrete output number	2
ff	State of discrete output	$00=$ Hold Open
tttt	Time (in milliseconds) that output remains held open.	1000 milliseconds

Response: = 00CR

$$
\begin{aligned}
00 & =\begin{array}{l}
\text { command complete } \\
\\
\text { response code } \\
\mathrm{CR}
\end{array}=\begin{array}{l}
\text { end of message control code } \\
\text { for Carriage Return }
\end{array}
\end{aligned}
$$

MR - Read Primary Match Code Table Entry

Command Format: MRn
Function: Read match code configuration for table entry 1-8.

Parameters: $\mathrm{n}=$ match code table entry number 1 through 8 .

Command Parameters	Parameter Function	Valid Values
n	Match code table entry number	1 through 8
f	RESERVED	11
CC	Bar code symbology	$\begin{aligned} & \text { 01=Code } 39 \\ & 02=\text { Interleaved } 2 \text { of } 5 \\ & 03=\text { Codabar } \\ & 04=\text { UPC-A } \\ & 05=\text { UPC-E } \\ & 06=\text { EAN-8 } \\ & 07=\text { EAN-13 } \\ & 08=\text { Code 128 } \\ & 09=\text { Pharma-Code } \\ & 16=\text { Any } \end{aligned}$
II	Length of match string	00 to 32
string	Match string	up to 32 characters

(1) This value is always returned as 1 .

Response: nfccllstring<end> = rr <end>

$$
\begin{aligned}
\text { <end> } & =\text { end of message control code } \\
r r & =\text { response code } \\
\text { <end> } & =\text { end of message control code }
\end{aligned}
$$

Example:

Command: MR3
Parameters: 3 = match code entry \#3

Command Parameters	Parameter Function	Values	
n	Match code table entry number	3	
f	RESERVED	$1(1)$	
cc	Bar code symbology	$01=$ Code 39	
$\\|$	Length of match string	05	
string	Match string	12345	
(1) This value is always returned as 1.			

Response: $\quad 31010512345 \mathrm{CR}=00 \mathrm{CR}$
$C R=$ end of message control code
$00=$ command complete response code
$C R=$ end of message control code

MW - Write Primary Match Code Table Entry

Command Format: MWnfccllstring

Function: Configure a match code for table entry 1 - 8 .
Parameters: nfccllstring

Command Parameters	Parameter Function	Valid Values
n	Match code table entry number	1 through 8
f	RESERVED	Ignored(1)
		$01=$ Code 39
		$02=$ Interleaved 2 of 5
		$03=$ Codabar
		$04=$ UPC-A
cc	Bar code symbology	$05=$ UPC-E
		$06=$ EAN-8
		$07=$ EAN-13
		$08=$ Code 128
		$09=$ Pharma-Code
		16=Any
II	Length of match code string	00 to 32(2)
string	Match code characters	up to 32 characters(3)

(1) Decoder ignores character but it must be supplied to maintain compatibility with previous decoders.
(2) A zero length string disables a match code entry. A nonzero length string enables the match code entry.
(3) The string must be as long as the specified string length (II).

Response: = rr <end>
$r r=$ response code
<end> = end of message control code

MW - Write Primary Match Code Table Entry (continued)

Example:

Command: MW4102041289
Parameters: 4102041289

Command Parameters	Parameter Function	Values
n	Match code table entry number	4
f	RESERVED	1
cc	Bar code symbology	$02=$ Interleaved 2 of 5
II	Length of match string	04
string	Match string	1289

Response: = 00LF
$00=$ command complete response code
$L F=$ end of message control code for Line Feed

CM - Clear Primary Output Counters

Command Format: CMn
Function: Clears the selected output counter to 0 .
Parameters: $\mathrm{n}=$ output counter number 1 through 8
Response: $=r r$ <end>

$$
\begin{aligned}
\mathrm{rr} & =\text { response code } \\
\text { <end }> & >=\text { end of message control code }
\end{aligned}
$$

Example:

Command: CM3
Parameters: 3 = output counter \#3.
Response: $=00 \mathrm{CR}$
$00=$ command complete response code
$C R=$ end of message control code for Carriage Return

CO - Clear All Primary Output Counters

Command Format: CO
Function: Clears the Primary Counters to zero.
Parameters: None
Response: = rr <end>

$$
\begin{aligned}
\mathrm{rr}= & \text { response code } \\
\text { <end>= } & \text { end of message control } \\
& \text { code }
\end{aligned}
$$

Example:

Command: CO
Response: $=00 \mathrm{CR}$
$00=$ command complete response code
$C R=$ end of message control code for Carriage Return

CA - Clear Extended Match Counters

Command Format: CA
Function: Clears the value of the extended counts to zero.
Parameters: None
Response: =rr <end>

$$
\begin{aligned}
\mathrm{rr} & =\text { response code } \\
\text { <end> } & =\text { end of message control code }
\end{aligned}
$$

Example:
Command: CA
Response: = 00CR

$$
\begin{aligned}
& 00= \text { command complete } \\
& \text { response code } \\
& \mathrm{CR}= \text { end of message control code } \\
& \text { for Carriage Return }
\end{aligned}
$$

SE - Set Extended Match Counters

Command Format: SEnnnmmmmmm
Function: \quad Sets the value of extended count number nnn to mmmmmm.

Parameters: nnnmmmmmm

Command Parameters	Parameter Function	Valid Values
$n n$	The number of the Extended match count	001 to 128 $000=$ All
	The value of the count	000000 to 999999

Response: =rr <end>

$$
\begin{aligned}
\mathrm{rr} & =\text { response code } \\
\text { <end> } & =\text { end of message control code }
\end{aligned}
$$

Example:

Command: SC012000036
Parameters: 012

Command Parameters	Parameter Function	Values
nnn	The number of the Extended match count.	012
mmmmmm	The value of the count	000036

Response: $=00 \mathrm{CR}$

$$
\begin{aligned}
00= & \text { command complete } \\
& \text { response code } \\
\mathrm{CR} & =\text { end of message control code } \\
& \text { for Carriage Return. }
\end{aligned}
$$

RC - Read Extended Match Counters

Command Format: RCnnn
Function: Reads the value of Extended count number nnn.
Parameters: nnn

Command Parameters	Parameter Function	Valid Values
nnn	The number of the Extended match count	001 to 128

Response: = mmmmmm <end>
$\mathrm{mmmmmm}=$ count value
<end> = end of message control code

Example:

Command: RC012

Parameters: 012

Command Parameters	Parameter Function	Values
nnn	The number of the Extended match count.	012

Response: $=000036 \mathrm{CR}$
$000036=$ value of counter 12
$C R=$ end of message control code for Carriage Return.

SM - Set Extended Match Data

Command Format: SMnnnasccmmmmmmddddddddlllstring
Function: Sets the value of the Extended data number nnn.
Parameters: nnnasccmmmmmmddddddddllstring

Command Parameters	Parameter Function	Valid Values
nnn	The number of the Extended match count	000 to 128
a	Mode	A=Auto-load M=Match Entry $\bar{D}=$ Disabled L=Lot
s	Source	$\begin{aligned} & 1=\text { Scanner A } \\ & 2=\text { Scanner B } \\ & 3=\text { AIB } \\ & 4=\text { IIIegal } \\ & 5=A-B \end{aligned}$
CC	symbology	$\begin{aligned} & \text { 01=Code } 39 \\ & 02=\text { Interleaved } 2 \text {-of-5 } \\ & 03=\text { Codabar } \\ & 04=\text { UPC-A } \\ & 05=\text { UPC-E } \\ & 06=\text { EAN-8 } \\ & 07=\text { EAN-13 } \\ & 08=\text { Code } 128 \\ & 09=\text { Pharma-Code } \\ & 16=\text { Any } \end{aligned}$
mmmmmm	The value of the count	000000 to 999999
dddddddd	Loading (8)	0 to 9, or X
1	Length of match string	00 to 32
string	Match string	up to 32 characters

Response: =rr <end>
$\mathrm{rr}=$ response code
<end>= end of message control code

SM - Set Extended Match Data (continued)

Example:

Command: SM002M30100000010000000041289
Parameters: 002 M 30100000010000000041289

Command Parameters	Parameter Function	Valid Values
nnn	The number of the Extended match count	002
a	Mode	$\mathrm{M}=$ Match Entry
s	Source	$3=\mathrm{AlB}$
cc	Symbology	$01=$ Code 39
mmmmmm	The value of the count	000000
dddddddd	Loading (8)	10000000
II	Length of match string	04
string	Match string	1289

Response: $=00 \mathrm{CR}$
$00=$ command complete response code
$C R=$ end of message control code for Carriage Return.

RP - Read All Extended Match Data

Command Format: RP
Function: Reads the value of all Extended data.
Parameters: None

Response Parameters	Parameter Function	Valid Values
nnn	The number of the Extended match counts	001 to 128
a	Mode	A=Auto-load M=Match Entry D=Disabled L=Lot
SS	Source	$\begin{aligned} & 01=\text { Scanner A } \\ & 02=\text { Scanner B } \\ & 03=A \mid B \\ & 04=A-B \end{aligned}$
CC	Symbology	$\begin{aligned} & \text { 01=Code } 39 \\ & \text { 02=Interleaved } 2 \text {-of-5 } \\ & \text { 03=Codabar } \\ & 04=\text { UPC-A } \\ & 05=\text { UPC-E } \\ & 06=\text { EAN-8 } \\ & 07=\text { EAN-13 } \\ & 08=\text { Code 128 } \\ & 09=\text { Pharma-Code } \\ & \text { 16=Any } \end{aligned}$
mmmmmm	The value of the count	000000 to 999999
1	Length of match string	00 to 32
string	Match string	up to 32 characters

Response: 001assccmmmmmmmmllstring<end>..
...
128assccmmmmmmmmllstring<end> =rr<end>

$$
\begin{aligned}
r r & =\text { response code } \\
\text { <end>} & =\text { end of message control code }
\end{aligned}
$$

RP - Read All Extended Match Data (continued)

Example:
Command: RP
Response: $\quad 001$ M 0301001289041289 CR 002 ...
...
128 M 0301001289041289 CR $=00 \mathrm{CR}$

Command Parameters	Parameter Function	Values
nnn	The number of the Extended match counts	064
a	Mode	$\mathrm{M}=$ Match Entry
s	Source	$03=\mathrm{AlB}$
cC	symbology	$01=$ Code 39
mmmmmm	The value of the count	001289
II	Length of match string	04
string	Match string	1289
a	Mode	$\mathrm{M}=$ Match Entry
s	Source	$3=\mathrm{AlB}$
cc	Symbology	$01=$ Code 39
mmmmmm	The value of the count	000222
II	Length of match string	04
string	Match string	6247

$C R=$ delimiter and/or end of message control code for Carriage Return
$00=$ command complete response code
$C R=$ end of message control code for Carriage Return.

RA - Read All Extended Counters

Command Format: RA
Function: Reads all Extended counts.
Parameters: None
Response: nnnmmmmmm<end>...
nnnmmmmmm<end>
= rr <end>

Response Parameters	Parameter Function	Valid Values
nnn	The number of the Extended match count	001
mmmmmm	Value of count	000000 to 999999
nnn	The number of the Extended match count	002
mmmmmm	Value of count	000000 to 999999
	\ldots	128
nnn	The number of the Extended match count	000000 to 999999
mmmmmm	Value of count	

$\begin{aligned} \mathrm{rr} & =\text { response code } \\ \text { <end> } & =\text { end of message control code }\end{aligned}$

RA - Read All Extended Counters (continued)

Example:

Command: RA
Parameters: None
Response: 001000012CR002000122...
128000012CR
$=00 \mathrm{CR}$

Response Parameters	Parameter Function	Values
$n n n$	The number of the Extended match count	001
$m m m m m m$	Value of count	000012
$n n n$	The number of the Extended match count	002
mmmmmm	Value of count	000122
	\ldots	128
nnn	The number of the Extended match count	000000
$m m m m m m$	Value of count	

Response: $=00 \mathrm{CR}$

$$
\begin{aligned}
& 00= \text { command complete } \\
& \text { response code } \\
& \mathrm{CR}= \text { end of message control } \\
& \text { code for Carriage Return. }
\end{aligned}
$$

CS - Disable Extended Match Code Set

Command Format: CSnnnnnnnnn
Function: Disables a group of Extended Match Codes
Parameters: nnnnnnnn

Command Parameters	Parameter Function	Valid Values
nnnnnnnn	Allows the 128 Extended Match Codes to be treated as eight sets of sixteen each. Each set can be individually marked.	$00000000=$ All Disabled through $1111111=$ All enabled

Response: =rr <end>
$\mathrm{rr}=$ response code
<end> = end of message control code

Example:

Command: CS01100011
Parameters: 01100011

Command Parameters	Parameter Function	Values
nnnnnnnn	Enables positions 17-32, 33-48, $97-112$, and 113-128	01100011

Response: $=00 \mathrm{CR}$

$$
\begin{aligned}
00= & \text { command complete } \\
& \text { response code } \\
\mathrm{CR} & =\text { end of message control code } \\
& \text { for Carriage Return. }
\end{aligned}
$$

RS - Read Extended Match Set Status

Command Format: RS
Function: Reads the status of the extended match sets.
Parameters: none

Response: nnnnnnnn = rr <end>

$$
\begin{aligned}
r r & =\text { response code } \\
\text { <end> } & =\text { end of message control code }
\end{aligned}
$$

Example:

Command: RS

Response: $\quad 10010001=00 C R$
$10010001=$ Sets 1,4 , and 8 enabled; all others disabled.
$00=$ command complete response code
$C R=$ end of message control code for Carriage Return.

DF - Enable Data Display on AUX Terminal and LCD

Command Format: DFab
Function: Enables the AUX terminal and/or the LCD
Display to receive and display bar code data.
Note: Before data will display at the AUX terminal, you must set the AUX port to manual data entry mode (as described in Chapter 13).

Parameters: ab

Command Parameter	Parameter Function	Valid Values
a	Enable device to display formatted bar code data.	0= None $1=$ AUX terminal and LCD Display $2=$ AUX terminal only $3=$ LCD Only
b	Specify format of bar code data.	0= Unformatted $1=$ Host format

Response: = rr <end>

$$
\begin{aligned}
\mathrm{rr} & =\text { response code } \\
\text { <end> }> & =\text { end of message control code }
\end{aligned}
$$

Example:

Command: DF11

Parameters: 11

Command Parameter	Parameter Function	Values
a	Enable device to display formatted bar code data.	1= AUX terminal and LCD Display
b	Specify format of bar code data.	1= Host format

Response: = 00LF

$$
\begin{aligned}
00= & \text { command complete } \\
& \text { response code } \\
L F= & \text { end of message control code } \\
& \text { for Line Feed }
\end{aligned}
$$

DP - Configure Data Display Positions for AUX Terminal and LCD

Command Format: DPdpp
Function: Enables the display of specific data items on the LCD and/or AUX port terminal starting at a specific character position.

Note: Before data will display at the AUX terminal, you must set the AUX port to manual data entry mode (as described in Chapter 13).

Parameters: dpp

Command Parameter	Parameter Function	Valid Values
d	Data item selector	A= Bar Code Data $B=$ Decoder Performance C= Package Counter D = No-Read Counter 1= Primary Counter 1 2= Primary Counter 2 3= Primary Counter 3 4= Primary Counter 4 5= Primary Counter 5 6= Primary Counter 6 7= Primary Counter 7 8= Primary Counter 8
pp	Character position	$\begin{aligned} & 00,01-80 \\ & 00=\text { Disable } \\ & \hline \end{aligned}$

Response: =rr <end>

$$
\begin{aligned}
r r & =\text { response code } \\
\text { <end>} & =\text { end of message control code }
\end{aligned}
$$

Example:

Command: DPA01

Parameters: A01

Command Parameter	Parameter Function	Values
d	Data item selector	$\mathrm{A}=$ Bar Code Data
pp	Character position	01

Response: = 00LF

$$
\begin{aligned}
00= & \text { command complete } \\
& \text { response code } \\
\mathrm{LF}= & \text { end of message control code } \\
& \text { for Line Feed }
\end{aligned}
$$

SD - Enable LCD Scrolling

Command Format: SDf
Function: Enables or disables scrolling of the LCD display.
Parameters: f

Command Parameters	Parameter Function	Values
f	Enable Scrolling LCD Display	$0=$ No $1=$ Yes

See Chapter 9 for details on how the LCD
Display operates when scrolling is enabled or disabled.

Response: = rr <end>

$$
\begin{aligned}
r r & =\text { response code } \\
\text { <end> }> & =\text { end of message control code }
\end{aligned}
$$

Example:

Command: SD1

Parameters: 1

Command Parameters	Parameter Function	Values
f	Enable scrolling LCD Display	$1=$ Yes

Response: =00CR
$00=$ command complete response code
$C R=$ end of message control code for Carriage Return

SR - Set Search and Replace Rule for Host Message Fields

Command Format: SRnnmmsccbbffapppllstringllstring
Function: Set parameters for the host message replacement rules.

Parameters: nnmmsccbbffapppllstringllstring

Command Parameters	Parameter Function	Valid Values
nn	The number of the Search and Replace Rule	01 to 16
mm	The host message field number	00=All or 01 to 16
s	Source	$\begin{aligned} & 1=\text { Scanner A } \\ & 2=\text { Scanner B } \\ & 3=\text { AlB } \\ & 4=\text { Aux } \end{aligned}$
cc	Symbology	$\begin{aligned} & \text { 01=Code } 39 \\ & \text { 02=Interleaved 2-of-5 } \\ & \text { 03=Codabar } \\ & 04=\text { UPC-A } \\ & 05=\text { UPC-E } \\ & 06=\text { EAN-8 } \\ & \text { 07=EAN-13 } \\ & \text { 08=Code 128 } \\ & \text { 09=Pharma-Code } \\ & \text { 16=Any } \end{aligned}$
bb	Symbol number	00=All or 01 to 16
f	Minimum field length	00 to 64
a	Alignment	$\begin{aligned} & \text { 0=Right } \\ & \text { 1=Left } \end{aligned}$
ppp	Fill character	$\begin{aligned} & 000 \text { to } 255 \\ & \text { (000= No alignment) } \end{aligned}$
II	Length of search pattern string	00=Empty or 01 to 24
string	Search pattern string	up to 24 characters
1	Length of replace pattern string	00=Empty or 01 to 24
String	Replace pattern string	up to 24 characters

Response: =rr <end>

$$
\begin{aligned}
\mathrm{rr} & = & \text { response code } \\
\text { <end }> & = & \text { end of message control code }
\end{aligned}
$$

SR - Set Search and Replace Rule for Host Message Fields (continued)

Example:

Command: SR02013010009004807^S(..*)\$02\1
Parameters: $02013010009004807^{\wedge} \mathrm{S}\left(.^{*}\right) \$ 02$ \1

Command Parameters	Parameter Function	Values
nn	The number of the Search and Replace Rule	02
mm	The host message field number	01
s	Source	$3=\mathrm{AlB}$
cc	Symbology	$01=$ Code 39
bb	Symbol number	$00=\mathrm{All}$
f	Minimum field length	09
a	Alignment	$0=$ Right
ppp	Fill character	$048=0$
II	Length of search pattern string	07
String	Search pattern string	\wedge S(.. $) \$$
II	Length of replace pattern string	02
String	Replace pattern string	$\backslash 1$

Response: $=00 \mathrm{CR}$
$00=$ command complete response code
$C R=$ end of message control code for Carriage Return.

SF - Set No-Read Replacement Strings

Command Format: SFnnllstring
Function: Set the No-Read Replacement Strings.
Parameters: nnllstring

Command Parameters	Parameter Function	Valid Values	
nn	The number of the No-Read Replacement String	01 to 16	
$\\|$	Length of the No-Read Replacement String	$00=$ Empty or 01 to 24	
String	No-Read Replacement String	up to 24 characters	

Response: = rr <end>

$$
\begin{aligned}
\mathrm{rr} & =\text { response code } \\
\text { <end> }>= & \text { end of message control } \\
& \text { code }
\end{aligned}
$$

Example:

Command: SF0207No-Read
Parameters: 0207 No-Read

Command Parameters	Parameter Function	Values	
nn	The number of the No-Read Replacement String	02	
$\\|$	Length of the No-Read Replacement String	07	
String	No-Read Replacement String	No-Read	

Response: = 00CR
$00=$ command complete response code
$C R=$ end of message control code for Carriage Return.

HC - Configure Host Communications

Command Format: HCaaannnssspppfr
Function: Configures host communication parameters.
Parameters: aaannnssspppfr

$$
\begin{aligned}
\mathrm{rr} & =\text { response code } \\
\text { <end> } & =\text { end of message control code }
\end{aligned}
$$

HC - Configure Host Communications (continued)

Example:

Command: HC03603703504311
Parameters: 03603703504311

Command Parameter	Parameter Function	Values
aaa	ACK character	$036=\$$ character
nnn	NAK character	$039=\&$ character
sss	Start character for Scanner A	$035=$ \# character
ppp	Stop character for Scanner A	$043=+$ character
f	Large buffer enable	$1=$ Yes
r	Send Message to Host	$1=$ Immediately after Valid Package

Response: $=00 \mathrm{CR}$
$00=$ command complete response code
$C R=$ end of message control code for Carriage Return

HB - Configure Scanner B Start \& Stop Characters ${ }^{\text {(1) }}$

Command Format: HCsssppp
Function: Configures Scanner B start and stop characters for independent host triggering.

Parameters: sssppp

Command Parameter	Parameter Function	Valid Values
sss	Start character for Scanner B	ASCII decimal value 000 to 254 $255=$ None
ppp	Stop character for Scanner B	ASCII decimal value 000 to 254 $255=$ None
<end> $\quad$$r r$ $=$ response code $<e n d>$ $=$ end of message control code		

Command: HB035043
Parameters: 035043

Command Parameter	Parameter Function	Values
sss	Start character for Scanner B	$035=$ \# character
ppp	Stop character for Scanner B	$043=+$ character

Response: $=00 \mathrm{CR}$
$00=$ command complete response code
$C R=$ end of message control code for Carriage Return

[^9]
MF - Configure Host Message Format

Command Format: MFabcdefghhhiiijkl
Function: Configures the format of messages sent to the host.

Parameters: abcdefghhhiiijkl
a through g are Yes (1) and No (0) responses to the following parameters (in sequence shown):

Command Parameters	Parameter Function	Valid Values
a	Send bar code data?	1=Yes, 0=No
b	Send package count?	$1=Y e s, 0=$ No
c	Send bar code symbology?	$1=Y \mathrm{es}, 0=$ No
d	Send source identifier?	Ignored(1)
e	Send header message?	Ignored(1)
f	Send no-read message?	Ignored (1)
g	Expand UPC-E?	1=Yes, 0=No
hhh	Label delimiter character	ASCII Decimal Value 000 to 254 $255=$ None.
iii	Start character	ASCII Decimal Value 000 to 254 $255=$ None.
j	End message control character	$\begin{aligned} & 0=\text { CRLF } \\ & 1=\text { CR } \\ & 2=\text { LF } \\ & 3=\text { ETX } \\ & 4=\text { None } \\ & 5=\text { CR ETX } \\ & 6=\text { LF ETX } \\ & 7=\text { CR LF ETX } \end{aligned}$
k	Transmission check method	$\begin{array}{\|l\|} \hline 0=\text { None } \\ \text { 1=LRC } \\ \text { 2=Checksum-LSB first } \\ \text { 3=Checksum-MSB first } \end{array}$
1	Send performance indicator?	1=Yes, 0=No

(1) These parameters retained for compatibility with existing decoders. The presence of each string type indicates that the string should be sent.

Response:
= rr <end>
rr = response code
<end>= end of message control code

MF - Configure Host Message Format (continued)

Example:

Command: MF1101110094042100
Parameters: 1101110094042100

Command Parameters	Parameter Function	Values
a	Send bar code data?	$1=$ Yes
b	Send package count?	$1=$ Yes
c	Send bar code symbology?	$0=$ No
d	Send source identifier?	Ignored(1)
e	Send header message?	Ignored(1)
f	Send no-read message?	Ignored(1)
g	Expand UPC-E $?$	$0=$ No
hhh	Label delimiter character	$094=\wedge$ character
iii	Start character	$042={ }^{*}$ character
j	End message control character	$1=$ CR
k	Transmission check method	$0=$ None
l	Send performance indicators?	$0=$ No

Response: $=00 \mathrm{CR}$
$00=$ command complete response code
$C R=$ end of message control code for Carriage Return

HF - Set the Number of Fields in Host Message

Command Format: HFnn
Function: Sets the number of fields in the host message.

Parameters: nn

Command Parameter	Parameter Function	Valid Values
nn	Set the number of fields in host message	00 to 16, $00=$ All

Response: $=r r$ <end>

$$
\begin{aligned}
r r & =\text { response code } \\
\text { <end> } & =\text { end of message control code }
\end{aligned}
$$

Example:

Command: HFO2
Parameters: 02

Command Parameter	Parameter Function	Valid Values
nn	Set the number of fields in host message	02

Response: $=00 \mathrm{CR}$
$00=$ command complete response code
CR= end of message control code for Carriage Return

IX - Configure AUX Terminal Source Identifier

Command Format: IXIstring
Function: Defines a source identifier for the AUX port terminal. Source identifiers are included in messages sent to the host. They identify whether the data was scanned (by Scanner A or B) or entered at the AUX terminal.

Note: This command only applies when the AUX port is set for manual data entry operations.

Parameters: Istring

Command Parameter	Parameter Function	Valid Values
I	Length of source identifier	0 to 41
String	Characters in source identifier	Up to 4 characters

(1) A zero length string will disable the source identifier.

Response: =rr <end>

$$
\begin{aligned}
r r & =\text { response code } \\
\text { <end> } & =\text { end of message control code }
\end{aligned}
$$

Example:

Command: IX3AUX

Parameters: AUX

Command Parameter	Parameter Function	Values
I	Length of source identifier	3
String	Characters in source identifier	AUX

Response: $=00 \mathrm{LF}$
$00=$ command complete response code
$L F=$ end of message control code for Line Feed

IM - Configure Scanner A Source Identifier

Command Format: IMIstring
Function: Defines a source identifier for Scanner A.
Source identifiers are included in messages sent to the host. They identify whether the data was scanned (by Scanner A or B) or entered at the AUX terminal.

NOTE: This command is valid only for dual head decoders.

Parameters: Istring

Command Parameter	Parameter Function	Valid Values
I	Length of source identifier	0 to 4(1)
string		Characters in source identifier

Response: $=r r$ <end>

$$
\begin{aligned}
r r & =\text { response code } \\
\text { <end }>= & \text { end of message control } \\
& \text { code }
\end{aligned}
$$

Example:

Command: IM4SCNA

Parameters: 4SCNA

Command Parameter	Parameter Function	Values
I	Length of source identifier	4
String	Characters in source identifier	SCNA

Response: = 00LF

$$
\begin{aligned}
& 00=\text { command complete } \\
& \text { response code } \\
& L F= \text { end of message control } \\
& \text { code for Line Feed }
\end{aligned}
$$

IB - Configure Scanner B Source Identifier

Command Format: IBlstring
Function: Defines a source identifier for Scanner B.
Source identifiers are included in messages sent to the host. They identify whether the data was scanned (by Scanner A or B) or entered at the AUX terminal.

NOTE: This command is valid only for dual head decoders.

Parameters: Istring

Command Parameter	Parameter Function	Valid Values
I	Length of source identifier	0 to 41
String	Characters in source identifier	Up to 4 characters

(1) A zero length string will disable the source identifier.

Response: =rr <end>

$$
\begin{aligned}
r r & =\text { response code } \\
\text { <end> } & =\text { end of message control code }
\end{aligned}
$$

Example:

Command: IB4SCNB

Parameters: 4SCNB

Command Parameter	Parameter Function	Values
I	Length of source identifier	4
String	Characters in source identifier	SCNB

Response: = 00LF
$00=$ command complete response code
$L F=$ end of message control code for Line Feed

HM - Configure Header Message

Command Format: HMIIstring
Function: Defines a header message for bar code data.
Parameters: Ilstring

Command Parameter	Parameter Function	Valid Values
II	Length of header message	00 to 321
String	Header message characters	Up to 32 characters

(1) A zero length string will disable the header message.

Response: $=r r$ <end>

$$
\begin{aligned}
\mathrm{rr} & =\text { response code } \\
\text { <end> } & =\text { end of message control code }
\end{aligned}
$$

Example:

Command: HM03A-B
Parameters: 03A-B

Command Parameter	Parameter Function	Values
II	Length of header message	03
String	Header message characters	A-B

Response: = 00LF
$00=$ command complete response code
$L F=$ end of message control code for Line Feed

NM - Configure Default No-Read String

Command Format: NMIIstring
Function: Defines a no-read message for bar codes that could not be scanned or decoded. No-read messages are optionally included in messages sent to the host.

Parameters: Ilstring

Command Parameter	Parameter Function	Valid Values
II	Length of no-read message	00 to $32(1)$
String	No-read message characters	Up to 32 characters
(1) A zero length string disables a no read string.. A nonzero length string enables the no read string		

Response: = rr <end>
$\mathrm{rr}=$ response code
<end> = end of message control code

Example:

Command: NM07NO-READ

Parameters: 07NO-READ

Command Parameter	Parameter Function	Values
II	Length of no-read message	07
String	No-read message characters	NO-READ

Response: $=00 \mathrm{CR}$
$00=$ command complete response code
$C R=$ end of message control code for Carriage Return

AX - Configure AUX Terminal Data Entry Operations

Command Format: AXabceeefgg
Function: Configures AUX terminal data entry parameters.
These parameters take effect when the AUX port is set to manual data entry mode (as described in Chapter 13).

Parameters: abceeefgg

Command Parameter	Parameter Function	Valid Values
a	Enable keyboard entry?	$0=$ No $1=$ Yes $2=$ No-Read
b	Confirm entry?	$0=$ No $1=$ Yes
c	Format AUX Keyboard Data?	$0=$ Unformatted $1=$ Host Format
eee	Rubout character for keyboard data entry?	ASCII Decimal Value 000 to 255 $255=$ None
f	Echo keyboard data?	$0=$ No $1=$ Yes
gg	Size of the display.	10 through 80

Response: = rr <end>

$$
\begin{aligned}
\mathrm{rr} & =\text { response code } \\
\text { <end }>= & \text { end of message control code }
\end{aligned}
$$

AX - Configure AUX Terminal Data Entry Operations (continued)

Example:

Command: AX111008180

Parameters: 111008180

Command Parameter	Parameter Function	Values
a	Enable keyboard entry?	$1=$ Yes
b	Confirm entry?	$1=$ Yes
c	Format Aux Terminal Keyboard Data?	$1=$ Host Format
eee	Rubout character for keyboard data entry	ASCII Decimal Value $008=$ backspace
f	Echo keyboard data?	$1=$ Yes
gg	Size of the display.	80

Response: $=00 \mathrm{CR}$
$0=$ response code
$C R=$ end of message control code

TM - Display Text Message at AUX Terminal and LCD

Command Format: TMfllstring
Function: Sends a message to the AUX port terminal (and/or LCD Display) and optionally enables the keyboard for one message. If a text message is not defined, the Default Prompt Message is sent.

Parameters: fllstring

Command Parameters	Parameter Function	Valid Values
f	Enable keyboard entry for one message.	$1=$ Yes $0=\mathrm{No}$
II	Length of text message.	00 through 80
String	Text message characters.	Up to 80 characters

Response: = rr <end>

$$
\begin{gathered}
\mathrm{rr}=\begin{array}{l}
\text { response code (see Table } \\
\text { 17.D) } \\
\text { <end> }
\end{array} \text { end of message control code }
\end{gathered}
$$

Note: If the previous message has not displayed, the response returns a code of 02 to indicate the command failed because the display buffer was not available.

If the AUX port is set to configuration mode, (CONFIG jumper is open), the response returns a code of 01 . The message will display on the LCD Display but not the AUX terminal.

TM - Display Text Message at AUX Terminal and LCD (continued)

Example:

Command: TM111MESSAGETEXT
Parameters: 111MESSAGETEXT

Command Parameters	Parameter Function	Values	
f	Enable keyboard entry for one message.	$1=$ Yes	
$\\|$	Length of text message.	11	
String	Text message characters.	MESSAGETEXT	

Response: =00CR
$00=$ command complete response code
$C R=$ end of message control code for Carriage Return

PM - Default Prompt Message for AUX Terminal

Command Format: PMllstring
Function: Defines the default prompt message for the AUX port terminal.

Parameters: Ilstring

Command Parameters	Parameter Function	Valid Values	
$\\|$	Length of the AUX terminal prompt message	00 through 20	
String	AUX terminal prompt message string.	Up to 20 characters	

Response: $=r r$ <end>

$$
\begin{aligned}
r r & =\text { response code } \\
\text { <end>} & =\text { end of message control code }
\end{aligned}
$$

Example:

Command: PM11ENTER DATA:
Parameters: 11ENTER DATA:

Command Parameters	Parameter Function	Values	
$\\|$	Length of the AUX terminal prompt message	11	
String	AUX terminal prompt message string.	ENTER DATA:	

Response: $=00 C R$

$$
\begin{aligned}
& 00= \text { command complete } \\
& \text { response code } \\
& \mathrm{CR}= \text { end of message control code } \\
& \text { for Carriage Return }
\end{aligned}
$$

PI - Read Decoder Performance Indicators

Command Format: PI
Function: Reads the decoder performance indicators for Scanners A and B.

Parameters: None

Response Parameters	Parameter Function	Valid Values
aaa	Scanner A Performance Indicator	3 digit value 000 through 100, 999(1)
bbb	Scanner B Performance Indicator	3 digit value 000 through 100, 999(1)

(1) 999 indicates the decoder is not decoding because of a buffer overflow condition.
(2) Applicable only with dual head scanner.

Response: aaa<end> = rr <end> for single head scanners, or
aaabbb<end> $=\mathrm{rr}$ <end> for dual head scanners.
<end>= end of message code
$r \mathrm{r}=$ response code
<end>= end of message code

Example:

Command: PI

Response: $\quad 000099 \mathrm{LF}=00 \mathrm{LF}$

Response Parameters	Parameter Function	Values
aaa	Scanner A Performance Indicator	000
bbb	Scanner B Performance Indicator	099

LF= end of message control code
$00=$ command complete response code
LF= end of message control code

PR - Read Package Counter

Command Format: PR
Function: Returns the count maintained by the package counter.

Parameters: None
Response: pppppp<end>= rr <end>

$$
\begin{aligned}
& \text { pppppp }=\text { package count, up to } \\
& 999999 \\
& \text { <end> }=\text { end of message control code } \\
& r r=\text { response code } \\
& \text { <end> }=\text { end of message control code }
\end{aligned}
$$

Example:

Command: PR

Response: $\quad 000075 \mathrm{LF}=00 \mathrm{LF}$
000075= number of packages read by decoder
$L F=$ end of message code for Line Feed
$00=$ command complete response code
$L=$ end of message code for Line Feed

NR - Read Symbols Not Read Counter

Command Format: NR
Function: Returns the count in the no-read counter.
Parameters: None
Response: pppppp<end>= rr <end>
pppppp = no-read count, up to 999999
<end> = end of message control code
$\mathrm{rr}=$ response code
<end>= end of message control code

Example:

Command: NR
Response: $\quad 000016 \mathrm{CR}=00 \mathrm{CR}$
000016= no-read count of 16
CR= end of message control code for Carriage Return
$00=$ command complete response code
$C R=$ end of message control code Carriage Return

MC - Read Output Counter

Command Format: MCn
Function: Reads the selected output counter.
Parameters: $\mathrm{n}=$ counter 1 through 8
Response: mmmmmm<end>=rr<end>

$$
\begin{aligned}
\text { mmmmm }= & \text { output counter count. } \\
& \text { Maximum value of } 999999 \\
\text { <end }>= & \text { end of message code } \\
\text { rr }= & \text { response code } \\
\text { <end }>= & \text { end of message code }
\end{aligned}
$$

Example:

Command: MC3
Parameters: 3 = read output counter \#3.
Response: $\quad 000121 \mathrm{LF}=00 \mathrm{LF}$
$000121=$ Counter activated 121 times since last restart or reset
$L F=$ end of message code for Line Feed
$00=$ command complete response code
$L F=$ end of message code for Line Feed

PC - Clear Package Counter

Command Format: PC
Function: Clears the package counter to 0 .
Parameters: None
Response: =rr <end>
$\mathrm{rr}=$ response code
<end>= end of message control code
Example:
Command: PC
Response: $=00<C R>$
$00=$ command complete response code
$C R=$ end of message control code

NC - Clear Symbols Not Read Counter

Command Format: NC
Function: Clears the no-read counter to 0 .
Parameters: None
Response: =rr <end>
$\mathrm{rr}=$ response code
<end>= end of message control code

Example:

Command: NC
Response: $=00 \mathrm{CR}$

$$
\begin{aligned}
& 0= \text { command complete } \\
& \text { response code } \\
& \mathrm{CR}= \text { end of message control code } \\
& \text { for Carriage Return }
\end{aligned}
$$

RN - Save Configuration to Storage Memory and Restart

Command Format: RN
Function: Saves current configuration in to storage memory and restarts the decoder. Operation then resumes using the new configuration parameters.

Parameters: None
Response: = 97 <end>

$$
\begin{aligned}
& 97= \begin{array}{l}
\text { Indicates the command was } \\
\text { received and the decoder is }
\end{array} \\
& \text { resetting. The reset takes } \\
& \text { approximately } 5 \text { seconds. }
\end{aligned}
$$

SA - Save Configuration to Storage Memory (No Restart)

Command Format: SA
Function: Saves current configuration to storage memory.
Parameters: None
Response: = 00 <end>

$$
\begin{aligned}
00 & =\begin{array}{l}
\text { Indicates the command was } \\
\text { received }
\end{array} \\
\text { <end> } & =\text { end of message code }
\end{aligned}
$$

Important: Host communication parameter changes do not take effect until the decoder is restarted.

DD - Set Configuration to Default Values

Command Format: DD
Function: Sets configuration in operating memory to the default values.

Important: Host port communication parameters and the contents of storage memory are not changed with the DD command.

Parameters: None
Response: = rr<end>

$$
\begin{aligned}
\mathrm{rr} & =\text { response code } \\
\text { <end>} & >\text { end of message control code }
\end{aligned}
$$

Example: DD
Command: DD
Response: $=00 \mathrm{CRLF}$

$$
\begin{aligned}
& 00= \text { command complete } \\
& \text { response code } \\
& \text { CRLF }= \text { end of message control code } \\
& \text { for Carriage Return and } \\
& \text { Line Feed. }
\end{aligned}
$$

RD - Set Configuration to Factory Defaults and Restart

Command Format: RD
Function: Resets decoder to factory defaults, saves the configuration in storage memory, and then restarts the decoder. Operation then resumes using the new configuration parameters. Refer to Appendix B for factory default settings.

Important: Host port communication parameters are not changed to default values with this command.

Parameters: None
Response: = 98 <end>
$98=$ Indicates the command was received and the decoder is resetting. The reset takes approximately 5 seconds.
<end>= end of message control code

RE - Reset Decoder

Command Format: RE
Function: Resets decoder. Recalls the configuration from storage memory and restarts the decoder.

Parameters: None
Response: = 97 <end>

$$
\begin{aligned}
& 97= \begin{array}{l}
\text { Indicates the command was } \\
\\
\text { received and the decoder is } \\
\text { resetting. The reset takes }
\end{array} \\
& \text { approximately } 5 \text { seconds. } \\
& \text { <end>= end of message code }
\end{aligned}
$$

ID - Version of Software

Command Format: ID
Function: Read the version of decoder software presently running.

Parameters: None
Response: aa.aa <end>=00<end>

$$
\begin{aligned}
\text { aa.aa } & =\text { Software revision number } \\
00 & =\text { Complete and successful } \\
& \text { response code } \\
\text { <end> } & =\text { end of message control code }
\end{aligned}
$$

DM - Configure Bar Code Data Mask

Command Format: DM
Function: Obsolete command. Formerly used to define a data mask to return and/or suppress selected characters in each field sent to the host. Host Message Replacement Rules replace this function.

Response: $\quad=50 \mathrm{rr}$ <end>
50= Unknown Command response code $<e n d>=$ end of message control code

PD - Configure Pad Data Character

Command Format: PD
Function: Obsolete command. Formerly used to define thepad character for the bar code data mask command (DM), which is not used in this series.

Response: $=50 \mathrm{rr}$ <end>
50= Unknown Command response code
<end>= end of message control code

Chapter 16

PCCC Host Commands

Chapter Objectives

Protocol Options

PCCC Commands

This chapter defines PCCC (Programmable Controller Communications Commands) commands you can send from a host to the decoder using the DH485 interface. These commands allow you to use binary data exchange to configure the decoder, read data from the decoder, and obtain diagnostic information.

The PCCC host commands use the Allen-Bradley DH485 link protocol. To use these commands, the Host Protocol configuration parameter on the Host Communications configuration screen must be set to one of these options:

- DH485 PCCC-1 Protocol with Write Replies
- DH485 PCCC-2 Protocol without Write Replies

The decoder supports the following DH485 communication addresses:

DH485 LSAP	Function
0	Diagnostic Commands (Perform Application Layer)
1 or 128	PCCC Commands (Perform Application Layer)
129	Perform Link Reset-immediate Block

The PCCC commands perform the same functions as the configuration screens and fall into three categories:

1. Unprotected Read Command The unprotected read command is used to read bar code data, configuration data, counter values, performance indicators and the last message sent to host.
2. Unprotected Write Command The unprotected write command is used to modify (or write over) configuration data, clear counters, flush data, set defaults, and perform other functions.
3. Diagnostic Command The diagnostic command is used to read link layer diagnostic counters and statuses, reset diagnostic counters, and perform a diagnostic loop.

ATTENTION: When controlling discrete outputs locally using AUX port configuration, suspend host communications to prevent outputs from unintentionally changing state.

Command Format

The general structure and definitions of all commands is shown below. The structure shows the high and low byte of each data word (word $=2$ bytes). Data is always transmitted with the low byte of each data word first and then the high byte. In the command explanations below, MSB stands for Most Significant Bit, and LSB stands for Least Significant Bit.

- CMD

Byte 0 specifies the command to perform.
Bits $0,1,2$ and 3 of the CMD byte contain the command code.
The options are:

- 0001(01H) = Unprotected Read Command
- $1000(08 \mathrm{H})=$ Unprotected Write Command
- $0110(06 \mathrm{H})=$ Diagnostic Command

Bit 6 is cleared (0) for the command and set (1) for the reply.
Bit 4, 5, and 7 are always zero.
To send an unprotected write command, CMD byte 0 would look like this:

- STS

Byte 1 specifies the command status which is always 0 .

- TNS

Bytes 2 and 3 contain a unique transaction number sequence that links each command to a reply. The TNS is user defined.

- FNC Code

When the CMD byte $=06 \mathrm{H}$ (diagnostic command), byte 4 specifies a diagnostic function. For example, FNC $=01$ means read diagnostic counters.

- Low Address

When the CMD byte $=01 \mathrm{H}$ (unprotected read command) or 08 H (unprotected write command) byte 4 contains the low byte of a two byte address.
The low address (byte 4) and high address (byte 5) map to a specific area in decoder memory for a read or write operation.

- High Address

When the CMD byte $=01 \mathrm{H}$ (unprotected read command) or 08 H (unprotected write command) byte 5 contains the high byte of a two byte address.
The low address (byte 4) and high address (byte 5) map to a specific area in decoder memory for a read or write operation.

- Data

The data area is command dependent. The starting byte for the data area is also command dependent.

Command Reply Format

The general format and definition of a command reply is:

- CMD Reply

Byte 0 contains the response to a command. Bit 6 is set for the reply and responses are:

- 41 H - Response to an unprotected read $(01 \mathrm{H})$ command
- 46 H - Response to a diagnostic link $(06 \mathrm{H})$ command
- 48 H - Response to an unprotected write $(08 \mathrm{H})$ command

If the CMD byte sent in any of the commands is invalid, the STS byte will contain 10 H .

- STS

Byte 1 contains the status of a processed command. The table below lists the STS codes for all commands.

Status Response Codes

Hex Value	Meaning
00 H	Command successful (no errors).
01 H	Command complete and successful.(1)
02 H	Display buffer is full. (1)
10 H	Valid command but invalid format or address.
20 H	Invalid or unsupported command.
30 H	Hardware fault (reserved and unused).
40 H	Command successful but no data available (read command only)
80 H	Command successful but data truncated. (read command only)

(1) Applies only to CMD Address 900 H or 901H. See page 16-12

- TNS

Bytes 2 and 3 contain the same transaction number sequence as the command. The TNS value links the reply to the command.

- Data

The data area contains data requested by a read command. The write commands do not return data.

The unprotected read command $(01 \mathrm{H})$ performs these decoder functions:

- Reads current bar code data
- Reads decoder configuration data
- Reads decoder performance indicator, counters, and diagnostics
- Reads last message to host

Each command returns data to the host that is read from a specific address of the decoder's memory. The following sections define each read command.

Appendix A contains a summary of the memory addresses for all decoder functions or commands.

Read Current Bar Code Data

Bar code data is stored as a packet in the host buffer of the decoder at address 100 H to 3 BFH . Each packet contains data from one read operation. The maximum number of bytes in one packet is 704 bytes.

To read the current bar code data, send this command structure:
Read Current Bar Code Data Command

Each command can return up to 124 ($7 \mathrm{C} \mathrm{Hex)} \mathrm{bytes} \mathrm{of} \mathrm{data}$, determined by the size byte (byte 6). The amount of data in the host buffer is variable.

The size of the reply varies depending on how much data is in the host buffer and the number of bytes specified in the size byte.

If the host buffer is empty, the reply is returned without data and a status of 40 H (no data in host buffer).

If the host buffer contains data \leq the number of bytes specified in the size byte, the reply returns all data and a status of 00 H (no errors).

If the host buffer contains more data than the number of bytes specified in the size byte, the reply is returned with truncated data and a status of 80 H (data truncated).

To read the rest of the data in the buffer, send one or more additional read commands. In each command, offset the address appropriately from the previous command. A status of 00 H is returned in the reply when the last segment of data from a bar code packet is read. Here is an example.

The host buffer contains a bar code packet that is 200 bytes. To read the entire packet, you need to send two read commands. The first command would read 124 bytes (62 words) of data. The second command would read the remaining 76 bytes (38 words) of data.

The following table shows the start and end address for each read command.

| Read
 Commands | HEX | Address | Decimal |
| :---: | :---: | :---: | :---: | Read 100 words (200 bytes)

Note: By always setting the size of 7C Hex, you will know that the decoder will always return up to 124 bytes.

Read Counters and Performance Indicator

Counter values (package, output, no-read) and performance data are stored at addresses 600 H to 6 FFH . The command format for reading this data is:

	Read Counters and Performance Indicator		
1	STS $=00$	CMD $=01 \mathrm{H}$	
3			
5	Read Coun	cator Address	
7	00H	Size $=\mathrm{n}$	

Appendix A lists the address and byte size for each counter and the decoder performance indicator.

The following command reads the value of output counter 1 :

Read Reply

You can read more than one counter, however the read operation must specify an address within the valid address range and start on an address boundary. If you try to read outside a valid address range, the reply returns with a status of 10 H (invalid address).

Read Last Host Message

The last message sent to the host is stored at address 800 H . The command and reply format for reading the last host message is:

Read Decoder Configuration Data

Appendix A lists the address location for each configuration parameter along with the byte size of the data and the default value. To read or examine one or more parameters, send the read command with the appropriate starting address and byte size referenced in Appendix A.

The reply returns the configuration data at the specified address.

You can read more than one parameter, however the read operation must specify an address within the valid address range and start on a parameter boundary. If you try to read outside a valid address range, the reply returns with a status of 10 H (invalid address).

Unprotected Write Command

The unprotected write command $(08 \mathrm{H})$ performs these decoder functions:

- Modifies (or writes over) decoder configuration data
- Executes a decoder function
- Sends a repeat read command
- Sends a message to the AUX port terminal and LCD Display
- Holds a discrete output on or off

Each command modifies (or overwrites) data at a specific address in decoder memory or executes a specific decoder function. The following sections define each of the write commands.

Important: If the configuration date is a text string, you must send the length of the string as the first byte of the string.

Modify Configuration Data

Appendix A lists the address location for each configuration parameter along with the byte size of the data and the default value. To modify a specific parameter, send the write command with the appropriate starting address and the appropriate data referenced in Appendix A.

To modify the configuration data, send this command structure:

The command includes new configuration data for specified parameters.

An invalid configuration data address returns a status code of 10 H (invalid address).

Execute Decoder Functions

The unprotected write $(08 \mathrm{H})$ command is also used to execute decoder functions or commands. Appendix A lists the decoder functions you can perform and their respective addresses.

To execute a command listed in Appendix A, send an unprotected write command to the specified command address.

The command and reply format for executing a decoder function is:

If you send a command with an invalid address, the reply returns a status code of 10 H (invalid address).

To set the current configuration to the factory defaults, send this command:

Set Decoder Configuration to Defaults

To save the current configuration and restart the decoder, send this command:

Save Configuration and Restart Decoder

To clear output counter 4 to all zeros, send this command:

Clear Output Counter 4			
	High By	Low Byte	LSB
1	STS= 00H	CMD $=08 \mathrm{H}$	
3	TNS		
5	Command Address $=610 \mathrm{H}$		

Send Repeat Read Command

The Repeat Read command tells the decoder to wait for bar code data. When data is available, the decoder sends it to a specific address in host memory using the unprotected write (08 H) command. The host does not have to request data at each poll when a $2760-\mathrm{RB}$ is used (RB polls automatically). The decoder automatically sends bar code data as it is decoded.

The command structure for sending a repeat read command is:

- Command Address

Bytes 4 and 5 contain address 640 H . This address tells the decoder to perform a repeat read command.

- Target Host Address

Specifies the host address to which the decoder will send the read reply data.

- Size

Byte 8 specifies the maximum number of bytes sent to the host in each read reply. The maximum size is 122 bytes.

- Repeat Count

Byte 9 specifies the maximum number of bar code packets that can be sent to the host. A value of 0 means the decoder can send packets until terminated by a "Cancel Repeat Read" command..
After the host sends the repeat read command, the decoder generates an unprotected write command to send the bar code data to the host.

The decoder continues to send data to the host until the repeat count is reached or until a Cancel Repeat command is sent to the decoder.

The amount of data returned in the read reply is determined by the size parameter and the amount of data in the host buffer.

If the repeat count is non zero, the repeat count automatically decrements by one and the repeat read command continues processing. When the repeat count decrements to zero, the repeat read command terminates.

Cancel Repeat Read Command

To terminate the processing of a Repeat Read command, send the Cancel Repeat Read command to the decoder.

Cancel Repeat Read Command

Display Text Message on AUX Terminal / Enable AUX Terminal Keyboard.A

To configure a message for display on the AUX terminal (and/or LCD Display), use the command address 900 H or 901 H . The 900 H command address configures a message for display at the AUX terminal but does not enable the keyboard. The 901 H command configures a message for display and enables the keyboard for one entry.

If the message exceeds the size of the AUX terminal display, it will be truncated.

If the LCD is enabled to display data and scrolling is disabled, data that exceeds 40 characters is truncated. If scrolling is enabled for the LCD, data that exceeds 20 characters is truncated.

If you do not enter message data, the Default Prompt Message (defined during AUX terminal configuration) is used.

Below is the reply to both the 900 H and 901 H command:

If the AUX port is not set to manual data entry mode (CONFIG jumper is open), the LCD will display the message but not the AUX terminal. The command returns a status of 01 H .

If the decoder has not processed the previous text message, the command returns a status of 02 H indicating the command failed because the display buffer was not available.

Hold Discrete Output Open or Closed

Allows the host to control the discrete outputs (regardless of their "normal" state) for a set duration. When the specified duration expires, the output reverts to its previous state.

If a normally open (or closed) output is held open (or closed), the state of the output will not change due to other conditions.

Command Reply

MSB	High Byte	Low Byte	LSB
1	STS $=00 \mathrm{H}$	CMD Reply $=48 \mathrm{H}$	
3			

Appendix A lists the command addresses for holding a discrete output (1-8) open or closed. Valid duration values (in milliseconds) are 0010 through 9999 . Note that the duration must be expressed in hex format (0 A through 270F hexadecimal).

Example (holds output closed for 10 milliseconds) High Byte Low Byte		
MSB LSB		
1		

Important: A duration of 0000 holds the specified output in the programmed state until it is changed with another host command or via the AUX terminal configuration screens. The condition field on the AUX terminal will display Open or Closed.

Diagnostic Link Commands

The diagnostic commands (06 H) allow you to obtain diagnostic data on an DH485 communications link. The decoder supports these diagnostic commands:

- Diagnostic Loop (CMD= 06H, FNC= 00H)
- Read Diagnostic Counters (CMD=06H, FNC=01H)
- Read Diagnostic Status (CMD=06H, FNC= 03H)
- Reset Diagnostic Counters (CMD= 06H, FNC= 07H)

The command code for all diagnostic functions is 06 H . A function code (FNC) identifies each command and specifies which command to perform.

Diagnostic Loop

The Diagnostic Loop Command (CMD= 08H, FNC= 00H) echoes data back to the host. The reply returns the same data sent in the Diagnostic Loop Data area of the command. The data area can contain up to 122 bytes.

Read Diagnostic Counters

The Read Diagnostic Counters command (CMD= 06H, FNC=01H) returns diagnostic counter values. The command structure looks like this:

The reply returns values for ten diagnostic counters. The reply format looks like this:

Read Diagnostic Counters Reply			
MSB High Byte		Low Byte LSB	
1	STS $=00 \mathrm{H}$	CMD Reply $=46 \mathrm{H}$	0
3	TNS		2
5	Total Message Packets Received (2 bytes)		
7	Total Message Packets Transmitted (2 bytes)		
9	Msg Retry Failures	Msg ACK-Timeout/Retries	8
11	Msg Recvd: NAK-NoMemory	Msg Replies: NAK-NoMemory	10
13	Msg Replies: NAK-NoService	Bad Messages Received	12
15	Msg Replies: NAK-TooBig	Msg Replies: NAK-Solicit	14

Each diagnostic counter increments when the event occurs. The Reset Diagnostic Counters command resets all counter values to zero (0).

Reset Diagnostic Counters

The Reset Diagnostic Counters (CMD=06H, FNC= 07) sets all diagnostic counter values to zero (0). The command and reply formats look like this:

Reset Diagnostic Counters Reply

Read Diagnostic Status

The Read Diagnostic Status command (CMD=06H, FNC=03H) returns seven diagnostic parameters in the reply:

Diagnostic Return Parameters

Parameter	Value	Bytes Size
Mode/Status	00	1 byte
Extended Type	EEH	1 byte
Interface Type	22 H	1 byte
Processor Type	21 H	1 byte
Series/Revision	22 H (Series B, Revision C)	1 byte
Bulletin Number/Product Name	ASCII characters	11 bytes
Product Information	unused	8 bytes

The command and reply format for the Read Diagnostic Status Command is:

The Series/Revision byte indicates the product series and revision levels. The three most significant bits indicate the series and the other five bits indicate the revision. For example, a value of $0=\mathrm{A}$, $1=\mathrm{B}, 2=\mathrm{C}$.

Maintenance and Troubleshooting

Chapter Objectives

Replacing the Battery

This chapter provides troubleshooting information to assist with problem detection and resolution. It also shows how to replace the I/O module protection fuses.

\triangle
ATTENTION: Always use caution when replacing fuses or installing accessories within the decoder.

The optional lithium backup battery (Catalog Number 1747-BA) will last up to five years. If installed, replace the battery five years from the date imprinted on the side of the battery cell. No other battery-related maintenance or service is required.

The battery clip is used only to hold the battery in position. It is not used to create an electrical circuit. Instead, the battery is equipped with a female connector which attaches to the three-pronged male connector below it on the main circuit board.

To remove the battery, squeeze the narrow edges of the connector, and gently pull it away from the board. The connector is equipped with a locking mechanism which releases when squeezed. Gently remove the battery from the mounting clip.

\triangle
ATTENTION: Be sure to follow all safety precautions regarding the handling and disposal of lithium batteries. Be sure to read and understand all materials accompanying the battery before attempting to install it.

To install a new battery, insert the battery in the retaining clip on the main circuit board. Orientation of the battery in the clip makes no difference, as the clip serves only to secure the battery in position. Place the female connector attached to the battery on the three-pronged plug on the main circuit board. The plug will fit in only one direction. If you feel resistance, reverse the plug and try again.

You will hear a click when the connector locking mechanism engages.

Replacing Module Fuses

The I/O Module Board has fuses for each of the eight modules. The module fuses are located below the module connectors. When replacing fuses, use Replacement Part No. 77104-899-01.

Figure 17.1 Module fuses

To replace a module fuse on the I/O board:

1. Disconnect power from decoder and module connectors.
2. Isolate cause of blown fuse and correct problem. See Appendix G for details on the use of output modules with inductive loads.
3. Loosen the two screws which secure the cover of the decoder and open.
4. Remove defective fuse by pulling it from the I/O board.
5. Align fuse pins over sockets in board before inserting fuse. Insert new fuse into correct position (F1-F8).

Note: The pins must puncture the silicon seal of the I/O board sockets.
6. Close cover of decoder and tighten screws.

Note: The discrete I/O LED indicators still operate when a fuse is blown.

Troubleshooting

This section lists problems that may occur with the decoder and/or connected equipment. Each problem lists possible causes and solutions.

Problem: Decoder '"Power On" indicator does not light.
Cause: Decoder power switch is in OFF position.
Solution: Turn decoder power switch to ON position.
Cause: No incoming power.
Solution: Verify power source.
Cause: Improper connection to power source.
Solution: Check connections.
Cause: Faulty decoder.
Solution: Return decoder to Allen-Bradley for repair.

Problem: Decoder "Power On" indicator lights but "CPU Active" indicator does not stay lit.

Cause: Internal decoder failure.
Solution: Return decoder to Allen-Bradley for repair.

Problem: Decoder "Laser On" indicator lights but scanner "Laser On" indicator does not light.

Cause: Cable connections between decoder and scanner are loose or defective.
Solution: Check cable and connections.

Problem: Decoder "Laser On" indicator does not light.

Cause: Wrong configuration.
Solution: Configure the Laser-On Mode parameter of the decoder to ON.

Cause: Trigger not active. (Laser-on Mode parameter of decoder is set to Triggered).
Solution: Activate trigger and look at the Trigger Active indicator on decoder. When the trigger is activated, the indicator should light.

Problem: "Laser On" indicators on both the decoder and scanner light but the scanner does not emit the laser light.

Cause: Mechanical shutter on scanner closed (2755-L4/L5 scanners only).
Solution: Open shutter.
Cause: Scanner Laser On switch is in OFF position (2755-L7/L9 scanners only).
Solution: Turn on switch.
Cause: Cable connections between decoder and scanner are loose or defective.
Solution: Check cable and connections.
Cause: Laser tube or diode burned out or defective.
Solution: Replace scanner.

Problem: Decoder "Trigger Active" indicator will not light.

Cause: Wrong or improperly wired trigger source. (Decode Mode is set to Triggered).
Solution: Verify that an appropriate package detector is properly connected to the scanner. Most photoelectric package detectors have a built-in LED. Verify operation of this package detect LED. Some photoelectric switches have sensitivity adjustments. Check adjustment.

Cause: Cable connections between decoder and scanner are loose or defective.
Solution: Check cables and connections.

Problem: Decoder cannot read label.

Cause: Decoder not configured correctly.
Solution: Check decoder configuration to verify that parameters are set appropriately for your application.

Cause: Loose cables or connections.
Solution: Check cables and connections.

Problem: Decoder cannot read label.

Cause: Scanner is at incorrect angle or distance from the bar code.

Solution: Determine the optimum reading angle by using a static bar code label position and checking the Decoder Performance Indicators with the Decode Mode set to Continuous. Fix the scanner at a position that produces a high decoder performance value. After properly positioning the scanner, return the decoder configuration to the correct triggered mode of operation.

Cause: Scanner lens is incorrect for the label size.
Solution: Select a scanner with a lens appropriate for the label size. Refer to scanner User Manual.

Cause: Label out of specification.
Solution: Use labels that are within industry standards.

Problem: Excessive "No-Reads" during decoding.

Cause: Poor or marginal quality bar code labels.
Solution: Use labels that meet Automatic Identification Manufacturer's (AIM) specifications for the selected symbology.

Cause: Incorrect scanner selected for application.
Solution: Measure narrow bar width (or space, whichever is narrowest) of bar code and note minimum and maximum reading distance. Consult your scanner's User Manual to verify that these specifications are within the proper guidelines for your scanner.

Cause: Scanner is at incorrect angle or distance from the bar code.
Solution: Determine the optimum reading angle by checking the Decoder Performance Indicators while the Decode Mode is set to Continuous and using a static bar code label position. Fix the scanner at a position that produces a high decoder performance value. After properly positioning the scanner, return the decoder configuration to the correct triggered mode of operation.

Cause: Package detect positioning.
Solution: Make sure the package detect signal is active before the bar code enters the laser beam. Check that package detect is continually blocked while in scanning area of laser. The "Trigger Active" indicator should light when a bar code is scanned in triggered mode.

Cause: Scan speed not high enough or product line speed to high.

Solution: Calculate "scans per label" based on line speed and bar code orientation (picket fence or step ladder). Calculate at least five scans per label at full line speed. If calculation is less than five scans per label, select a higher speed scanner or reduce product line speed.

Problem: Output LED indicator does not operate.

Cause: Configuration parameters are not set correctly.
Solution: Review configuration parameters. The LED indicators are active for the duration set by the output duration parameter. If a duration is set to 0000 , the LED will not change (although the counters still increment). After making corrections, we recommend you, SAVE the changes and RESTART the decoder.

Cause: Outputs disabled.
Solution: Restart decoder.

Problem: Output LED indicator operates but output does not.

Cause: Improper connections.
Solution: Check connections to output modules. Verify that power is present. Check polarity of DC modules.

Cause: Output module fuse blown.
Solution: Determine reason for blown fuse, correct problem, and then replace fuse.

Cause: Defective output module.
Solution: Replace defective module with new module.

Problem: Output module fuse 77104-899-01 blows.
Cause: Inductive device used with module has an inrush current that exceeds module specifications.
Solution: Replace the fuse and use a device rated within the specification.

Problem: Output module (Catalog No. 2755-OB5S) blows.
Cause: Excessive back EMF of inductive load.
Solution: Install a rectifier diode in parallel with the module. See Appendix G.

Problem: Characters do not display or are difficult to read on the LCD Display.

Cause: Inadequate contrast.
Solution: Improve readability of characters on LCD Display by adjusting LCD Display potentiometer on main logic board. See Chapter 9 for details.

Problem: AUX Terminal is set to manual data entry mode, and terminal is displaying duplicate characters.

Cause: The terminal itself is set to echo data and the Echo to Terminal configuration parameter is also set to Yes.
Solution: Set the Echo to Terminal parameter to No.

Problem: AUX Terminal is set to manual data entry mode, and terminal is not displaying any characters.

Cause: Neither the terminal nor the decoder configuration is set to echo data.
Solution: Set the Echo to Terminal parameter to Yes.

Problem: No communication between decoder and AUX terminal.

Cause: Incorrect terminal selected from Select CRT Type screen.
Solution: Select the correct terminal type. See Chapter 5.
Cause: Improperly connected cable.
Solution: Check connections. See Appendix D.
Cause: Improperly fabricated cable.
Solution: Verify connections. See Appendix D.
Cause: Incorrect terminal setup.
Solution: Verify that your terminal is set for 9600 baud, no parity, 1 stop bit. See Appendix D.

Problem: You cannot access the configuration screens on the AUX terminal.

Cause: The AUX port is set to manual data entry mode, not configuration mode.

Solution: Place the AUX Terminal jumper on the logic board in the CONFIG position and make sure the AUX port connector does not have a jumper between pins 15 and 16 (NEMA Type 1) or G and H (NEMA Type 4).

Problem: You are unable to perform manual data entry functions at the AUX terminal.

Cause: The AUX port is set to configuration mode, not manual data entry mode.
Solution: Using one of the AUX Terminal Selectors, switch the AUX port to manual data entry mode. See Chapter 13.

Problem: No communication between decoder and host device.

Cause: Communication parameters (baud rate, parity, stop bits, host protocol) of decoder are not set correctly or the parameters were not saved, and the decoder restarted.
Solution: Make appropriate changes to communication parameters, SAVE the configuration, and RESTART the decoder.

Cause: Improperly connected cable.
Solution: Check connections.
Cause: Improperly fabricated cable.
Solution: Verify connections using Appendix E.
Cause: Flexible Interface Module (Catalog No. 2760-RB) is not configured properly.
Solution: Check module configuration.

Specifications

Bar Code Decoders

Catalog Numbers 2755-DD1_2755-DD4 2755-DS1_- $2755-$ DS4_

Electrical

Input Line Voltage
Input Line Frequency
Nominal
Power
I/O Module Protection

Output Module Voltage/Current Catalog No. 2755-0B5S Catalog No. 2755-0A5S Catalog No. 2755-0M5S

Input Module Voltage Catalog No. 2755-IB5S Catalog No. 2755-IA5S Catalog No. 2755-IM5S

Mechanical
Enclosure
Catalog No. 2755-D_1_
Catalog No. 2755-D_4_
LED Indicators
POWER ON

LASER ON A
TRIGGER ACTIVE A
VALID READ A
LASER ON B
TRIGGER ACTIVE B
VALID READ B DISCRETE I/O 1 to 8

Weight
installed
Dimensions Inches Centimeters

Environment
Ambient Temperature Operating Storage
Relative Humidity

85 (Min) to 264 (Max) VAC
100 to 240 VAC Nominal
47 (Min) to 63 (Max) Hz; 50 to 60 Hz
80 VA Max (DD decoderss)
55 VA Max (DS decoders)
Fuse (Replacement Part No. 77104-899-01)

3-60 VDC, 0.5A Max
12-140 VAC, 0.5A Max
24-280 VAC, 0.5A Max
3.3-32 VDC

90-140V RMS/DC
180-280V RMS/DC

NEMA Type 1
NEMA Type 4

Green
Green
Yellow
Red
Yellow
Green
Red
Yellow
Green
Red
$10 \mathrm{lbs}(4.5 \mathrm{~kg})$ maximum, with all options
10.25 (H) $\times 12$ (W) $\times 4.57$ (D)
26.0. (H) $\times 30.5$ (W) $\times 11.6$ (D)

0 to $50^{\circ} \mathrm{C}$ (32 to $122^{\circ} \mathrm{F}$)
-40 to $85^{\circ} \mathrm{C}$ (-40 to $185^{\circ} \mathrm{F}$)
5 to 95%, noncondensing

Scanner Ports

Scanner Ports A and B
Connector (NEMA Type 1
Connector (NEMA Type 4)
Communications
HOST Port
Electrical Standards
Protocols
Connector (NEMA Type 1)
Connector (NEMA Type 4
Baud Rate
Parity
Data Bits
Stop Bits
Flow Control
AUX Port
Electrical Standard
Connector (NEMA Type
Connector (NEMA Type
Data Bits
Stop Bit
Baud Rate
Parity
LCD Display (Optional)
Number of lines
Number of characters/line
Backlighting
Decoded Symbologies

25-pin (female) subminiature D
19-pin (male) circular Cannon KPT series

RS232, RS422, RS485
ASCII (RS232, RS422, DH485)
Allen-Bradley PCCC (RS485 only)
25-pin (female) subminiature D
19-pin (male) circular Cannon KPT series(1)
$300,1200,2400,4800,9600,19200,38400$
None, Odd, Even
8 or 7
1 or 2
None, XON/XOFF, RTS/CTS

RS232
25-pin (female) subminiature D
19-pin (male) circular Cannon KPT series (1)
8
1
9600
None

2
20 characters/line
Continuous LED backlighting
Code 39 (Standard Character Set)
Interleaved 2-of-5
Code 128
UPC-A with optional 2 or 5 digit supplements
UPC-E with optional 2 or 5 digit supplements
EAN-8 with optional 2 or 5 digit supplements
EAN-13 with opt. 2 or 5 digit supplements
Codabar
Pharma-Code

Certifications

(1) Catalog Number 2755-NC17 Connector Kit is available for the NEMA Type 4 HOST and AUX port.

Output Modules

Catalog Number	2755-OB5S	2755-OA5S	2755-OM5S
Nominal Line Voltage	-	120 VAC	240 VAC
Maximum Line Voltage	60 VDC	140 VAC	280 VAC
Minimum Line Voltage	3.0 VDC	12 VAC	24 VAC
Maximum Peak Off State Voltage	60 VDC	400 V peak	600 V peak
Maximum Peak Off State Leakage	1.0 mA	2.5 mA RMS	4.5 mA RMS
Static off-state dv/dt	-	200 V/usec	$200 \mathrm{~V} / \mathrm{usec}$
Maximum On-State Current	0.5 A DC	0.5 A RMS	0.5 A RMS
Minimum On-State Current	10 mA DC	50 mA RMS	50 mA RMS
Maximum 1 Cycle Surge	-	4 A peak	4 A peak
Maximum 1 Second Surge	1.5 A DC	-	-
Peak On-State Voltage	1.5 V DC	1.6 V peak	1.6 V peak

Input Modules

Catalog Number	2755-IB5S	2755-IA5S (1)	2755-IM5S (1)
Maximum Input Voltage	32 VDC	140V RMS/VDC	280 V RMS/VDC
Minimum Input Voltage	3.3 VDC	90V RMS/VDC	180 V RMS/VDC
Input Resistance	1 kohm	-	-
Maximum Input Current	$32 \mathrm{~mA} \mathrm{DC@} 32 \mathrm{VDC}$	10mA RMS@ 140 VRMS	8mA RMS@ 280VRMS
Drop Out Current	1.0 mA DC	2.5 mA RMS	1.5 mA RMS
Allowable Off-State Input Current	1.0 mA DC	3.0 mA RMS	2.0 mA RMS
Allowable Off-State Input Voltage	2.0 VDC	50 VRMS/VDC	120 VRMS/VDC

Decoder Configuration Addresses

PCCC Address	Configuration Parameter	Number of Bytes	Acceptable Values (Default in bold)
3C0	Reserved	1	
3 C 1	AUX Terminal Enable Keyboard Entry	1	$\begin{aligned} & 0=\text { No } \\ & 1=\text { Yes } \\ & 2=\text { No Read } \end{aligned}$
3C2	AUX Terminal Confirm Entry	1	$\begin{aligned} & 0=\mathrm{No} \\ & 1=\mathrm{Yes} \end{aligned}$
3C3	AUX Terminal Aux Data Format	1	$\begin{aligned} & 0=\text { Unformatted } \\ & 1=\text { Host Format } \end{aligned}$
3C4	AUX Terminal Rubout Char for Keyboard Entry	1	$\begin{aligned} & \text { ASCII } 0-255,255=\text { None } \\ & 8=\text { BS } \end{aligned}$
3C5	Echo Keyboard Data	1	$\begin{aligned} & 0=\mathrm{No} \\ & 1=\mathrm{Yes} \end{aligned}$
3C6	Size of Display	1	10-80
3C7	AUX Terminal - Source Identifier String Length String	$\begin{aligned} & 1 \\ & 4 \end{aligned}$	$0-4,0 \text { = Empty }$ 4 characters
3CC	AUX Terminal - Default Prompt Message String Length String	$\begin{gathered} 1 \\ 20 \end{gathered}$	$0-20,0=\text { Empty }$ 20 characters
3E1	Scroll LCD	1	$\begin{aligned} & 0=\mathrm{No} \\ & 1=\mathrm{Yes} \end{aligned}$
3E2	Scanner B Trigger Source	1	$\begin{array}{\|l\|} \hline 0=\text { Port A (Coordinated1) } \\ 1 \text { = Port B (Ind., Package Det) } \\ 2=\text { Port B (Ind., Host Control) } \\ 3=\text { Port B (Coordinated2) } \\ \hline \end{array}$
3E3	Reserved	1	Ignored
3E4	Scanner B Trigger Timeout	2	0, 10 ... 9999
3E6	Scanner B - Source Identifier String Length String	$\begin{aligned} & 1 \\ & 4 \end{aligned}$	0-4, $0=$ Empty 4 characters
3EB	Enable UPC-A Supplement	1	$\begin{aligned} & 0=\text { No } \\ & 1=2 \text { Char } \\ & 2=5 \text { Char } \\ & 3=2 \text { or } 5 \text { Char } \\ & 4=\text { Auto } \end{aligned}$
3EC	Enable UPC-E Supplement	1	$\begin{array}{\|l} \hline 0=\text { No } \\ 1=2 \text { Char } \\ 2=5 \text { Char } \\ 3=2 \text { or } 5 \text { Char } \\ 4=\text { Auto } \end{array}$
3ED	Enable EAN-8 Supplement	1	$\begin{aligned} & 0=\text { No } \\ & 1=2 \text { Char } \\ & 2=5 \text { Char } \\ & 3=2 \text { or } 5 \text { Char } \\ & 4=\text { Auto } \end{aligned}$

PCCC Address	Configuration Parameter	Number of Bytes	Acceptable Values (Default in bold)
3EE	Enable EAN-13 Supplement	1	$\begin{aligned} & 0=\text { No } \\ & 1=2 \text { Char } \\ & 2=5 \text { Char } \\ & 3=2 \text { or } 5 \text { Char } \\ & 4=\text { Auto } \end{aligned}$
3EF	Display Formatted Data	1	$\begin{aligned} & \hline 0=\text { None } \\ & 1=\text { AUX/LCD } \\ & 2=\text { AUX Only } \\ & 3=\text { LCD Only } \end{aligned}$
3F0	AUX Terminal/LCD message display format	1	0 = Unformatted 1 = Host Format
3 F 1	Starting Position bar_code_strings	1	$\begin{aligned} & \hline 00-80 \\ & 00=\text { Disable } \end{aligned}$
3F2	Starting Position decoder performance	1	$\begin{aligned} & 00-80 \\ & 00=\text { Disable } \end{aligned}$
3 F 3	Starting Position package counter	1	$\begin{aligned} & 00-80 \\ & 00=\text { Disable } \end{aligned}$
3F4	Starting Position symbols not read counter	1	$\begin{aligned} & 00-80 \\ & 00=\text { Disable } \end{aligned}$
3F5	Starting Position primary counter 1	1	$\begin{aligned} & \hline 00-80 \\ & 00=\text { Disable } \end{aligned}$
$3 F 6$	Starting Position primary counter 2	1	$\begin{aligned} & \hline 00-80 \\ & 00=\text { Disable } \end{aligned}$
3F7	Starting Position primary counter 3	1	$\begin{aligned} & \hline 00-80 \\ & 00=\text { Disable } \end{aligned}$
3F8	Starting Position primary counter 4	1	$\begin{aligned} & \hline 00-80 \\ & 00=\text { Disable } \end{aligned}$
3F9	Starting Position primary counter 5	1	$\begin{aligned} & \hline 00-80 \\ & 00=\text { Disable } \end{aligned}$
3FA	Starting Position primary counter 6	1	$\begin{aligned} & \hline 00-80 \\ & 00=\text { Disable } \end{aligned}$
3FB	Starting Position primary counter 7	1	$\begin{aligned} & 00-80 \\ & 00=\text { Disable } \end{aligned}$
3FC	Starting Position primary counter 8	1	$\begin{aligned} & \hline 00-80 \\ & 00=\text { Disable } \end{aligned}$
3FD	Send Performance indicator in host_message	1	$\begin{aligned} & 0=\mathrm{No} \\ & 1=\mathrm{Yes} \end{aligned}$
3FE	Enable Filter and Sense of Package_Detect_B Input	1	$\begin{aligned} & \hline 0=\text { No filter, LO=Package } \\ & 1=\text { Filter (} 15 \mathrm{~ms} \text {), LO = Package } \\ & 2 \text { = No filter, HI = Package } \\ & 3=\text { Filter, HI = Package } \end{aligned}$
3FF	Ignored	1	
400	Send bar_code_strings in host_message	1	$\begin{aligned} & 0=\mathrm{No} \\ & 1=\mathrm{Yes} \end{aligned}$
401	Send package count in host_message	1	$\begin{aligned} & 0=\mathrm{No} \\ & 1=\mathrm{Yes} \end{aligned}$
402	Send bar code symbology in host message	1	$\begin{aligned} & 0=\mathrm{No} \\ & 1=\mathrm{Yes} \end{aligned}$
403	Ignored	1	
404	Ignored	1	
405	Ignored	1	
406	Expand UPC-E	1	$\begin{aligned} & 0=\mathrm{No} \\ & 1=\mathrm{Yes} \end{aligned}$

PCCC Address	Configuration Parameter	$\begin{array}{c}\text { Number of } \\ \text { Bytes }\end{array}$	$\begin{array}{c}\text { Acceptable Values } \\ \text { (Default in bold) }\end{array}$
407	Field delimiter	1	ASCII 1-255, 255 = None
408	Start Character	1	ASCII $1-255,255=$ None
409	End Message	$\begin{array}{l}0=\text { CrLf } \\ 1=\text { Cr } \\ 2=\text { L }\end{array}$	
$3=$ Etx			
$4=$ None			
$5=$ CrEtx			
$6=$ LfEtx			
$7=$ CrLfEtx			

PCCC Address	Configuration Parameter	Number of Bytes	Acceptable Values (Default in bold)
41A	Host Protocol (read-ONLY)	1	$\begin{aligned} & 0=\text { *RS232 } \\ & 1=\text { RS232 XON/XOFF } \\ & 2=\text { RS232 CTS/RTS }-1 \\ & 3=\text { RS232 CTS/RTS }-2 \\ & 4=\text { RS422 } \\ & 5=\text { RS422 XON/XOFF } \\ & 6=\text { RS485 PCCC }-1 \\ & 7=\text { RS485 PCCC }-2 \\ & 8=\text { RS485 ASCII - } 1 \\ & 9=\text { RS485 ASCII }-2 \end{aligned}$
41B	Device Address (read-ONLY)	1	00, 01, ... 31
41C	Enable Filter and Sense of Package_Detect_A Input	1	$\begin{aligned} & \hline 0 \text { = No Filter, LO=Package } \\ & 1=\text { Filter (15 msec), LO=Package } \\ & 2=\text { No Filter, HI=Package } \\ & 3=\text { Filter (} 15 \mathrm{msec} \text {), HI=Package } \end{aligned}$
41D	Enable Code 39	1	$\begin{aligned} & 0=\text { No } \\ & 1=\text { Yes (No for Pharma-code units) } \end{aligned}$
41E thru 425	Code 39 Specific Lengths	8	0 ... 64
426	Enable Interleaved 2-of 5	1	$\begin{aligned} & 0=\mathrm{No} \\ & 1=\mathrm{Yes} \end{aligned}$
427 thru 42e	Interleaved 2-of 5 Specific Lengths (Must be even)	8	0 ... 64
42F	Enable Code 128	1	$\begin{aligned} & 0=\mathrm{No} \\ & 1=\mathrm{Yes} \end{aligned}$
430 thru 437	Code 128 Specific Lengths	8	0 ... 64
438	Enable Codabar	1	$\begin{aligned} & 0=\mathrm{No} \\ & 1=\mathrm{Yes} \end{aligned}$
439 thru 440	Codabar Specific Lengths	8	0, 2... 64
441	Enable UPC-A	1	$\begin{aligned} & 0=\mathrm{No} \\ & 1=\mathrm{Yes} \end{aligned}$
442	Enable UPC-E	1	$\begin{aligned} & 0=\mathrm{No} \\ & 1=\mathrm{Yes} \end{aligned}$
443	Enable EAN-8	1	$\begin{aligned} & 0=\mathrm{No} \\ & 1=\mathrm{Yes} \end{aligned}$
444	Enable EAN-13	1	$\begin{aligned} & 0=\mathrm{No} \\ & 1=\mathrm{Yes} \end{aligned}$
445	LASER Light (A)	1	$\begin{aligned} & 0=\text { On } \\ & 1=\text { Triggered } \\ & 2=\text { Off } \end{aligned}$
446	Decode Mode	1	$\begin{aligned} & \hline 0=\text { Package Detect } \\ & 1=\text { Host } \\ & 2=\text { Internal Timer } \\ & 3=\text { Continuous } \\ & 4=\text { Continuous/Unique } \end{aligned}$
447	Capture Count	1	$0,1,2, \ldots, 8,0=$ Verify
448	symbols/scan	1	$\begin{aligned} & \hline 0=\text { Any } \\ & 1=1 \\ & 2=2 \\ & 3=3 \\ & 4=4 \\ & 5=5 \\ & 6=6 \end{aligned}$
449	symbols/package	1	1... 16

PCCC Address	Configuration Parameter	Number of Bytes	Acceptable Values (Default in bold)
44A	Match Complete Count	1	$1 . .16$
44B	Scanner A - Source Identifier String Length String	$\begin{aligned} & 1 \\ & 4 \end{aligned}$	0-4, $0=$ Empty 4 characters
450	Header string String Length String	$\begin{gathered} 1 \\ 32 \end{gathered}$	0-32, 0 = Empty 32 characters
471	No-Read String Length String	$\begin{gathered} 1 \\ 32 \end{gathered}$	0-32, $0=$ Empty 32 characters
492	No-Read Timer	2	0, $10 \ldots 99990=$ None
494	Inter-Scan Timer	2	0, 10 ... $99990=$ None
496	symbology in Match Code Table Entry 1	1	$\begin{aligned} & 0=\text { Code } 39 \\ & 1=\text { Interleaved } 2 \text { of } 5 \\ & 2=\text { Codabar } \\ & 3=\text { UPC-A } \\ & 4=\text { UPC-E } \\ & 5=\text { EAN-8 } \\ & 6=\text { EAN-13 } \\ & 7=\text { Code 128 } \\ & 8=\text { Pharma-Code } \\ & 15=\text { ANY } \end{aligned}$
497	Enable Match Code Table Entry 1	1	Ignored
498	Match Code 1 String Length String	$\begin{gathered} 1 \\ 32 \end{gathered}$	0-32, $0=$ Empty 32 characters
4B9	Output 1 Event	1	$\begin{aligned} & \hline 0=\text { None } \\ & 1=\text { Read Package } \\ & 2=\text { No-Read Package } \\ & 3=\text { Match Complete } \\ & 4=\text { Match Entry } \\ & 5 \text { = Read and no-match } \\ & 6=\text { No-Read or no-match } \\ & 7 \text { = Auto Load } \\ & 8=\text { Invalid } \\ & 9=\text { Host Buffer Full } \\ & \text { A }=\text { Host Buffer Overflow } \\ & \text { B = Open } \\ & \text { C }=\text { Closed } \end{aligned}$
4BA	Output 1 Duration	2	0, 10 ... $99990=$ None
4BC	symbology in Match Code Table Entry 2	1	$\begin{aligned} & 0=\text { Code } 39 \\ & 1=\text { Interleaved } 2 \text { of } 5 \\ & 2=\text { Codabar } \\ & 3=\text { UPC-A } \\ & 4=\text { UPC-E } \\ & 5=\text { EAN-8 } \\ & 6=\text { EAN-13 } \\ & 7=\text { Code } 128 \\ & 8=\text { Pharma-Code } \\ & 15=\text { Any } \\ & \hline \end{aligned}$
4BD	Enable Match Code Table Entry 2	1	Ignored
4BE	Match Code 2 String Length String	$\begin{gathered} 1 \\ 32 \end{gathered}$	0-32, $0=$ Empty 32 characters

PCCC Address	Configuration Parameter	Number of Bytes	Acceptable Values (Default in bold)
4DF	Output 2 Event	1	$\begin{array}{\|l} \hline 0=\text { None } \\ 1=\text { Read Package } \\ 2=\text { No-Read Package } \\ 3=\text { Match Complete } \\ 4=\text { Match Entry } \\ 5 \text { = Read and no-match } \\ 6=\text { No-Read or no-match } \\ 7 \text { = Auto Load } \\ 8=\text { Invalid } \\ 9=\text { Host Buffer Full } \\ \text { A }=\text { Host Buffer Overflow } \\ \text { B }=\text { Open } \\ \text { C }=\text { Closed } \end{array}$
4E0	Output 2 Duration	2	0, 10 ... $99990=$ None
4E2	symbology in Match Code Table Entry 3	1	$\begin{aligned} & \hline 0=\text { Code } 39 \\ & 1=\text { Interleaved } 2 \text { of } 5 \\ & 2=\text { Codabar } \\ & 3=\text { UPC }-A \\ & 4=\text { UPC-E } \\ & 5=\text { EAN-8 } \\ & 6=\text { EAN-13 } \\ & 7=\text { Code } 128 \\ & 8=\text { Pharma-Code } \\ & 15=\text { Any } \end{aligned}$
4E3	Enable Match Code Table Entry 3	1	Ignored
4E4	Match Code 3 String Length String	$\begin{gathered} 1 \\ 32 \end{gathered}$	$0-32,0=\text { Empty }$ 32 characters
505	Output 3 Event	1	$\begin{array}{\|l} \hline 0 \text { = None } \\ 1 \text { = Read Package } \\ 2 \text { = No-Read Package } \\ 3=\text { Match Complete } \\ 4=\text { Match Entry } \\ 5 \text { = Read and no-match } \\ 6=\text { No-Read or no-match } \\ 7 \text { = Auto Load } \\ 8 \text { = Invalid } \\ 9 \text { = Host Buffer Full } \\ \text { A }=\text { Host Buffer Overflow } \\ \text { B }=\text { Open } \\ \text { C }=\text { Closed } \end{array}$
506	Output 3 Duration	2	0, $10 \ldots 99990$ = None
508	symbology in Match Code Table Entry 4	1	$\begin{aligned} & \hline 0=\text { Code } 39 \\ & 1=\text { Interleaved } 2 \text { of } 5 \\ & 2=\text { Codabar } \\ & 3=\text { UPC-A } \\ & 4=\text { UPC-E } \\ & 5=\text { EAN-8 } \\ & 6=\text { EAN-13 } \\ & 7=\text { Code } 128 \\ & 8=\text { Pharma-Code } \\ & 15=\text { Any } \end{aligned}$
509	Enable Match Code Table Entry 4	1	Ignored
50A	Match Code 4 String Length String	$\begin{gathered} 1 \\ 32 \end{gathered}$	$0-32,0=\text { Empty }$ 32 characters

PCCC Address	Configuration Parameter	Number of Bytes	Acceptable Values (Default in bold)
52B	Output 4 Event	1	$\begin{array}{\|l} \hline 0=\text { None } \\ 1=\text { Read Package } \\ 2=\text { No-Read Package } \\ 3=\text { Match Complete } \\ 4=\text { Match Entry } \\ 5=\text { Read and no-match } \\ 6=\text { No-Read or no-match } \\ 7 \text { = Auto Load } \\ 8=\text { Invalid } \\ 9=\text { Host Buffer Full } \\ \text { A }=\text { Host Buffer Overflow } \\ \text { B }=\text { Open } \\ \text { C }=\text { Closed } \end{array}$
52C	Output 4 Duration	2	0, 10 ... $99990=$ None
52E	symbology in Match Code Table Entry 5	1	$\begin{aligned} & \hline 0=\text { Code } 39 \\ & 1=\text { Interleaved } 2 \text { of } 5 \\ & 2=\text { Codabar } \\ & 3=\text { UPC-A } \\ & 4=\text { UPC-E } \\ & 5=\text { EAN-8 } \\ & 6=\text { EAN }-13 \\ & 7=\text { Code } 128 \\ & 8=\text { Pharma-Code } \\ & 15=\text { Any } \\ & \hline \end{aligned}$
52F	Enable Match Code Table Entry 5	1	Ignored
530	Match Code 5 String Length String	$\begin{gathered} 1 \\ 32 \end{gathered}$	0-32, $0=$ Empty 32 characters
551	Output 5 Event	1	$\begin{aligned} & \hline 0=\text { None } \\ & 1=\text { Read Package } \\ & 2=\text { No-Read Package } \\ & 3=\text { Match Complete } \\ & 4=\text { Match Entry } \\ & 5=\text { Read and no-match } \\ & 6=\text { No-Read or no-match } \\ & 7 \text { = Auto Load } \\ & 8=\text { Invalid } \\ & 9=\text { Host Buffer Full } \\ & \text { A }=\text { Host Buffer Overflow } \\ & \text { B }=\text { Open } \\ & \text { C }=\text { Closed } \end{aligned}$
552	Output 5 Duration	2	0, $10 \ldots 99990$ = None
554	symbology in Match Code Table Entry 6	1	$\begin{aligned} & \hline 0=\text { Code } 39 \\ & 1=\text { Interleaved } 2 \text { of } 5 \\ & 2=\text { Codabar } \\ & 3=\text { UPC-A } \\ & 4=\text { UPC-E } \\ & 5=\text { EAN }-8 \\ & 6=\text { EAN }-13 \\ & 7=\text { Code } 128 \\ & 8=\text { Pharma-Code } \\ & 15=\text { Any } \end{aligned}$
555	Enable Match Code Table Entry 6	1	Ignored
556	Match Code 6 String Length String	$\begin{gathered} 1 \\ 32 \end{gathered}$	0-32, $0=$ Empty 32 characters

PCCC Address	Configuration Parameter	Number of Bytes	Acceptable Values (Default in bold)
577	Output 6 Event	1	$\begin{array}{\|l} \hline 0=\text { None } \\ 1=\text { Read Package } \\ 2=\text { No-Read Package } \\ 3=\text { Match Complete } \\ 4=\text { Match Entry } \\ 5 \text { = Read and no-match } \\ 6=\text { No-Read or no-match } \\ 7 \text { = Auto Load } \\ 8=\text { Invalid } \\ 9=\text { Host Buffer Full } \\ \text { A }=\text { Host Buffer Overflow } \\ \text { B }=\text { Open } \\ \text { C }=\text { Closed } \end{array}$
578	Output 6 Duration	2	0, 10 ... $99990=$ None
57A	symbology in Match Code Table Entry 7	1	$\begin{aligned} & \hline 0=\text { Code } 39 \\ & 1=\text { Interleaved } 2 \text { of } 5 \\ & 2=\text { Codabar } \\ & 3=\text { UPC }-A \\ & 4=\text { UPC-E } \\ & 5=\text { EAN-8 } \\ & 6=\text { EAN-13 } \\ & 7=\text { Code } 128 \\ & 8=\text { Pharma-Code } \\ & 15=\text { Any } \end{aligned}$
57B	Enable Match Code Table Entry 7	1	Ignored
57C	Match Code 7 String Length String	$\begin{gathered} 1 \\ 32 \end{gathered}$	$0-32,0=\text { Empty }$ 32 characters
59D	Output 7 Event	1	$\begin{array}{\|l} \hline 0 \text { = None } \\ 1 \text { = Read Package } \\ 2 \text { = No-Read Package } \\ 3=\text { Match Complete } \\ 4=\text { Match Entry } \\ 5 \text { = Read and no-match } \\ 6=\text { No-Read or no-match } \\ 7 \text { = Auto Load } \\ 8 \text { = Invalid } \\ 9 \text { = Host Buffer Full } \\ \text { A }=\text { Host Buffer Overflow } \\ \text { B }=\text { Open } \\ \text { C }=\text { Closed } \end{array}$
59 E	Output 7 Duration	2	0, $10 \ldots 99990$ = None
5A0	symbology in Match Code Table Entry 8	1	$\begin{aligned} & \hline 0=\text { Code } 39 \\ & 1=\text { Interleaved } 2 \text { of } 5 \\ & 2=\text { Codabar } \\ & 3=\text { UPC-A } \\ & 4=\text { UPC-E } \\ & 5=\text { EAN-8 } \\ & 6=\text { EAN-13 } \\ & 7=\text { Code } 128 \\ & 8=\text { Pharma-Code } \\ & 15=\text { Any } \end{aligned}$
5A1	Enable Match Code Table Entry 8	1	Ignored
5A2	Match Code 8 String Length String	$\begin{gathered} 1 \\ 32 \end{gathered}$	$0-32,0=\text { Empty }$ 32 characters

PCCC Address	Configuration Parameter	Number of Bytes	Acceptable Values (Default in bold)
5C3	Output 8 Event	1	0 = None 1 = Read Package $2=$ No-Read Package 3 = Match Complete 4 = Match Entry 5 = Read and no-match $6=$ No-Read or no-match 7 = Auto Load 8 = Auto Load Input 9 = Host Buffer Full A = Host Buffer Overflow $\mathrm{B}=$ Open C = Closed
5C4	Output 8 Duration	2	0, 10 ... $99990=$ None
5C6	Ignored	32	
5E6	Output 1 Normally Open or Closed	1	$\begin{array}{\|l\|} \hline 0=\text { Normally Open } \\ 1=\text { Normally Closed } \\ \hline \end{array}$
5E7	Output 2 Normally Open or Closed	1	$0=$ Normally Open 1 = Normally Closed
5E8	Output 3 Normally Open or Closed	1	0 = Normally Open 1 = Normally Closed
5E9	Output 4 Normally Open or Closed	1	$0=$ Normally Open 1 = Normally Closed
5EA	Output 5 Normally Open or Closed	1	$\begin{array}{\|l\|} \hline 0=\text { Normally Open } \\ 1=\text { Normally Closed } \\ \hline \end{array}$
5EB	Output 6 Normally Open or Closed	1	$\begin{array}{\|l\|} \hline 0=\text { Normally Open } \\ 1=\text { Normally Closed } \\ \hline \end{array}$
5EC	Output 7 Normally Open or Closed	1	$\begin{array}{\|l\|} \hline 0=\text { Normally Open } \\ 1=\text { Normally Closed } \end{array}$
5ED	Output 8 Normally Open or Closed	1	$0=$ Normally Open 1 = Normally Closed

Decoder Function or Command Addresses

Refer to Chapter 16 for additional information on the use of these commands and functions.

Address	Command
0600 H	Clear package counts
0604 H	Clear primary count 1
0608 H	Clear primary count 2
060 CH	Clear primary count 3
0610 H	Clear primary count 4
0614 H	Clear primary count 5
0618 H	Clear primary count 6
061 CH	Clear primary count 7
0620 H	Clear primary count 8
0624 H	Clear symbols not read count
0630 H	Clear all primary counts
0631 H	Clear all primary counts and symbols not read count
0632 H	Save configuration to Storage Memory and restart
0633 H	Set configuration to default values
0634 H	Start scan A
0635 H	Stop scan A
0636 H	Flush current packet from host buffer
0637 H	Restart decoder
0640 H	Send repeat read
0641 H	Cancel repeat read
0642 H	Clear all Extended counts
0643 H	Auto-Load Start
0644 H	Auto-load End
0650 H	Hold output 1 open ${ }^{1}{ }^{1}$
0651 H	Hold output 2 open ${ }^{1}$
0652 H	Hold output 3 open ${ }^{1}$
0653 H	Hold output 4 open ${ }^{1}$
0654 H	Hold output 5 open ${ }^{1}$
0655 H	Hold output 6 open ${ }^{1}$
0656 H	Hold output 7 open ${ }^{1}{ }^{1}$
0657 H	Hold output 8 open ${ }^{1}{ }^{1}$
0660 H	Hold output 1 closed ${ }^{1}{ }^{1}$
0661 H	Hold output 2 closed ${ }^{1}$
0	
0	

(1) The AUX port supports a terminal for either configuring the decoder or for man entry. For information on use of the AUX port for manual data entry, consult Ch:

Address	Command
0662 H	Hold output 3 closed $^{(1)}$
0663 H	Hold output 4 closed $^{(1)}$
0664 H	Hold output 5 closed $^{1}{ }^{1}$
0665 H	Hold output 6 closed $^{1}{ }^{1}$
0666 H	Hold output 7 closed 1
0667 H	Hold output 8 closed 1
0668 H	Start Scanner B Trigger
0669 H	Stop Scanner B Trigger

Pharma-Code Configuration 0700H-0725H

The decoder shall use the existing 'set match table symbology type' command with a value of 9 to set the match table symbology type to PHARMA.

The table below shows the mapping between the PCCC Host Commands and the parameters described in the Pharma-Code Configuration Parameters section.

PCCC Address	Configuration Parameter	Number of Bytes	Acceptable Values (Default in bold)
700 H	enable Pharma-Code	1	$\begin{aligned} & 0=\text { No } \\ & 1=\text { Yes } \end{aligned}$
701H	decode direction	1	0 = Forward 1 = Reverse 2 = Forward A Reverse B 3 = Reverse A Forward B
702H	quiet zone ratio	1	4-10, 5 = Default, $0=$ Use Default
703H	space tolerance	1	$\begin{aligned} & 0=\text { Ignore } \\ & 5 \text { to } 40,15 \end{aligned}$
704H	bar tolerance	1	$\begin{aligned} & 0=\text { Ignore } \\ & 5 \text { to } 40,15 \end{aligned}$
705H	minimum number of bars	1	3 to 12, 5
706H	wide to narrow bar ratio	1	$\begin{aligned} & 0=\text { Midrange } \\ & 2 \text { to } 4 \end{aligned}$
707H	code verification list entry 1	2	$\begin{aligned} & 0=\text { none } \\ & 7 \text { to } 8190 \end{aligned}$
709H to 725H	code verification list entry 2 through 16	$\begin{gathered} 2 \text { bytes per } \\ \quad \text { entry } \end{gathered}$	$\begin{aligned} & 0=\text { none } \\ & 7 \text { to } 8190 \end{aligned}$

(1) The AUX port supports a terminal for either configuring the decoder or for man entry. For information on use of the AUX port for manual data entry, consult Chi

Series B Configuration Parameters $0900 \mathrm{H}-0901 \mathrm{H}$

PCCC Address	Configuration Parameter	Number of Bytes	Acceptable Values (Default in bold)
900 H	write text message to AUX/LCD string length string	1 128	$0-128,0=$ Empty 128 characters
901 H	write text message to AUX/LCD and enable keyboard entry string length string	1 128	$0-128,0=$ Empty 128 characters

Series B Configuration Parameters 0E00H-0EFFH

PCCC Address	Configuration Parameter	Number of Bytes	Acceptable Values (Default in bold)
E10	Verify Interleaved 2 of 5 guard bars	1	$\begin{aligned} & 0=\mathrm{No} \\ & 1=\mathrm{Yes} \end{aligned}$
E11	Scanner source of event 1	1	$\begin{aligned} & 1=\text { Scanner A } \\ & 2=\text { Scanner B } \\ & 3=A \mid B \\ & 5=A-B \end{aligned}$
E12	Scanner source of event 2	1	$\begin{aligned} & 1=\text { Scanner A } \\ & 2=\text { Scanner B } \\ & 3=A \mid B \\ & 5=A-B \end{aligned}$
E13	Scanner source of event 3	1	$\begin{aligned} & 1=\text { Scanner A } \\ & 2=\text { Scanner B } \\ & 3=A \mid B \\ & 5=A-B \end{aligned}$
E14	Scanner source of event 4	1	$\begin{aligned} & 1=\text { Scanner A } \\ & 2=\text { Scanner B } \\ & 3=A \mid B \\ & 5=A-B \end{aligned}$
E15	Scanner source of event 5	1	$\begin{aligned} & 1=\text { Scanner A } \\ & 2=\text { Scanner B } \\ & 3=A \mid B \\ & 5=A-B \end{aligned}$
E16	Scanner source of event 6	1	$\begin{aligned} & \hline 1=\text { Scanner A } \\ & 2=\text { Scanner B } \\ & 3=A \mid B \\ & 5=A-B \end{aligned}$
E17	Scanner source of event 7	1	$\begin{aligned} & 1=\text { Scanner A } \\ & 2=\text { Scanner B } \\ & 3=A \mid B \\ & 5=A-B \end{aligned}$
E18	Scanner source of event 8	1	$\begin{aligned} & 1=\text { Scanner A } \\ & 2=\text { Scanner B } \\ & 3=A \mid B \\ & 5=A-B \end{aligned}$
E19	Laser B On mode	1	$\begin{aligned} & 0=\text { Continuous } \\ & 1=\text { Triggered } \\ & 2=\text { Off } \end{aligned}$
E1A	Set number of Fields in host_message	1	0-16, $0=$ ALL
E1B	FNC1 Character	1	00-FFh, 00 = Ignore
E1C	Quiet Zone Ratio	1	4-10, 5 = Default, 0 = Use Default

PCCC Address	Configuration Parameter	Number of Bytes	Acceptable Values (Default in bold)
E1D	Scanner B Start Scan Character	1	ASCII 0-255, 255 = None
E1E	Scanner B Stop Scan Character	1	ASCII 0-255, 255 = None
E1F	Extended Match Set 1 (1-16)	1	$\begin{aligned} & 0=\text { Disabled } \\ & 1=\text { Enabled } \end{aligned}$
E20	Extended Match Set 2 (17-32)	1	$\begin{aligned} & 0=\text { Disabled } \\ & 1=\text { Enabled } \end{aligned}$
E21	Extended Match Set 3 (33-48)	1	$\begin{aligned} & 0=\text { Disabled } \\ & 1=\text { Enabled } \end{aligned}$
E22	Extended Match Set 4 (49-64)	1	$\begin{aligned} & 0=\text { Disabled } \\ & 1=\text { Enabled } \end{aligned}$
E23	Extended Match Set 5 (65-80)	1	$\begin{aligned} & \hline 0=\text { Disabled } \\ & 1=\text { Enabled } \end{aligned}$
E24	Extended Match Set 6 (81-96)	1	$\begin{aligned} & 0=\text { Disabled } \\ & 1=\text { Enabled } \end{aligned}$
E25	Extended Match Set 7 (97-112)	1	$\begin{aligned} & 0=\text { Disabled } \\ & 1=\text { Enabled } \end{aligned}$
E26	Extended Match Set 8 (113-128)	1	$\begin{aligned} & \hline 0=\text { Disabled } \\ & 1=\text { Enabled } \end{aligned}$

Host Message Replacement Rules 1000 H - 143 FH

PCCC Address	Configuration Parameter	Number of Bytes	Acceptable Values (Default in bold)
$1000 \mathrm{H}+{ }^{*} 40 \mathrm{H}$	host_message Field	1	0 to 16, 0 = ALL
$1001 \mathrm{H+i}{ }^{*} 40 \mathrm{H}$	Source	1	$\begin{aligned} & 1=\text { Scanner A } \\ & 2=\text { Scanner B } \\ & 3=A \mid B \\ & 4=A U X \end{aligned}$
$1002 \mathrm{H}+{ }^{*} 40 \mathrm{H}$	symbology	1	$\begin{aligned} & 0=\text { Code } 39 \\ & 1=\text { Interleaved } 2-\text {-of }-5 \\ & 2=\text { Codabar } \\ & 3=\text { UPC-A } \\ & 4=\text { UPC-E } \\ & 5=\text { EAN-8 } \\ & 6=\text { EAN }-13 \\ & 7=\text { Code } 128 \\ & 8=\text { Pharma }- \text { Code } \\ & \text { Ofh }=\text { ANY } \end{aligned}$
$1003 \mathrm{H}+{ }^{*} 40 \mathrm{H}$	symbol_number	1	0 to 16, $0=$ ALL
$1004 \mathrm{H+i}{ }^{*} 40 \mathrm{H}$	Minimum Field Length	1	0 to 64
$1005 \mathrm{H}+{ }^{*} 40 \mathrm{H}$	Alignment	1	$\begin{aligned} & 0=\text { Right } \\ & 1=\text { Left } \end{aligned}$
$1006 \mathrm{H}+{ }^{*} 40 \mathrm{H}$	Fill Character	1	0 to 255, $0=$ None
$1007 \mathrm{H}+{ }^{*} 40 \mathrm{H}$	Reserved	1	1
$1008 \mathrm{H+i}{ }^{*} 40 \mathrm{H}$	Search Pattern Length Search Pattern	$\begin{gathered} \hline 1 \\ 24 \end{gathered}$	0-24, 0 = Empty up to 24 characters
$1021 \mathrm{H+i}{ }^{*} 40 \mathrm{H}$	Reserved	3	1
$1024 \mathrm{H}+{ }^{*} 40 \mathrm{H}$	Replace Pattern Length Replace Pattern	$\begin{gathered} 1 \\ 24 \end{gathered}$	0-24, 0 = Empty up to 24 characters
$103 \mathrm{DH}+\mathrm{i}^{*} 40 \mathrm{H}$	Reserved	3	1

Where i ranges from 1 to 16 . The decoder shall return status 10 H for references to $1000 \mathrm{H}-103 \mathrm{FH}$.

Host Message No Read Replacement Strings 2000H-21B9H

PCCC Address	Configuration Parameter	Number of Bytes	Acceptable Values (Default in bold)
$2000 \mathrm{H}+\mathrm{i}^{*} 1 \mathrm{AH}$	Search Fail String Length Search Fail String	1 24	$0-240=$ Empty up to 24 characters
$2019 \mathrm{H}+i^{*} 1 \mathrm{AH}$	Reserved	1	1

Where i ranges from 1 to 16 . The decoder shall return status 10 H for references to $2000 \mathrm{H}-2019 \mathrm{H}$.

Extended Count Values D800H-DA03H

PCCC Address	Configuration Parameter	Number of Bytes	Acceptable Values (Default in bold)
D $800 \mathrm{H}+\mathrm{i}^{*} 4$	Extended Count Value n	4	0 to 999999

Where i ranges from 1 to 128. The decoder shall return status code 10 H for references to addresses D800H-D803H.

Extended Match Data 8000H-A03FH

Writes to address 8000 will be interpreted as Autoload. The data attached to the write must follow the byte order listed in the following table. The data will be inserted in the next available autoload position, searching first the primary and then the extended data table. That entry will be marked as "Match Entry". If no entries are available in either table, a code 02 (memory not available) will be returned. Writes to any location other than 8000 will return of code 10 , and the write request will be ignored.

PCCC Address	Configuration Parameter	Number of Bytes	Acceptable Values (Default in bold)
8000 H	Source	1	$\begin{aligned} & \hline 1=\text { Scanner A } \\ & 2=\text { Scanner B } \end{aligned}$
	symbology	1	$\begin{aligned} & 0=\text { Code } 39 \\ & 1=\text { Interleaved } 2-\text { of- }-5 \\ & 2=\text { Codabar } \\ & 3=\text { UPC-A } \\ & 4=\text { UPC-E } \\ & 5=\text { EAN-8 } \\ & 6=\text { EAN }-13 \\ & 7=\text { Code 128 } \\ & 8=\text { Pharma-Code } \end{aligned}$
	Match pattern - Length Match pattern - String	$\begin{gathered} \hline 1 \\ 32 \end{gathered}$	0-32, 0 = Empty up to 32 characters

Extended Match Data 8000H-A03FH

The following table lists the configuration parameters for the Extended Match Data Table. Address the counters by adding the offset $i * 40 H$ to the base address 8000 , where i represents the counter number, 1 to 128 .

PCCC Address	Configuration Parameter	Number of Bytes	Acceptable Values (Default in bold)
$8000 \mathrm{H+i}{ }^{*} 40 \mathrm{H}$	Mode	1	$\begin{aligned} & \hline 0=\text { Disabled } \\ & 1=\text { Match_entry } \\ & 2=\text { Auto-Load } \\ & 3=\text { Lot } \end{aligned}$
$8001 \mathrm{H+i}{ }^{*} 40 \mathrm{H}$	Source	1	$\begin{aligned} & 1=\text { Scanner A } \\ & 2=\text { Scanner B } \\ & 3=A \mid B \\ & 5=A-B \end{aligned}$
$8002 \mathrm{H}+\mathrm{i}^{*} 40 \mathrm{H}$	symbology	1	$\begin{aligned} & \hline 0=\text { Code } 39 \\ & 1=\text { Interleaved } 2-\text {-of- }-5 \\ & 2=\text { Codabar } \\ & 3=\text { UPC-A } \\ & 4=\text { UPC-E } \\ & 5=\text { EAN-8 } \\ & 6=\text { EAN }-13 \\ & 7=\text { Code 128 } \\ & 8=\text { Pharma-Code } \\ & \text { F }=\text { ANY } \end{aligned}$
$8003 \mathrm{H}+{ }^{*} 40 \mathrm{H}$	Reserved	1	1
$8004 \mathrm{H+i}{ }^{*} 40 \mathrm{H}$	Count	4	0 to 999999
$8008 \mathrm{H+i}{ }^{*} 40 \mathrm{H}$	Loading: Discrete 1	8	$0=$ no discrete 1 to 9 , or 0 aH = always
$8009 \mathrm{H+i}{ }^{*} 40 \mathrm{H}$	Loading: Discrete 2	8	$0=$ no discrete 1 to 9 , or 0 aH = always
$800 \mathrm{AH}+i^{*} 40 \mathrm{H}$	Loading: Discrete 3	8	$\begin{aligned} & 0=\text { no discrete } \\ & 1 \text { to } 9, \text { or } 0 \text { aH = always } \end{aligned}$
$800 \mathrm{BH}+i^{*} 40 \mathrm{H}$	Loading: Discrete 4	8	$\begin{array}{\|l} \hline 0=\text { no discrete } \\ 1 \text { to } 9, \text { or } 0 \text { aH = always } \end{array}$
$800 \mathrm{CH}+\mathrm{i}^{*} 40 \mathrm{H}$	Loading: Discrete 5	8	$0=$ no discrete 1 to 9 , or 0 aH = always
$800 \mathrm{DH}+\mathrm{i}^{*} 40 \mathrm{H}$	Loading: Discrete 6	8	$0=$ no discrete 1 to 9 , or 0 aH = always
$800 \mathrm{EH}+\mathrm{i}^{*} 40 \mathrm{H}$	Loading: Discrete 7	8	$0=$ no discrete 1 to 9 , or 0 aH = always
8008F+i*40H	Loading: Discrete 8	8	$0=$ no discrete 1 to 9 , or 0 aH = always
$8010 \mathrm{H+i}{ }^{*} 40 \mathrm{H}$	Reserved	14	1
$801 \mathrm{EH}+\mathrm{i}^{*} 40 \mathrm{H}$	Match pattern - Length Match pattern - String	$\begin{gathered} 1 \\ 32 \end{gathered}$	0-32, 0 = Empty up to 32 characters
$803 \mathrm{FH}+\mathrm{i}^{*} 40 \mathrm{H}$	Reserved	1	1

Factory Default Settings

Category of Parameters	Parameter	Default Setting
Bar Code Symbology	Enable Code 39	Yes (No on Pharma-Code Units)
	Enable Interleaved 2-of-5	No Guard Bars: No
	Enable Codabar	No
	Enable Code 128	No
	Code 128 FNC1 Character	None
	Enable UPC-A	No Supplements: None
	Enable UPC-E	No Supplements: None
	Expand UPC-E	No
	Enable EAN-8	No Supplements: None
	Enable EAN-13	No Supplements: None
Check Characters	Code 39	No Include: No
	12 of 5	No Include: No
	Codabar	No Include: No
Bar Code Symbology Lengths	Code 39	00, 00, 00, 00, 00, 00, 00, 00
	Interleaved 2-of-5	00, 00, 00, 00, 00, 00, 00, 00
	Code 128	00, 00, 00, 00, 00, 00, 00, 00
	Codabar	00, 00, 00, 00, 00, 00, 00, 00
Pharma-Code	Enable Pharma-Code	Yes (On Pharma-Code units only)
	Quiet Zone Ratio	Default
	Space Tolerance	15
	Bar Tolerance	15
	Wide to Narrow Bar Ratio	2
	Minimum Number of Bars	5
	Scanner A Decode Direction	Forward
	Scanner B Decode Direction	Forward
	Code Verification List	Blank
Scanner A Control	Laser Light	Triggered
	Decode Mode	Package Detect
	No-Read Timer	None (0000 msec)
	Inter-Scan Timer	None (0000 msec)
	Capture Count	2
	Symbols/Scan	1
	Symbols/Package	1
	Match Complete	1
Scanner B Control	Laser Light	Triggered
	Decode Mode	Coordinated 1
	Trigger Timeout	None (0000 msec)

Category of Parameters	Parameter	Default Setting
Match Code Table (1-8)	Bar Code Symbology	Any
	Match Code Text String	Blank
	Normal State	O (Normally Open)
	Source	A for DS, AIB (A or B) for DD
	Duration	0 msec
Package Detect Input	Scanner A Filter	No
	Scanner A Sense	LO= Package
	Scanner B Filter	No
	Scanner B Sense	LO= Package
Extended Match Code Table	Counter Status	Auto Refresh
	Status of Counter Set	Enabled
	Mode	Disabled
	Source	A for DS, AIB (A or B) for DD
	Symbology	Any
	Match Pattern String	Blank
	Count	0
	Loading	Blank (no outputs selected)
AUX and LCD Display Format	Display Data	None
	Message Format	Unformatted
	Scroll LCD Display	No
	Bar Code Strings Position	0
	Decoder Performance Position	0
	Package Counter Position	0
	Symbols Not Read Counter Position	0
	Primary Counter 1 Position	0
	Primary Counter 2 Position	0
	Primary Counter 3 Position	0
	Primary Counter 4 Position	0
	Primary Counter 5 Position	0
	Primary Counter 6 Position	0
	Primary Counter 7 Position	0
	Primary Counter 8 Position	0
Host Message Replacement Rules	Rule Number	1
	Source	AIB (A or B)
	Symbology	Any
	Symbol Number	All
	Find String Containging	Blank
	Replace Entire String With	Blank
	Minimum Field Length	0
	Alignment	Right
	Fill Character	None
	Host Message Field Number	All
	Bar Code String Examples	Blank

Category of Parameters	Parameter	Default Setting
Host Message Format	Start Character	255 (None)
	Source Identifier (for AUX)	Blank
	Source Identifier (for A)	Blank
	Source Identifier (for B)	Blank
	Header String	Blank
	Field Delimiter	None
	Number of Fields in Message	All
	Send Symbology	No
	Send Package Count	No
	Send Bar Code Strings	Yes
	Send Decoder Performance	No
	End Message	CrLf
	Default No-Read String	Blank
	No-Read (1-16) Replacements Strings	Blank
Host Communications Parameters marked with an asterisk require a save and restart to take effect	Baud Rate*	9600
	Bits/Character*	8 Data, 1 Stop
	Parity*	None
	Host Protocol*	RS232
	Device Address*	1
	ACK Character*	255 (None)
	NAK Character*	255 (None)
	Start Character Scanner A	255 (Disabled)
	Stop Character Scanner A	255 (Disabled)
	Start Character Scanner B	255 (Disabled)
	Stop Character Scanner B	255 (Disabled)
	Large Buffer	No
	Send Host Message	At End of Trigger
	Transmission Check	None
Aux Terminal Data Entry	Enable Keyboard Entry	No
	Confirm Entry	No
	AUX Data Format	Unformatted
	Rubout Character	008 BS (Backspace)
	Echo Data to Terminal	No
	Size of Display	80
	Default Prompt Message	Blank

Appendix

Transmission Check

The decoder can generate three types of transmission checks:

- Longitudinal Redundancy Check

A byte developed by an exclusive OR of all bytes in a message.

- Checksum, Most Significant Byte First

Sixteen bit sum of all the bytes in a message with the most significant byte transmitted first.

- Checksum, Least Significant Byte First

Sixteen bit sum of all the bytes in a message with the least significant byte transmitted first.
The following example illustrates a transmission check. The message contains the following data:

Start Character $=$	$*$
Label Delimiter $=$	$\$$
End of Message $=$	CR LF
Symbol Data $=$	ABC

The message transmits in this sequence:

* \$ A B C \$ \$ CR LF TRANSMISSION CHECK

The table below shows transmission checks for the message.

Transmission Check	ASCII Character	Hex Value	Binary Value
	${ }^{*}$	2 A	00101010
	$\$$	24	00100100
	A	41	01000001
	B	42	01000010
	C	43	01000011
	$\$$	24	00100100
	$\$$	24	00100100
	CR	OD	00001101
LR	OA	00001010	
Checksum MSB	SOH	49	01001001
Checksum LSB	S	01	00000001
	S	73	01110011

The sum of all bytes in the message is 173 Hex. Checksums are transmitted in a sixteen bit format. The value 01 Hex is equivalent to the ASCII control code $\mathrm{SOH}, 73$ Hex is equivalent to the ASCII character "s".

Setting Up Terminals

Appendix Objectives

Connecting Terminal to AUX Port on NEMA Type 1 Decoder

AUX PORT (female) Connector ${ }_{13}$

Connecting Terminal to AUX Port of NEMA Type 4 Decoder

AUX PORT (male) Connector

This appendix provides instructions on how to setup and connect the following terminals to the AUX port of the NEMA Type 1 or Type 4 decoder.

- Lear Siegler ADM 3E
- DEC VT100
- 1784-T45
- 1771-T1, -T2, -T3

Pin	Abb.	Function
1	GND	Chassis Ground
2	TD	Transmit Data carries data from terminal to decoder. (input to decoder)
3	RD	Receive Data carries data from decoder to terminal. (Output from de- coder)
7	SIG GND	Signal Ground
15	AUX Terminal Selector +	AUX Terminal Selector. Determines whether the AUX terminal is used for configuration or manual data entry. To use the AUX terminal for manual data entry, tie pin 15 to 16. To use the AUX terminal for configu- ration, leave pins 15 and 16 open.
16	AUX Terminal Selector -	Connect to pin 15 to use the AUX terminal for manual data entry func- tions. When connected to 15, you cannot access the configuration menus.
17	IN8+ IN8-	Auto Load Input. You can connect a normally opened (N.O.) contact between pins 17 and 25. Close the contacts to activate the AutoLoad Function. See Chapter 6 and Appendix H.
25		

Pin	Abb.	Function
A	GND	Chassis Ground
B	TD	Transmit Data carries data from terminal to decoder (Input to decoder).
C	RD	Receive Data carries data from decoder to terminal (Output from decod- er).
D	SIG GND	Signal Ground
G	AUX Terminal Selector +	AUX Terminal Selector. Determines whether the AUX terminal is used for configuration or manual data entry. To use the AUX terminal for manual data entry, tie pin G to H. To use the AUX terminal for configura- tion, leave pins G and H open.
H	AUX Terminal Selector -	Connect to pin G to use the AUX terminal for manual data entry func- tions. When connected to G, you cannot access the configuration me- nus.
K	IN8+ LN8- L	Auto Load Input. You can connect a normally opened (N.O.) contact between pins K and L. Close the contacts to activate the AutoLoad Function. See Chapter 6 and Appendix H.

Lear Siegler ADM 3E Terminal

Follow these steps if using a Lear Siegler ADM 3E terminal:

1. Construct a cable to connect the terminal to the decoder. Use a Belden 8303, Alpha 45123, or equivalent type of cable. Use the following connector pinouts:
Male 19-pin NEMA Type 4 or Female \quad 25-pin male
25-pin D Shell Connector

	NEMA Type 4	NEMA Type 1		$\frac{2}{3}$
Decoder	(C)	2	Transmit Data	
	(B)	3	Receive Data	
	(D)	7	Signal Ground	

Note: Connect shield to shell of cable connectors at both ends.
2. Plug terminal into power supply.
3. Power on terminal.
4. Press [Shift] [SETUP] to enter setup mode.
5. Use the arrow keys to set the following parameters on the terminal:

- Full Duplex (FDX)
- 9600 Baud Rate
- 8 Data Bits per Character
- No Parity
- XON/XOFF Flow Control or Handshake
- Blinking Block Cursor

6. To save the selected parameters, press [Ctrl] [S].
7. Exit setup mode by pressing [Shift] [SETUP].
8. You are now ready to configure the decoder. See Chapter 5.

DEC VT100 Terminal

Follow these steps if using a DEC VT100 terminal:

1. Construct a cable to connect the VT100 to the decoder. Use a Belden 8303, Alpha 45123, or equivalent type of cable. Use the following connector pinouts:

Note: Connect shield to shell of cable connectors at both ends.
2. Plug terminal into power supply.
3. Power on terminal.
4. Enter Set-Up B on terminal. The following figure shows one setup.

5. You are now ready to configure the decoder. See Chapter 5.

Allen-Bradley 1784-T45 or T47 Programming Terminal

Follow these steps if using an Allen-Bradley 1784-T45 or -T47 computer:

1. Construct a cable to connect the terminal to the decoder. Use a Belden 8303, Alpha 45123, or equivalent type of cable. Use the following connector pinouts:

2. Power on the terminal. The switch is located on the left side of the unit.

The terminal will beep once, and then test itself. When the test is complete, a message appears. The last line should indicate that all tests have passed.
3. Press [CTRL][ALT][CMD] key sequence to display the system Main Menu (Press the [CMD] key while holding down both the [ALT] and [CTRL] keys.
4. Set the T 45 terminal emulation to the following settings (Refer to the terminal documentation for additional information):

- F1 DGC D200 Terminal
- F2 Modem = External
- F3 Flow Control = On
- F4 Duplex = Full
- F6 Print = Off

5. Set the COM1 parameters to:

- F1 Baud Rate $=9600$
- F2 Parity = None
- F3 Data Bits $=8$
- F4 Stop Bits = 1
- F5 Type = Standard PC Compatible Com

Note: If using an internal modem, disable it using the MODE command.
6. When the Select CRT Type menu appears, select Data General DT100 emulation.
7. You are now ready to configure the decoder. See Chapter 5.

Allen-Bradley
 1770-T1, -T2, -T3 Terminals

Follow these steps if using an Allen-Bradley 1770-T1, -T2, or -T3 terminal:

1. Construct a cable to connect the decoder to Channel B of the terminal. Use a Belden 8303, Alpha 45123, or equivalent type of cable. Use the following connector pinouts:

2. Plug terminal into power supply.
3. Install the alphanumeric keytop overlay on the terminal keyboard.
4. Power on terminal. Enter 12 to select alphanumeric.
5. Select Alphanumeric Mode and set the following parameters (Refer to your terminal documentation for additional information):
```
                    Baud Rate 9600
                        Parity = No
            Stop Bits = 1
        Channel Config. = BIN/OUT
            Duplex = Full
            Channel C = On or Off
                        Cursor = On
Auto Line Feed after Return = Off
    Control Code Display = Off
```

6. You are now ready to configure the decoder. See Chapter 5.

Note: Because there is no flow control with the 1770-T1, -T2, or -T3 terminals, the Series B Revision A decoder could transmit data too quickly. This caused the terminal to display garbled characters or lock up. To resolve that problem, the Revision B decoder sends data in smaller bursts to these terminals.

2708-DH5 Attended Workstations

Follow these steps if using one of the Allen-Bradley 2708-DH5 Attended Workstations:

1. Construct a cable to connect the decoder to the COM1 port of the 2708 -DH5 terminal. Use a Belden 8303, Alpha 45123, or equivalent type of cable. Use the following connector pinouts:

2. Plug terminal into power supply.
3. Power on terminal.
4. Select Network Menu (option 1) and set the following parameters:

$$
\begin{aligned}
\text { Terminal Number } & =0 \\
\text { Terminal Type } & =\text { Normal }
\end{aligned}
$$

The rest of the network parameters are not applicable.
5. Select Comm Port Menu (option 2) and set the following parameters:

Comm Mode	XON/XOFF
Comm Baud Rate $=$	9600
Comm Data Bits $=$	8
Comm Parity $=$	None
Comm Stop Bits $=$	1
Comm CRLF $=$	Disabled
Comm Echo $=$	Disabled
Comm Handshake $=$	Disabled

The rest of the parameters are not applicable.
6. You are now ready to configure the decoder. See Chapter 5.

Connecting to a Host

The HOST port of the decoder allows communication with a host device using three standard interfaces: RS-232, RS-422, RS-485. This appendix contains connection diagrams for each interface. Use these diagrams when connecting a host device to the HOST port of the decoder.

The HOST port on the NEMA Type 4 decoder has a 19-pin (male) connector. The HOST port on the NEMA Type 1 decoder has a 25 -pin (female) D shell connector.

NEMA Type 1
HOST Port (Female) Connector

NEMA Type 4 HOST Port (Male) Connector

NEMA 1 Pins	NEMA 4 Pins	Abb.	Function
1	A	GND	Chassis Ground
2	C	TD	RS-232 Transmit Data (from decoder to host).
3	B	RD	RS-232 Receive Data (from host).
4	F	RTS	RS-232 Request to Send
5	J	CTS	RS-232 Clear to Send
20	E	DTR	RS-232 Data Terminal Ready
6	H	DSR	RS-232 Data Set Ready
7	D	SIG GND	RS-232 Signal Common
9	L	SHLD	RS-485 Shield Ground
12	M	485 TERM	RS-485 Line Termination. Jumpers to 13 or N. Terminates decoder at each end of network.
13	N	485 A/TERM	RS-485 Line Termination. Jumpers to 12 or M. Terminates decoder at each end of network.
14	P	TxB+	RS-422(B) or RS-485(B) Transmit Data (from decoder to host).
15	R	TxA-	RS-422(A) or RS-485(A) Transmit Data (from decoder to host).
16	S	RxA '-	RS-422(A) Receive Data (from host).
17	T	RxB'+	RS-422(B) Receive Data (from host).
18	U	$422 / A$ TERM	RS-422 Line Termination. Jumpers to 19 or V. Terminates decoder at each end of network.
19	V	422 TERM	RS-422 Line Termination. Jumpers to 18 or U. Terminates decoder at each end of network.

The cable that connects the decoder to the host varies depending on the communication standard and the type of connector on the serial communication port of the host.

Appendix F lists the host protocol options for each communication interface.

RS-232 Interface
Figure E. 1 shows how to connect the NEMA Type 1 decoder to a host using RS-232. Use a Belden 8303 cable, Alpha 45123 cable, or equivalent.

Figure E. 1 Connecting NEMA Type 1 Decoder to Host using RS-232

Pins 4, 5, and 20 are optional flow control lines. Flow control options are:

- RS-232

No flow control.

- RS-232 XON/XOFF

The XOFF character from the host suspends transmission and the XON character resumes transmission. The receiving device removes the XON/XOFF characters from the message.

- RS-232 RTS/CTS-1

Enables the RS-232 (RTS and CTS) control lines for flow control.

- RS-232 RTS/CTS-2

Enables the RS-232 (RTS and CTS) control lines for flow control. Use this mode of flow control to communicate with Catalog No. 2760-RA or -RB module.
The RS-232 interface and flow control are selected on the Host Communications configuration screen.

Pin \#	Modem Control Line	Function	Descriptions
20	DTR	RTS/CTS-1 RTS/CTS-2	The decoder sends a DTR (Data Terminal Ready) signal to tell the host the decoder is online and capa- ble of receiving data from the host. The DTR line remains on while the decoder is on.
4	RTS	RTS/CTS-1	The decoder sends the RTS (Request to Send) signal to tell the host it is ready to send data. When the host receives an RTS signal from the decoder, the host must assert CTS to tell the decoder to begin sending data. When the decoder stops sending an RTS, the host must stop sending a CTS before the decoder can assert RTS again.
4	RTS	RTS/CTS-2	The decoder sends the RTS (Request to Send) signal to tell the host it can accept data. The host only sends data when RTS is on.
5	CTS	RTS/CTS-1 RTS/CTS-2	The host sends the CTS (Clear to Send) signal to the decoder if it can accept data. The decoder only sends data if CTS is on.

Figure E. 2 shows how to connect the NEMA Type 4 decoder to a host using RS-232. Use a Belden 8303 cable, Alpha 45123 cable, or equivalent.

Figure E. 2 Connecting NEMA Type 4 Decoder to a Host Computer using RS-232

(1) Ground to back shell following 2755-NC17 instructionss?in designations depend
(2) Pins C, B, and D are the minimum connections. on host device.

All unused pins should be left open.

Pins F, J, and E are optional flow control lines. Flow control options are:

- RS-232

No flow control.

- RS-232 XON/XOFF

The XOFF character from the host suspends transmission and the XON character resumes transmission. The receiving device removes the XON/XOFF characters from the message.

- RS-232 RTS/CTS-1

Enables the RS-232 (RTS and CTS) control lines for flow control.

- RS-232 RTS/CTS-2

Enables the RS-232 (RTS and CTS) control lines for flow control.
Use this mode of flow control to communicate with Catalog No. 2760-RA or -RB module.
The RS-232 interface and flow control are selected on the Host Communications configuration screen.

Pin \#	Modem Control Line	Function	Descriptions
E	DTR	RTS/CTS-1 RTS/CTS-2	The decoder sends a DTR (Data Terminal Ready) signal to tell the host the decoder is online and capa- ble of receiving data from the host. The DTR line remains on while the decoder is on.
F	RTS	RTS/CTS-1	The decoder sends the RTS (Request to Send) signal to tell the host it is ready to send data. When the host receives an RTS signal from the decoder, the host must assert CTS to tell the decoder to begin sending data. When the decoder stops sending an RTS, the host must stop sending a CTS before the decoder can assert RTS again.
F	RTS	RTS/CTS-2	The decoder sends the RTS (Request to Send) signal to tell the host it can accept data. The host only sends data when RTS is on.
J	CTS	RTS/CTS-1 RTS/CTS-2	The host sends the CTS (Clear to Send) signal to the decoder if it can accept data. The decoder only sends data if CTS is on.

Figure E. 3 shows how to connect the NEMA Type 4 decoder to a host using RS-422. Use Belden cable 9829 (shielded, twisted pair) or equivalent.

Figure E. 3 Connecting NEMA Type 4 Decoder to Host using RS-422

Host Port
25-pin DB Connector Host RS-422 Port on Decoder(1)

[^10]The RS-422 interface uses pins 7, 14, 15, 16, 17, 18, and 19 of the HOST port connector. The transmit data and receive data lines are:

Pin 14	TxB +	Transmits data from the decoder to the host.
Pin 15	TxA-	Transmits data from the decoder to the host.
Pin 16	RxA'-	Receives data from the host.
Pin 17	RxB'+	Receives data from the host.

RS-422 communication lines are unterminated. To enable network termination (120 Ohm resistor in series with a 0.01 microfarad capacitor), connect pins 18 and 19 together.

Important: We recommend you terminate the RS-422 lines if excessive noise occurs on long RS-422 communication links.

RS-422 does not use modem control lines. However, the configuration software does allow optional flow control using XON/XOFF characters. The options are:

- RS422. No flow control.
- RS422 XON/XOFF. Enable XON/XOFF flow control.

The RS-422 communication interface and protocol is selected during configuration. See the Host Communications configuration screen.

Figure E. 4 shows how to connect the NEMA Type 4 decoder to a host using RS-422. Use Belden cable 9829 (shielded, twisted pair) or equivalent.

Figure E. 4 Connecting NEMA Type 4 Decoder to Host using RS-422
Host Port \quad Host RS-422 Port
2755-NC17 Connector
on Decoder

(1) Ground to back shell following 2755-NC17 instructions.

The RS-422 interface uses pins D, P, R, S, T, U, and V of the HOST port connector. The transmit data and receive data lines are:

Pin P	TxB +	Transmits data from the decoder to the host.
Pin R	TxA-	Transmits data from the decoder to the host.
Pin S	RxA'-	Receives data from the host.
Pin T	RxB'+	Receives data from the host.

RS-422 communication lines are unterminated. To enable network termination (120 Ohm resistor in series with a 0.01 microfarad capacitor), connect pins U and V together.

Important: We recommend you terminate the RS-422 lines if excessive noise occurs on long RS-422 communication links.

RS-422 does not use modem control lines. However, the configuration software does allow optional flow control using XON/XOFF characters. The options are:

- RS422. No flow control.
- RS422 XON/XOFF. Enable XON/XOFF flow control.

The RS-422 communication interface and protocol is selected during configuration. See the Host Communications configuration screen.

RS-485 Using

DH485 Protocol
The DH485 interface allows you to multi-drop up to 31 decoders to each port of the Flexible Interface Module (Catalog No. 2760-RB). Each of the three ports of the module operates as a separate communications network.

Figure E. 5 shows how to connect the NEMA Type 1 decoder to a DH485 network. Use Belden cable 9842 (or equivalent).

Figure E. 5 Connecting NEMA Type 1 Decoder to DH485 Network

(1) Only one of the devices in the network must have the cable shield connected to chassis ground. Do this by connecting shield to pin 1 instead of pin 9 .
(2) Enable line termination for the device at each end of the network. To enable line termination, connect pins 12 and 13 together. For all other devices in the network, leave these pins open.

The following parameters are fixed for DH 485 communications:

- 8 Data bits
- Even parity
- 1 Stop Bit

The host protocol options are:

- DH485 PCCC-1. PCCC commands with write replies
- DH485 PCCC-2. PCCC commands without write replies
- DH485 ASCII-1. ASCII commands with responses
- DH485 ASCII-2. ASCII commands without responses.

The communication interface and host protocol is selected during configuration. See the Host Communications configuration screen.

Figure E. 6 shows how to connect the NEMA Type 4 decoder to a DH485 network. Use Belden cable 9842 (or equivalent).

Figure E. 6 Connecting NEMA Type 4 Decoder to DH485 Network

Host Port
2755-NC17 Host RS-485 Port on Decoder

(1) Only one of the devices in the network must have the cable shield connected to chassis ground. Do this by connecting shield to pin A instead of pin L .
(2) Enable line termination for the device at each end of the network. To enable line termination, connect pins M and N together. For all other devices in the network, leave pins M and N open.

The following parameters are fixed for DH485 communications:

- 8 Data bits
- Even parity
- 1 Stop Bit

The host protocol options are:

- DH485 PCCC-1. PCCC commands with write replies
- DH485 PCCC-2. PCCC commands without write replies
- DH485 ASCII-1. ASCII commands with responses
- DH485 ASCII-2. ASCII commands without responses.

The communication interface and host protocol is selected during configuration. See the Host Communications configuration screen.

Protocol Selection

The following table lists the available options for host communications.

Physical Interface	Flow Control	Communications Link Layer	Application Layer	Configuration Selections
RS-232	None	-	ASCII	RS232

Output Module Applications

Figures G. 1 through G. 3 show typical output module applications. Outputs are open when power is first applied to the decoder (during initial diagnostics) and again when the decoder is powered off.

DC Output Module Application

Figure G. 1 illustrates a typical DC output module application. When using high impedance loads, you may have to add an additional resistor (R) in parallel with the load. Select a value for R that maintains a minimum current of 10 mA through the output module in the closed state. Typical R values range from 300 to 6,000 ohms depending on the source voltage.

Figure G. 1 DC output module application

DC Source 3-60 VDC
(1) Output module functions as switch, not a power source.

Note: For highly inductive or capacitive loads, make sure that the current does not exceed the maximum ratings of the fuse or module. You can use a diode to protect the module. See Figure G.3.

AC Output Module Application

Figure G. 2 illustrates a typical AC output module application. When using high impedance loads, you may have to add an additional resistor (R) in parallel with the load. Select a value for R that maintains a minimum current of 50 mA RMS through the output module in the closed state.

Figure G. 2 AC output module application

(1) Output module functions as switch, not a power source.

Note: For highly inductive or capacitive loads, make sure that the current does not exceed the maximum ratings of the fuse or module. You can use a diode to protect the module. See Figure G.3.

Using a Diode to Protect Output Module

Back EMF (Electromotive Force) is sometimes generated when an inductive load is switched off. Back EMF takes the path of least resistance into the output module, which may cause the module to blow. To protect the module from back EMF, insert a diode in parallel with the inductive device to dissipate back EMF.

Figure G. 3 Using diode to protect module

(1) Output module functions as switch, not a power source.

Electrical Interfaces for AutoLoad Applications

There are three ways to activate the AutoLoad function described in Chapter 5:

1. 12 VDC power supply terminal on I/O Module board connects to input module (in position 8 of I/O Module Board) and a normally opened (N.O.) contact, providing power to the input module. See Figure H.1.
2. External AC or DC power source connects to input module (in position 8 of I/O Module Board) and a normally opened (N.O.) contact, providing power to the input module. See Figure H. 2
3. A normally opened (N.O.) contact connects directly to pins in AUX Port Connector. This method does not require an I/O Module Board with installed input module or a power source. See Figure H.3.

AutoLoad Input Module Application (powered internally)

Figure H. 1 illustrates the AutoLoad Input module application that is powered internally. A DC input module is installed in position 8 of the I/O Module Board. A switch (N.O. contact) provides input to the module to load bar code data into the match code table. The module and switch receive power from the 12 V DC terminal on the I/O board.

Figure H. 1 AutoLoad input module application (powered internally)

AutoLoad Input Module Application (powered externally)

Figure H. 2 illustrates the AutoLoad Input module application that is powered externally. An AC/DC input module is installed in position 8 of the I/O Module Board. A push button (normally opened contact) provides input to the module to load bar code data into the match code table. The module and switch receive power from an external AC or DC source.

ATTENTION: To guard against enclosure damage, align the conduit so as to prevent unnecessary stress on the enclosure walls.

Figure H. 2 AutoLoad input module application (powered externally

AutoLoad Activated by Aux Port Connector

Another way to activate the AutoLoad function is by connecting a push button (normally opened contact) directly to pins 17 and 25 (or K and L) of the AUX port connector. This method does not require an I/O Module Board with installed input module or a power source.

Figure H. 3 shows the connection between a normally opened contact and pins on the NEMA Type 1 or NEMA Type 4 connector.

Figure H. 3 AutoLoad function activated by AUX connector

NEMA Type 1
Aux Port (female) Connector

NEMA Type 4 Aux Port (Male) Connector

Use the Catalog No. 2755-NC17
Connector Kit to fabricate cable.

ASCII Character Set

Dec.	Oct.	Hex	Char	Control Code	Dec.	Oct.	Hex	Char	Dec.	Oct.	Hex	Char	Dec.	Oct.	Hex	Char
0	000	00	NUL	CTRL @	32	040	20	SP	64	100	40	@	96	140	60	
1	001	01	SOH	CTRL A	33	041	21	!	65	101	41	A	97	141	61	a
2	002	02	STX	CTRL B	34	042	22	"	66	102	42	B	98	142	62	b
3	003	03	ETX	CTRL C	35	043	23	\#	67	103	43	c	99	143	63	c
4	004	04	EOT	CTRL D	36	044	24	\$	68	104	44	D	100	144	64	d
5	005	05	ENQ	CTRL E	37	045	25	\%	69	105	45	E	101	145	65	e
6	006	06	ACK	CTRL F	38	046	26	\&	70	106	46	F	102	146	66	f
7	007	07	BEL	CTRL G	39	047	27		71	107	47	G	103	147	67	g
8	010	08	BS	CTRL H	40	050	28	1	72	110	48	H	104	150	68	h
9	011	09	HT	CTRL I	41	051	29)	73	111	49	I	105	151	69	i
10	012	OA	LF	CTRL J	42	052	2 A	*	74	112	4 A	J	106	152	6A	i
11	013	OB	VT	CTRL K	43	053	2 B	+	75	113	4 B	K	107	153	6 B	k
12	014	OC	FF	CTRL L	44	054	2 C	,	76	114	4 C	L	108	154	6 C	1
13	015	OD	CR	CTRL M	45	055	2D	-	77	115	4D	M	109	155	6 D	m
14	016	OE	SO	CTRL N	46	056	2E	.	78	116	4E	N	110	156	6 E	n
15	017	OF	SI	CTRL O	47	057	2 F	/	79	117	4 F	0	111	157	6 F	0
16	020	10	DLE	CTRL P	48	060	30	0	80	120	50	P	112	160	70	p
17	021	11	DC1	CTRL Q	49	061	31	1	81	121	51	Q	113	161	71	q
18	022	12	DC2	CTRL R	50	062	32	2	82	122	52	R	114	162	72	r
19	023	13	DC3	CTRL S	51	063	33	3	83	123	53	S	115	163	73	s
20	024	14	DC4	CTRL T	52	064	34	4	84	124	54	T	116	164	74	t
21	025	15	NAK	CTRL U	53	065	35	5	85	125	55	U	117	165	75	u
22	026	16	SYN	CTRL V	54	066	36	6	86	126	56	V	118	166	76	v
23	027	17	ETB	CTRL W	55	067	37	7	87	127	57	W	119	167	77	w
24	030	18	CAN	CTRL X	56	070	38	8	88	130	58	X	120	170	78	X
25	031	19	EM	CTRL Y	57	071	39	9	89	131	59	Y	121	171	79	y
26	032	1A	SUB	CTRL Z	58	072	3 A		90	132	5A	Z	122	172	7A	z
27	033	1 B	ESC	CTRL [59	073	3B	,	91	133	5B	[123	173	7 B	\{
28	034	1 C	FS	CTRL 1	60	074	3 C	<	92	134	5 C	1	124	174	7 C	\|
29	035	1D	GS	CTRL]	61	075	3D	=	93	135	5D]	125	175	7 D	\}
30	036	1E	RS	CTRL ^	62	076	3E	>	94	136	5E	\wedge	126	176	7 E	\sim
31	037	1F	US	CTRL	63	077	3F	?	95	137	5 F	-	127	177	7F	\bigcirc

Entering Non-Printable ASCII Characters

The following parameters allow you to enter non-printable ASCII characters into the edit field:

- -Source Identification Message
- •Header Message
- •No-Read Message
- •Match Table Entry
- •Default Prompt Message

The table below shows you how to enter non-printable ASCII control characters (ASCII 0 through 31) into a text string. For example, to enter carriage return and line feed control characters, enter $\% \mathrm{M} \% \mathrm{~J}$. The decoder interprets $\% \mathrm{M} \% \mathrm{~J}$ as the ASCII control characters CR and LF. The \% character is equivalent to ASCII 37 (decimal).

You always enter non-printable control characters as a 2 character sequence and the second character must be listed in the following table. To enter the $\%$ character, use $\% \%$.

ASCII Control	Enter:	$\begin{aligned} & \text { ASCII Control } \\ & \text { Character } \end{aligned}$	Enter:	ASCII Control	Enter:
NUL	\%@	VT	\%K	SYN	\%V
SOH	\%A	FF	\%L	ETB	\%W
STX	\%B	CR	\%M	CAN	\%X
ETX	\%C	SO	\%N	EM	\%Y
EOT	\%D	SI	\%0	SUB	\%Z
ENQ	\%E	DLE	\%P	ESC	\%[
ACK	\%F	DC1	\%Q	FS	\%
BEL	\%G	DC2	\%R	GS	\%]
BS	\%H	DC3	\%S	RS	\%^
HT	\%	DC4	\%T	US	\%
LF	\%J	NAK	\%U		

Custom Settings

Use a photocopy of the table below to record your own custom parameter settings as you develope new applications. This table is a blank version of the default settings table from Appendix B.

Category of Parameters	Parameter	Default Setting
Bar Code Symbology	Enable Code 39	
	Enable Interleaved 2-of-5	
	Enable Codabar	
	Enable Code 128	
	Code 128 FNC1 Character	
	Enable UPC-A	
	Enable UPC-E	
	Expand UPC-E	
	Enable EAN-8	
	Enable EAN-13	
Check Characters	Code 39	
	12 of 5	
	Codabar	
Bar Code Symbology Lengths	Code 39	
	Interleaved 2-of-5	
	Code 128	
	Codabar	
Pharma-Code	Enable Pharma-Code	
	Quiet Zone Ratio	
	Space Tolerance	
	Bar Tolerance	
	Wide to Narrow Bar Ratio	
	Minimum Number of Bars	
	Scanner A Decode Direction	
	Scanner B Decode Direction	
	Code Verification List	
Scanner A Control	Laser Light	
	Decode Mode	
	No-Read Timer	
	Inter-Scan Timer	
	Capture Count	
	Symbols/Scan	
	Symbols/Package	
	Match Complete	
Scanner B Control	Laser Light	
	Decode Mode	
	Trigger Timeout	

Category of Parameters	Parameter	Default Setting
Match Code Table (1-8)	Bar Code Symbology	
	Match Code Text String	
	Normal State	
	Source	
	Duration	
Package Detect Input	Scanner A Filter	
	Scanner A Sense	
	Scanner B Filter	
	Scanner B Sense	
Extended Match Code Table	Counter Status	
	Status of Counter Set	
	Mode	
	Source	
	Symbology	
	Match Pattern String	
	Count	
	Loading	
AUX and LCD Display Format	Display Data	
	Message Format	
	Scroll LCD Display	
	Bar Code Strings Position	
	Decoder Performance Position	
	Package Counter Position	
	Symbols Not Read Counter Position	
	Primary Counter 1 Position	
	Primary Counter 2 Position	
	Primary Counter 3 Position	
	Primary Counter 4 Position	
	Primary Counter 5 Position	
	Primary Counter 6 Position	
	Primary Counter 7 Position	
	Primary Counter 8 Position	
Host Message Replacement Rules	Rule Number	
	Source	
	Symbology	
	Symbol Number	
	Find String Containging	
	Replace Entire String With	
	Minimum Field Length	
	Alignment	
	Fill Character	
	Host Message Field Number	
	Bar Code String Examples	

Category of Parameters	Parameter	Default Setting
Host Message Format	Start Character	
	Source Identifier (for AUX)	
	Source Identifier (for A)	
	Source Identifier (for B)	
	Header String	
	Field Delimiter	
	Number of Fields in Message	
	Send Symbology	
	Send Package Count	
	Send Bar Code Strings	
	Send Decoder Performance	
	End Message	
	Default No-Read String	
	No-Read $(1-16)$ Replacements Strings	
Host Communications Parameters marked with an asterisk require a save and restart to take effect	Baud Rate*	
	Bits/Character*	
	Parity ${ }^{*}$	
	Host Protocol*	
	Device Address*	
	ACK Character*	
	NAK Character*	
	Start Character Scanner A	
	Stop Character Scanner A	
	Start Character Scanner B	
	Stop Character Scanner B	
	Large Buffer	
	Send Host Message	
	Transmission Check	
Aux Terminal Data Entry	Enable Keyboard Entry	
	Confirm Entry	
	AUX Data Format	
	Rubout Character	
	Echo Data to Terminal	
	Size of Display	
	Default Prompt Message	

European Union Directive Compliance

European Union Directive Compliance

Intended Use of Product

If this product is installed within the European Union or EEA regions and has the CE mark, the following regulations apply.

EMC Directive

This apparatus is tested to meet Council Directive 89/336 Electromagnetic Compatibility (EMC):

- EN 50081-2 EMC - Generic Emission Standard, Part 2 Industrial Environment
- EN 50082-2 EMC - Generic Immunity Standard, Part 2 Industrial Environment

The product described in this manual is intended for use in an industrial environment.

According to these Standards, the factor which determines, for EMC purposes, whether an apparatus is deemed to be "Industrial" or "Residential, commercial and light industrial", is given in Clause 1 of EN50081-2 as follows:

Apparatus covered by this standard is not intended for connection to a public mains network but is intended to be connected to a power network supplied from a high- or medium-voltage transformer dedicated for the supply of an installation feeding a manufacturing or similar plant.

The product described in this manual is intended for use solely in an industrial environment as defined above. When installed in Europe, any other application is in contravention of European Union Directives, and a breach of these laws.

Declaration of Conformity

DECLARATION OF CONFORMITY

This Declaration of Conformity is suitable to the European Standard EN 45014, "General criteria for supplier's declaration of conformity." The basis for the criteria has been found in international documentation, particularly in: ISO/IEC Guide 22, 1982, "Information on manufacturer's declaration of conformity with standards or other technical specifications."

Allen-Bradley liability under this declaration is limited to that set forth in the current Allen-Bradley publication 6500, Terms and Conditions of Sale as well as similar publications from Allen-Bradley affiliates doing business in the European Community.

Applied Council Directive(s):
Electromagnetic Compatability Directive (EMC) 89/336/EEC
and amending directives $91 / 263 / \mathrm{EEC}, 92 / 31 / \mathrm{EEC}, 93 / 68 / \mathrm{EEC}$

We,			
Manufacturer:	Allen-Bradley Company, Inc.	Authorized	
	1201 South 2nd Street	Representative in the	Allen-Bradley, subsidary of
	Milwaukee, W1 53204	Community (and location	Düssell International GmbH
	U.S.A.	of Responsible Person):	D-42781 Haan, Germany

declare under our sole responsibility that the product(s) (name, type/model, batch/seria number):

Industrial barcode reading systems including the Bul 2755-DS and -DD family of decoders and the Bul 2755-LD4 and -LD8 family of scanners
to which this declaration relates is in conformity with the relevant provisions of the following standard(s) or other normative document(s):

EN 50082-2 :1995 Generic Immunity Standard - Industrial
EN 50081-2 :1993 Generic Emission Standard - Industrial

Test Report is maintained at:	Report No. 3530 \& 3556 August 1995
Allen-Bradley Company, Inc.	D.L.S. Electronic Systems, Inc
1201 South Second Street	1250 Peterson Drive
Milwaukee, WI 53204	Wheeling, IL 60090

We, the undersigned, hereby declare that the product(s) specified above conforms to the listed directive(s) and standard(s).

Glossary

A

ACK
See acknowledgement.

acknowledgement

An ASCII control character used to acknowledge the reception and acceptance of a transmission block.

address

1) A character string that uniquely identifies a memory location.
2) A character string that uniquely identifies the physical location of an input or output circuit.

AIM
Acronym for Automatic Identification Manufacturers.

alphanumeric

The character set containing letters, numbers, punctuation marks, and symbols.

ASCII

American standards code for information interchange. It is a seven-bit code with an optional parity bit used to represent alphanumeric, punctuation marks, and control code characters.

AutoLoad

The ability to automatically fill the match code table with character strings and symbology types by scanning bar codes.

AUX Port

Serial port that communicates with a standard ASCII terminal. The
AUX port can switch between two modes of operation; configuration or manual data entry.

AUX Terminal

Terminal that connects to the AUX port and is used for configuration or manual data entry functions.

AUX Terminal Selector

Mechanism that switches the AUX port between configuration and manual data entry mode.

B

bar
The dark element of a printed bar code symbol.

bar code

The vertical bars and spaces found in a bar code symbol.

bar code density

The number of characters which can be represented in a linear inch.

bar code label

A label that carries a bar code and is suitable to be affixed to an article

bar code symbol

A group of vertical bars that represent a character or group of characters whose spacing is determined by a specific set of rules. In most cases, human readable characters are printed below the bars. Also referred to as a field.

bar length

The bar dimension perpendicular to the bar width.

bar width

The thickness of a bar measured from the edge closest to the symbol's start character to the trailing edge of the same bar.
bit
Binary digit. The smallest unit of information in the binary
numbering system. Represented by the digits 0 and 1. The smallest unit of memory.

buffer

Storage register for the temporary storage of data that allows data to be decoded at different rates.

buffer full

An output condition that occurs when the buffer is full.

buffer overflow

An output condition that occurs when the buffer is full and the decoder produces additional bar code data.
byte
8 bits operated on as a unit.

C

capture count
The number of identical and valid scans which must be decoded for a valid read to occur.

When capture count is set to V, a valid read occurs only if the decoded data matches an entry in the match code table.

character

A single groups of bars and spaces representing an individual number, letter or punctuation mark. A graphic shape representing a letter, number or symbol.

check digit

A digit included within a symbol whose value is based mathematically on other characters included in the symbol. It is used to mathematically check the accuracy of the read.

code type

See symbology.

coordinated mode

A scanning mode in which the symbols per package setting can be satisfied by either or both scanners.
continuous code
A bar code or symbol that does not use an intercharacter gap between characters in the code. Code 128 is an example of a continuous code.

controller

A unit, such as a programmable controller, which controls machine or process elements.

CRT

A terminal containing a cathode ray tube.

D

decode
The process of translating a bar code into data characters using a specific set of rules for each symbology.

decoder

A device used to decode, or make usable, a digital or analog signal transmitted from a scanning device.

decode mode

The method by which the decoder starts and stops the decoding process. The two basic methods of decoding are triggered and continuous.

decoder logic

The circuitry which receives the signals from the scanner, interprets the signals into meaningful data and provides the interface to other devices.

discrete code

A bar code or symbol where the space between characters, intercharacter gap, are not part of the code; as with Code 39. See continuous code.

E

EAN

Acronym for European Article Numbering System, the international standard bar code for retail food packages.
element

1) A single binary position in a character. 2) Dimensionally the narrowest width in a character, bar or space.
encoded area
The total linear dimension consisting of all the characters of a code pattern, including start/stop characters and data.

G

guard bars

The bars at the ends and center of a UPC and EAN symbol. They ensure a complete scan of the bar code.

H

helium neon laser
The type of laser most commonly used in bar code scanners.
Because the laser beam is bright red, bars must not be printed with red ink. The bars would be indistinguishable from the background.
hex
Abbreviated form of the word hexadecimal. See hexadecimal.
hexadecimal numbering system.
A base-16 numbering system that uses the symbols $0,1,2,3,4,5,6$, $7,8,9, A, B, C, D, E, F$.

host

(1) A central controlling computer in a network system. (2) Any device on a network system that provides a controlling function to another device on the network. (3) Any intelligent device for which another device is providing a communication interface to a network.

host port

Serial port supporting RS-232, RS-422, RS-485 communications interfaces through which a device can control the operation of the decoder and receive decoded information.

I

Independent Mode

A scanner mode in which each scanner operates independently of the other.

Interleaved 2-of-5

A bar code in which characters are paired together using bars to represent the first character and spaces to represent the second.

Inter-Scan Timer

A timer that inhibits decoding for a set time interval after a valid read.

L

LAN

Local area network.

LSAP

An acronym for Link Service Access Point. Used by the DH-485 protocol. Effectively a secondary address for an application service.

M

match

A condition in which decoded data matches data in the match code table.

match code

A sequence that specifies a symbology (code type) and character string which can be compared against decoded (valid) bar codes.

match code table

A list of match codes that is compared to each valid read. The decoder offers primary and extended match code tables, each of which offers different capabilities.

match complete

An output condition in which decoded data matches a set number of entries in the match code table.

match entry

An output condition in which decoded data matches an entry in the match code table.

misread

A condition which occurs when the data output of a reader does not agree with the encoded data presented.

modulo check digit or character

A calculated character within a data field used for error detection. The calculated character is determined by a modulus calculation on the sum or the weighted sum of the data field contents.
msec
Abbreviation for millisecond (1/1,000 of one second).

multi-drop link

A link that has more than 2 stations (contrasted with a point-to-point link.)

multiplexer

The incorporation of 2 or more signals into a single wave from which the individual signal can be recovered.

N

NAK

See negative acknowledgement.

Negative Acknowledgment

An ASCII control character transmitted by a receiver as a negative response to the sender.

NEMA standards

Consensus standards for electrical equipment by the members of the National Electrical Manufacturers Association (NEMA).

NEMA Type 1

Enclosure intended for indoor use. Provides a degree of protection against contact with the enclosed equipment in locations where unusual service conditions do not exist. The enclosure is sheet steel, treated to resist corrosion.

NEMA Type 4

Enclosure intended for indoor or outdoor use primarily to provide a degree of protection against windblown dust and rain, splashing water, and hose directed water; and to be undamaged by the formation of ice on the enclosure.

No-Match

An output condition in which decoded data does not match an entry in the match code table.

No-Read

An output condition in which bar codes on a package are not read correctly or are incomplete (fields per package count not satisfied).

numeric

A character set that includes only the numbers as contrasted to alphanumeric which includes both letters and numerals.

0

orientation
The alignment of bars and spaces the the scanner. Often referred to as vertical (picket fence) or horizontal (ladder).

output counter

A counter that is associated with each output condition. The counter increments by 1 each time the condition occurs.

overhead

The fixed number of characters required for start, stop and checking in a given symbol. For example, a symbol requiring a start/stop and two check characters contains four characters of overhead. To encode three characters of data, seven characters are required.

P

PCCC
Acronym for Programmable Controller Communications Commands. A set of commands used to communicate with Allen-Bradley programmable controllers.

percent good reads

The number of successful reads per 100 attempts to read a particular symbol.

parity bit

An additional non-data bit attached to a binary word to provide a check of the data integrity by making the sum of the number of ones in a word always even or odd.

picket fence code

A code pattern in which the direction of travel of the symbol is perpendicular to the bars and spaces of the code.

R

RS232, RS422, RS485

Electrical standards for data communications.

read

An output condition in which an entire package is correctly decoded. In the continuous decode modes, read and valid read (see valid read) have the same meaning.

S

scan

The search for a symbol or marks which are to be optically recognized.

scan area

The area intended to contain a bar code symbol.

scanner

A device that optically scans bar code symbols and converts the optical information into digital or analog form and sends it to a decoder.

self-checking

A bar code or symbol using a checking algorithm which can be applied to each character to guard against undetected errors. Non-self-checked codes may employ a check digit or other redundancy in addition to the data message.

space

The lighter element of a bar code formed by the background between bars.

start/stop character

A bar code character that provides the scanner with information about how the code is bounded and its orientation. The start character is normally at the left-hand end of a horizontal code and adjacent to the most significant character. The stop character is normally at the right-hand end of a horizontal code and adjacent to the least significant character.

step ladder orientation

A bar code or symbol presented in such a manner that the direction of travel of the symbol is parallel to the cars and spaces of the code

string

A sequence of ASCII characters.

symbol

A combination of characters, including start/stop characters and check characters, as required, which form a complete scannable entity.

symbol density

The number of characters per linear inch.

symbol length

The length of the symbol measured from the beginning of the quiet area adjacent to the start character to the end of the quiet area adjacent to a stop character.

symbology

The conventions, or rules, which govern the formation of characters and strings of characters in bar codes. The language of the bar code symbol. See bar code symbol.

symbols per package

A value that indicates the number of bar code symbols that comprise a complete package. This value applies only to the triggered mode of operation.

symbols per scan

A value that indicates the number of bar code symbols expected in a single sweep of the scanning beam.

U

UPC
Acronym for Universal Product Code. The standard bar code type for retail food packaging in the United States.

V

valid package
A scan (or group of scans) that is comprised of valid reads and satisfies the fields per package parameter.

valid read

A condition that occurs when sufficient valid scans have been decoded to satisfy the capture count.
valid scan
A condition that occurs when sufficient valid fields have been decoded to satisfy fields/scan.

W

word
A unit of data which contains two bytes (16 bits).

$$
\begin{gathered}
\text { Numbers } \\
2755-\mathrm{AM} 55, \mathrm{G}-1-\mathrm{G}-3 \\
2755-\mathrm{CT} 1,2-13 \\
2755-\mathrm{IA} 55,2-9,18-3, \mathrm{H}-1-\mathrm{H}-3 \\
2755-\mathrm{IB} 55,2-9,18-3, \mathrm{H}-1-\mathrm{H}-3 \\
2755-\mathrm{IM} 55,2-9,18-3, \\
\text { H-1-H-3 } \\
2755-\mathrm{NC} 17,2-13 \\
2755-\mathrm{NP} 1,2-13 \\
2755-\mathrm{NP} 3,2-13 \\
2755-\mathrm{NP} 4,2-13 \\
2755-\mathrm{NP} 5,2-13 \\
2755-\mathrm{OA} 55,2-9,18-3, \\
\text { G-1-G-3, H-1-H-3 } \\
2755-\mathrm{OB} 55,2-9,18-3, \\
\text { G-1-G-3, H-1-H-3 } \\
2755-\mathrm{OM} 55,2-9,18-3, \\
\mathrm{H}-1-\mathrm{H}-3
\end{gathered}
$$

A

Accessories
communications cable (NEMA Type 4), 2-13
connector kit (NEMA Type 4), 2-13
I/O modules, $2-9,18-3, \mathrm{G}-1$, $\mathrm{G}-2, \mathrm{H}-1$
package detectors, $2-13$
replacement fuses for I/O modules, 2-9
scanners and cables, $2-11$
ACK Character, 12-4
ASCII Character Set, I-1
ASCII Host Commands, 15-1
autoload, 15-26
autoload begin, 15-25
autoload end, 15-25
AUX terminal data entry operations, 15-64
AUX terminal source identifier, 15-59
clear all primary output counters, 15-36
clear extended match counters, 15-36
clear no-read counter, 15-73
clear package counter, 15-73
clear primary output counter, 15-35
Codabar check character, 15-11
Code 128 FNC1 character, 15-14
Code 39 check characters, 15-11
code verification list, 15-15
command format, $15-5$
command replies, $15-6$
configure bar code data mask (obsolete), 15-77
data positions on AUX terminal, 15-48
default no-read string, $15-63$
default prompt message, $15-68$
DH485 communication addresses, 15-1
disable extended match code set, 15-45
display message at AUX Terminal/LCD, 15-66, 15-67
enable data display on AUX terminal and LCD, 15-47
enable scrolling on LCD Display, 15-49
header message, 15-62
hold output open/closed, 15-31, 15-32
host communications, 15-53
host message format, 15-56
Interleaved 2-of-5 check character, 15-11
pad data character (obsolete), 15-77
Pharma-Code symbology, 15-16
protocol options, 15-1
quiet zone. See Pharma\&Code Symbology
read all extended counters, 15-43
read all extended match data, 15-41
read decoder performance indicators, 15-69
read extended match counters, 15-38
read extended match set status, 15-46
read output counter, 15-72
read package counter, $15-70$
read primary match code table entry, 15-33
read symbols not read counter, 15-71
reset decoder, 15-76
save configuration to storage memory (no restart), 15-74
save configuration to storage memory and restart, 15-74
Scanner A control, 15-18
Scanner A package detect, 15-21
Scanner A source identifier, 15-60
Scanner B control, 15-20
Scanner B laser light, 15-23
scanner B package detect, 15-22
Scanner B source identifier, 15-61
Scanner B start \& stop characters, 15-55
set configuration to default values, 15-75
set extended match counters, 15-37
set extended match data, 15-39
set no-read replacement string, 15-52
set number of fields in host message, 15-58
set output condition and duration, 15-29
set output normally open/closed, 15-28
set search and replace rule for host message fields, $15-50$
symbology and supplements, $15-8$
symbology lengths, 15-9
using DH485, 15-1
using RS-232/RS-422, 15-1
version of software, $15-76$
write primary match code table entry, 15-34
write scanner source to match code table, 15-24

Audible Beep, 5-9
Auto Refresh, 8-2
AutoLoad
activate using AutoLoad (INPUT), 7-19, H-1, H-2
activate using AUX port connector pins, $7-19, \mathrm{H}-2$
activate with a restart, 7-19
description of, 7-19
with Extended Match Code Table entries, 8-3
AutoLoad (INPUT), 7-20
activating autoload function, 7-20, 7-23, H-1
loading multiple packages, 7-21, 7-24
using input module, $7-20, \mathrm{H}-1$
when to use, 7-21
AUX Display, 9-1

AUX Port
communication parameters, $14-1$
configuration mode, 2-4, 5-1, 13-6
connecting AUX Terminal, 4-15, 4-16
connector pinouts (NEMA Type 1), 4-15
connector pinouts (NEMA Type 4), 4-16
data entry mode, $2-4,13-6$
switching between configuration and data entry mode, 2-4, 13-5
AUX Terminal Data Entry, 13-1, 13-2
confirming entries, 13-3
defining default prompt message, 13-5
enabling data entry, 13-2
enabling data entry for no-reads, 13-3
enabling data entry from host, 13-2
formatting data sent to host, 13-11
processing no-reads, $13-8$
size of display, 13-5
AUX Terminal Display Functions, 13-7
display examples, $9-10$
displaying bar code data, 9-4
displaying decoder performance values, 9-4
displaying host messages, 13-8
displaying output counters, 9-5
displaying package counter, 9-4
displaying symbols not read counter, 9-5
enabling device to display data, 9-1
format of bar code data display, 9-2
AUX Terminal Selector, 5-1
external selector (AUX port pins), 13-6
internal selector (logic board jumper), 13-6
AUX Terminals
communication parameters, 5-1, 13-1
connecting and setting up, $\mathrm{D}-1$
connecting to NEMA Type 1 decoder, 4-15
connecting to NEMA Type 4 decoder, 4-16
constructing cable (NEMA Type
1), 4-15
constructing cable (NEMA Type 4), 4-16
supported types, 4-15, 4-16,
$5-1,13-1, \mathrm{D}-1$

B

Bar Code Data Display
on AUX Terminal, 9-1
on configuration screen, 14-2
on LCD Display, 9-1
Bar Code Symbol, vs. message field and host message, $10-2$
Bar Tolerance, Pharma-Code, 6-12
Bar Width Ratio, Pharma-Code, 6-14

Battery, installation, 17-1
Baud Rate, 12-2
Bits/Character, 12-2
Buffer Full Output Condition, 7-18
Buffer Overflow Output Condition, 7-18

C

Cable Selector, 2-11
Capture Count, 7-6
and no-reads, 7-7
Check Character
and Extended Match Code Table, 8-6
Codabar, 6-5
Code 39, 6-3
Interleaved 2 of 5, 6-4
Codabar
check character, 6-5
enabling, 6-5
specific lengths, 6-5
Code 128
enabling, 6-6
FNC1 character, 6-7
specific lengths, 6-6
Code 39
check character, 6-3
enabling, 6-2
specific lengths, 6-2
Code Verification, with Pharma-Code, 6-15

Command Line, valid keys, 5-10
Communications Parameters, AUX port, 14-1
Configuration
discrete I/O, 7-1
Host Message Replacement Rules, 10-1
LCD and AUX display, 9-1
primary match table, 7-1
scanner, 7-1
Configuration Mode, 5-1
enabling, 13-5
switching to, 13-6
vs. manual data entry mode, 13-2
Configuration Options
decoder screens, 3-1
host commands, 3-2
Configuration Screen Commands
Default, 5-12
Next Page, 5-10
Recall, 5-11
Save, 5-12
This Page, 5-11
Configuration Screens, 3-2
changing data, 5-7
command line, $5-10$
commands, 5-10
edit field, 5-7
editing conventions, 5-5,5-7, 5-10
editing keys, 5-7
help line, 5-9
highlight, 5-6
moving around the screen, 5-6
select field, 5-7
types of fields, 5-7
Continuous Decode Mode
description, 3-8
when to use, 3-8
Continuous/Unique Decode Mode
affect on valid reads, $3-8,7-3$
description, 3-8, 7-3
Contrast, adjusting LCD, 9-10
Coordinated 1 Decode Mode, 7-9
Coordinated 2 Decode Mode, 7-9
Coordinated Scanning Mode, 2-2, 3-8
Count, in Extended Match Code Table, 8-6
Counter Display
on AUX Terminal, 9-4
on configuration screen, 14-4
on LCD Display, 9-5
Counter Status, Extended Match
Code Table, 8-2
Counters
output (1-8), 14-4
package, 14-4
resetting, 14-5
symbols not read, $14-4$

D

Debounce Filter, 7-11
Decode Direction, Pharma-Code, 6-14
Decode Modes
continuous, $3-8,7-2$
continuous/unique, $3-8,7-3$
coordinated 1, 7-9
coordinated 2, 7-9
host, 3-8, 7-3, 7-9
internal timer, 3-9, 7-3
package detect, 3-8, 7-3, 7-9
scanner B, 7-9
triggered, 3-8
Decoder
hosted operations, 3-3
stand-alone operation, 3-2
Decoder Performance Display on AUX Terminal, 9-4
on configuration screen, 9-2, 14-4
on LCD Display, 9-4
Decoder Performance Indicator how buffer overflow affects indicator, 14-4
in continuous mode, $14-4$
in triggered mode, 14-4
Scanner A, 14-4
Scanner B, 14-4
when it is useful, 14-4
Default No-Read Message, 11-7
Default Prompt Message, 13-8
configuring, $9-6,13-5,13-8$
when does it display, $9-6,13-8$
Device Address, 12-3
Diode, using to protect output module, G-2

Discrete I/O, configuration, 7-1, 7-15
Discrete Outputs and Extended Match Code Table, 8-7
and loading, 8-7
Display Bar Code Strings Function, 14-2
Display Status and Primary Counters Function, 14-3

E
EAN-13
enabling, 6-10
supplements, 6-10
EAN-8, enabling, 6-9
EAN-8, supplements, 6-9

Edit Field

entering ASCII value, 5-7
entering non-printable characters, 5-7, I-2
entering numeric value, 5-7
entering text string, 5-7
Electrical Recommendations, 4-1
Electromagnetic Interference (EMI), 4-2
Enclosres, type ratings, 2-1
Event, source of, 7-16
Extended Match Code Table and AutoLoad, 8-3
and check characters, 8-6
and loading, 8-7
and question mark, $8-6$
compared to Primary Match Table, 8-1
count, 8-6
counter status, 8-2
lot, 8-4
match entry, 8-4
match pattern string, 8-6
mode, 8-3
number of entries allowed, 8-1
output duration, 8-9
purpose and use of, $8-1$
search pattern, 8-6
source, 8-5
status of counter set, 8-3
symbology, 8-5
use of percent sign in, 8-3
wild card characters, $8-6$

F

Factory Default Settings, 5-12, J-1
Filter, debounce, 7-11

FNC1 Character, 6-7

Fuses
ordering replacment fuses, 2-9
replacing I/O module fuses, 17-2

G

Grounding Recommendations, 4-2
Guard Bars, Interleaved 2 of 5, 6-4

H

Header Message, 11-5
Help Line
edit mode, 5-9
select mode, 5-9
Host Command Trigger, start/stop scan characters, $12-5$
Host Commands, 3-2
ASCII commands, 15-1
PCCC commands, 16-1
Host Communication Parameters, 12-2
ACK character, 12-4
baud rate, 12-2
bits/character, 12-2
host protocol, 12-3
NAK character, 12-4
node device address, 12-3
parity, 12-2
send message to host, 12-6
start scan character, $12-5$
stop scan character, 12-5
transmission check, 12-7
using large buffer, 12-6
Host Decode Mode, 7-9
Host Device
computer, 3-5
connecting to NEMA Type 1 decoder, 4-16
connecting to NEMA Type 4 decoder, 4-18
constructing cable (NEMA Type 1), 4-16
constructing cable (NEMA Type 4), 4-18

Programmable Logic Controller (PLC), 3-3
supported types, 4-16
Host Message
examples, $10-14-10-19$
vs. message field and bar code symbol, 10-2

Host Message Format
contents of, 11-2
examples, 11-2
parameters, 11-4-11-9
Host Message Parameters
Codabar check character, 6-5
Code 39 check character, 6-3
default no-read message, 11-7
end message terminator, 11-7
expand UPC-E, 6-9
field delimiters, $11-5$
header message, $11-5$
I 2 of 5 check character, 6-4
no-read replacement strings, 11-8
number of fields in message, $11-5$
send bar code strings, 11-6
send decoder performance, 11-7
send package count, 11-6
send symbology, 11-6
source identifier, 11-4
start character, 11-4
Host Message Replacement Rule Screen, 10-2

Host Message Replacement Rules
described, 10-1
number available, $10-2$
processing order, 10-7
uses for, 10-1
Host Port
connecting host device, 4-16,
4-18, E-1
connector pinouts (NEMA Type 1), 4-16, $\mathrm{E}-1$
connector pinouts (NEMA Type
4), $4-18, E-1$
function, 2-5
interfaces, $2-5$
RS - 232 connections (NEMA Type 1), $\mathrm{E}-2$

RS - 232 connections (NEMA Type
4), E-3

RS - 422 connections (NEMA Type
1), $\mathrm{E}-4$

RS - 422 connections (NEMA Type
4), $\mathrm{E}-5$

RS - 485 connections (NEMA Type
1), $\mathrm{E}-6$

RS - 485 connections (NEMA Type
4), E-7

Host Protocol, 12-3

Host Trigger, start/stop scan characters, 7-3

I/O Module Board, 2-5
customer installable options, 2-10 ordering options, 2-9
I/O Modules
available types, 2-9
connecting to external devices, using conduit, 4-20, 4-22 using NEMA 4 Connector Kit, 4-20
field wiring holes, $2-6$
fuses, 4-19
installing in I/O Board, 4-19
specifications, 2-9
wiring, 4-20
Independent Scanning Mode, 2-2, 3-8
Input Modules, 2-9 specifications, $2-9,18-3$ using for AutoLoad (INPUT), $\mathrm{H}-1, \mathrm{H}-2$

Installation
AUX terminal, 4-15
electrical recommendations, 4-1
grounding, 4-2
host device, 4-16
I/O modules, 4-19, 4-20
mounting decoder, 4-3
power cords, 4-4
power requirements, 4-1
replacing LED Indicator Label, 4-2

Inter-Scan Timer, equations for, 7-5
Inter-Scan Timer, 7-5
Interleaved 2 of 5
check character, 6-4
enabling, 6-3
guard bars, 6-4
include check character, 6-4
specific lengths, 6-3
Internal Timer, as a trigger source, 7-3

Languages Supported, 3-2

Large Buffer
description of, 12-6
when to use, 12-6
Laser Light
off, 7-2
on, 7-2
triggered, 7-2
LCD Display, 9-1
adjusting contrast, 9-10
customer installable option, 2-10
display examples, 9-8
displaying bar code data, 9-4
displaying decoder performance values, 9-4
displaying default prompt message, 9-5
displaying host messages, 9-5
displaying package counter, 9-4
displaying primary output counters, 9-5
displaying symbols not read counter, 9-5
enabling device to display data, 9-1
enabling scrolling, 9-3
format of bar code data, 9-2
function, $2-4,9-1$
scrolling, 9-1
LED Indicators, 2-3, 7-21, 18-1
Loading
and discrete outputs, 8-7
in Extended Match Code Table, 8-7
Lot, 8-4

M

Manual conventions, 1-3
Manual Data Entry Mode, switching to, 13-6
Manual Data Entry Parameters, 13-2
AUX data format, 13-4
confirm entry, 13-3
default prompt message, 13-5
echo to terminal, 13-4
enabling, 13-5
enabling data entry for no-reads, 13-2
enabling data entry from host, 13-2
enabling manual data entry, 13-2
format of data sent to host, 13-11
rubout character, 13-4
size of display, 13-5
Match Complete, 7-8
Match Entry, in Extended Match Code Table, 8-4

Match Pattern String, in Extended Match Code Table, 8-6
Match-Complete Output Condition, 7-17
Match-Entry Output Condition, 7-17

Memory
operating, 3-6
storage, 3-6
types of, 3-5
Message Field, vs. bar code symbol and host message, $10-2$
Messages from the Host, 9-5, $13-8,15-66,15-67,16-12$

Metacharacters introduction to, 10-3
table summarizing, 10-4-10-8
use of question mark, 10-4
minimum number of bars, Pharma-Code, 6-13
Mounting Dimensions, 4-3
N
NAK character, 12-4
NEMA Type Enclosures, 2-1
No-Reads, and capture count, 7-7
No-Read Counter, 14-4 See also symbols not read counter
No-Read or No-Match Output Condition, 7-18

No-Read Output Condition, 7-17
No-Read Replacement Strings, 11-8

No-Read Timer
disabling, 7-4
how to use as trigger source, 7-4
Non-Printable ASCII Characters, use in Extended Match Code Tables, 8-3
Non-printable Characters, I-2
Number of Bars, minimum, 6-13

0

Obsolete Commands
configure bar code data mask (DM), 15-77
configure pad data character (PD), 15-77
Operating Memory, 3-6
Output Conditions
autoload, 7-19
autoload (INPUT), 7-20
buffer full, 7-18
buffer overflow, 7-18
match-complete, 7-17
match-entry, 7-17
no-read (package), 7-17
no-read or no-match, 7-18
read (package), 7-17
read and no-match, 7-18
Output Counters, primary, 9-5, 14-4

Output Duration
affect on LED, 7-21
definition of, 7-21
precision of timing, 7-21
setting, 7-21
Output Modules, 2-9
AC output module application, G-2
DC output module application, G-1
specifications, $2-9,18-3$
using diode to protect module, G-2
Output State, 7-15
affect on LED, 7-21
at power-up, 7-15
configuring, 7-15
disabling during configuration, 5-4
normally open or normally closed, 7-15
when a fault occurs, 7-15

Package Counter, 7-17, 9-4, 14-4

Package Detect
decode mode, 7-3
Scanner A, 7-3
Scanner B, 7-9
signaling arrival and departure of package, 7-3
Package Detect Decode Mode, 7-9
Package Detect Input
filter and sense (Scanner A), 7-12
filter and sense (Scanner B), 7-12, 7-13
Package Detectors, 2-13
PhotoSwitch, 2-13
Parity, 12-2
PCCC Commands, use with an AUX terminal, 13-11

PCCC Diagnostic Link Commands diagnostic loop, 16-14
read diagnostic counters, $16-15$
read diagnostic status, $16-16$
reset diagnostic counters, 16-16
reset diagnostic status, $16-16$
PCCC Host Commands, 16-1
cancel repeat read command, 16-12
command format, 16-2
DH485 protocol options, 16-1
diagnostic commands, 16-1
diagnostic loop, 16-14
display message on AUX Terminal, 16-12
execute decoder functions, 16-9
hold output open or closed, 16-13
modify configuration data, 16-9
read configuration data, 16-8
read counters and performance indicator, 16-6
read current bar code data, $16-5$
read diagnostic counters, $16-15$
read diagnostic status, $16-16$
read last host message, 16-7
reply format, 16-3
reset diagnostic counters, $16-16$
send repeat read command, 16-11
status response codes, 16-4 unprotected read command, 16-1 unprotected write command, 16-1, 16-8
PCCC Unprotected Read Command read configuration data, $16-8$
read counters and performance indicator, 16-6
read current bar code data, $16-5$
read last host message, 16-7

PCCC Unprotected Write Command
cancel repeat read command, 16-12
display message on AUX Terminal, 16-12
execute decoder functions, 16-9
hold output open or closed, 16-13
modify configuration data, 16-8, 16-9
send repeat read command, 16-11
Percent sign, use in Extended Match Code Tables, 8-3
Pharma-Code
bar tolerance, 6-12
code verification list, 6-15
decode direction, 6-14
enabling, 6-10
minimum number of bars, $6-13$
quiet zone ratio, $6-11$
space tolerance, 6-12
wide to narrow bar ratio, 6-14
PhotoSwitch Package Detectors, 2-13
Power Connector and On/Off Switch
NEMA Type 1 decoder, 2-5, 4-4
NEMA Type 4 decoder, 2-5, 4-4
Power Cords
options (NEMA Type 1), 2-7, 4-4
options (NEMA Type 4), 2-8, 4-4
replacement numbers (NEMA Type 1), 2-7
replacement numbers (NEMA Type 4), 2-8
Power Requirements, 4-1
Power Supply, source voltage, 2-2
Primary Match Table, 7-13
compared to Extended Match Code Table, 8-1
configuration, 7-1
including check digits, 7-14
match code length, 7-14
match code string, 7-14
match code symbology, 7-14
number of entries, 7-13
parameters, 7-13
setting up match codes, 7-13
wild card character (?), 7-14
Processing Order, host message replacement rules, 10-7
Publications, related, 1-4

Q

Question Mark
as metacharacter, $10-4$
as wild card, 8-6
with host message replacement rules, 10-4
Quiet Zone Ratio, Pharma-Code, 6-11

R

Ratio, wide to narrow (Pharma-Code), 6-14
Read and No-Match Output
Condition, 7-18
Recalling Configuration Parameters, using configuration screens, 5-11
Replacing Battery, 17-1
Replacing I/O Module Fuses, 17-2
Reset All Counts, 8-2
Reset Status and Primary Counters Function, 14-5
Response Codes, descriptions of, 15-7
Response Mode
at end of trigger, 3-9
end of trigger, 3-9
immediately after valid package, 3-9
Restart System Function, 14-5
Restoring Default Configuration affect on host communication
parameters, 5-12 using configuration screens, 5-12

S

Save Configuration, 14-6
Saving Configuration, using configuration screen, 5-12
Scaning Modes, coordinated, 3-8

Scanner A Control
capture count, 7-6
decode modes, 7-2
inter-scan timer, 7-5
match complete, 7-8
no-read timer, 7-4
Symbols/package, 7-8
symbols/scan, 7-7
Scanner B Control, 7-8
decode modes, 7-9
trigger timeout, 7-11
Scanner B Start \& Stop Characters, 15-55
Scanner Control, configuration, 7-1
Scanner Ports
Scanner Port A, 2-1
Scanner Port B, 2-1
Scanners, 2-11
available types, $2-11$
Scanning
continuously, 7-2
turning laser off, 7-2
when triggered, 7-2
Scanning Mode
coordinated, 2-2, 3-8
independent, $2-2,3-8$
Scrolling, enabling LCD display, 9-3
Search Pattern, 8-6
Select CRT Type Screen, 5-3
Select Field, 5-7
Select Language Screen, 5-2, 14-6
Select Operation Menu, 5-3, 5-4
caution message on state of outputs, 5-4
configure symbology, 6-1
display bar code strings function, 14-2
display status and primary counters function, 14-3
host comunications parameters screen, 12-1
host message format screen, 11-1
reset status and primary counters function, 14-5
restart system function, 14-5
select language screen, 14-6
Select Operation Screen, save configuration, 14-6
Send Message to Host
at end of trigger, 12-6
immediately after valid trigger, 12-6

Source, in Extended Match Code Table, 8-5
Source of Event, 7-16
Space Tolerance, Pharma-Code, 6-12
Start \& Stop Characters, For Scanner B, 15-55
Start Scan Character, 12-5
status of counter set, 8-3
Stop Scan Character, 12-5
Storage Memory, 3-6
Supplements
EAN-13, 6-10
EAN-8, 6-9
UPC-A, 6-7
UPC-E, 6-8
Symbologies, 3-1, 6-1
Codabar, 6-5
Code 128 and specific lengths, 6-6
Code 39 and specific lengths, 6-2
EAN-13 and supplements, 6-10
EAN-8 and supplements, 6-9
enabling EAN-8, 6-9
enabling EAN-13, 6-10
enabling Pharma-Code, 6-10
in Extended Match Code Table, 8-5
specific length checking, 6-1
UPC-A and supplements, 6-7
UPC - E and supplements, 6-8
Symbols Not Read Counter, 7-17, 9-5, 14-4
Symbols/Package, 7-8
coordinated mode, 7-10
independent mode, 7-10
Symbols/Scan, 7-7

T
Terminal Connections and Setup, D-1
Transmission Check, 12-7
checksum - LSB, 12-7, C-1
checksum - MSB, 12-7, C-1
example, $\mathrm{C}-1$
LRC (Longitudinal Redundancy Check), 12-7
Trigger End Conditions, 3-9
Trigger Sources
host, 7-3
host command, 3-8
internal timer, 3-9, 7-3
package detect, 3-8
package detect signal, 7-3
start/stop scan characters, $12-5$
Trigger Timeout
and decode mode, 7-9
Scanner B, 7-11
Troubleshooting, 17-3

UPC-A
enabling, 6-7
supplements, 6-7
UPC-E
enabling, 6-8
supplements, 6-8

V

Valid Scan, defined, 7-9
Validation, of Pharma-Code symbols, 6-15

Q Rockwell Automation Allen-Bradley

Allen-Bradley, a Rockwell Automation Business, has been helping its customers improve productivity and quality for more than 90 years. We design, manufacture and support a broad range of automation products worldwide. They include logic processors, power and motion control devices, operator interfaces, sensors and a variety of software. Rockwell is one of the world's leading technology companies.

Worldwide representation

Argentina • Australia •Austria • Bahrain • Belgium • Brazil • Bulgaria • Canada • Chile •China, PRC • Colombia • Costa Rica • Croatia • Cyprus • Czech Republic • Denmark \bullet Ecuador \bullet Egypt \bullet El Salvador \bullet Finland \bullet France \bullet Germany \bullet Greece \bullet Guatemala \bullet Honduras \bullet Hong Kong \bullet Hungary \bullet Iceland \bullet India \bullet Indonesia \bullet Ireland • Israel • Italy •Jamaica •Japan • Jordan • Korea • Kuwait •Lebanon • Malaysia • Mexico • Netherlands • New Zealand • Norway • Pakistan • Peru • Philippines • Poland • Portugal • Puerto Rico • Qatar •Romania •Russia-CIS • Saudi Arabia •Singapore • Slovakia • Slovenia • South Africa, Republic • Spain • Sweden • Switzerland •Taiwan •Thailand •Turkey •United Arab Emirates •United Kingdom•United States •Uruguay •Venezuela • Yugoslavia

Allen-Bradley Headquarters, 1201 South Second Street, Milwaukee, WI 53204 USA, Tel: (1) 414 382-2000 Fax: (1) 414 382-4444

[^0]: * The parameters that do not change until they are saved and the decoder is restarted, involve host commı would be disruptive to change host communications parameters while data transmission was in process. communications parameters are loaded into operating memory from storage memory during restart.

[^1]: (1) The AUX port supports a terminal for either configuring the decoder or for man

[^2]: (1) ATTENTION: Set output durations in multiples of 5 milliseconds. Actual output will have a worst-case precision of +0 to -5 milliseconds, varying with the timing of the output. Durations that are not set in multiples of 5 milliseconds will be rounded up to the nearest multiple of 5 and function within the same +0 to -5 millisecond precision.

 For example, a setting of 25 milliseconds will result in a duration of from 20 to 25 milliseconds. A setting of 23 milliseconds will result in the same duration range.

[^3]: (1) ATTENTION: Set output durations in multiples of 5 milliseconds. Actual output will have a worst-case precision of +0 to -5 milliseconds, varying with the timing of the output. Durations that are not set in multiples of 5 milliseconds will be rounded up to the nearest multiple of 5 and function within the same +0 to -5 millisecond precision.

 For example, a setting of 25 milliseconds will result in a duration of from 20 to 25 milliseconds. A setting of 23 milliseconds will result in the same duration range.

[^4]: (1) ATTENTION: Set output durations in multiples of 5 milliseconds. Actual output will have a worst-case precision of +0 to -5 milliseconds, varying with the timing of the output. Durations that are not set in multiples of 5 milliseconds will be rounded up to the nearest multiple of 5 and function within the same +0 to -5 millisecond precision.

 For example, a setting of 25 milliseconds will result in a duration of from 20 to 25 milliseconds. A setting of 23 milliseconds will result in the same duration range.

[^5]: (1) ATTENTION: Set output durations in multiples of 5 milliseconds. Actual output will have a worst-case precision of +0 to -5 milliseconds, varying with the timing of the output. Durations that are not set in multiples of 5 milliseconds will be rounded up to the nearest multiple of 5 and function within the same +0 to -5 millisecond precision.

 For example, a setting of 25 milliseconds will result in a duration of from 20 to 25 milliseconds. A setting of 23 milliseconds will result in the same duration range.

[^6]: Notes: Table is restored to saved configuration
 Data cleared from primary match code table for entries 1,2 , and 3.
 Output conditions change from Match Entry to AutoLoad for Outputs 1, 2, and 3.

[^7]: (1) The duration of Extended Match Code Table outputs are established in the Primary Match Code Table below.

[^8]: (1) If any of the characters below are used as single character commands (ACK/NAK or Start) Characters), then the escape sequence (ESC=!) must be used with all two character comm start with that character.

[^9]: (1) Implemented in Series B Revision C (and later) decoders.

[^10]: (1) DTE = Data Terminal Equipment
 (2) When nonmetallic connector shells used.
 (If metal connector shell, connect shield
 to shell.)

